1
|
Hong X, Desmond KW, Chen D, Weeks ER. Clogging and avalanches in quasi-two-dimensional emulsion hopper flow. Phys Rev E 2022; 105:014603. [PMID: 35193244 DOI: 10.1103/physreve.105.014603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
We experimentally and computationally study the flow of a quasi-two-dimensional emulsion through a constricting hopper shape. Our area fractions are above jamming such that the droplets are always in contact with one another and are in many cases highly deformed. At the lowest flow rates, the droplets often clog and thus exit the hopper via intermittent avalanches. At the highest flow rates, the droplets exit continuously. The transition between these two types of behaviors is a fairly smooth function of the mean strain rate. The avalanches are characterized by a power-law distribution of the time interval between droplets exiting the hopper, with long intervals between the avalanches. Our computational studies reproduce the experimental observations by adding a flexible compliance to the system (in other words, a finite stiffness of the sample chamber). The compliance results in continuous flow at high flow rates, and allows the system to clog at low flow rates leading to avalanches. The computational results suggest that the interplay of the flow rate and compliance controls the presence or absence of the avalanches.
Collapse
Affiliation(s)
- Xia Hong
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Kenneth W Desmond
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Dandan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Pelusi F, Sbragaglia M, Benzi R, Scagliarini A, Bernaschi M, Succi S. Rayleigh-Bénard convection of a model emulsion: anomalous heat-flux fluctuations and finite-size droplet effects. SOFT MATTER 2021; 17:3709-3721. [PMID: 33690767 DOI: 10.1039/d0sm01777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present mesoscale numerical simulations of Rayleigh-Bénard (RB) convection in a two-dimensional model emulsion. The systems under study are constituted of finite-size droplets, whose concentration Φ0 is systematically varied from small (Newtonian emulsions) to large values (non-Newtonian emulsions). We focus on the characterisation of the heat transfer properties close to the transition from conductive to convective states, where it is well known that a homogeneous Newtonian system exhibits a steady flow and a time-independent heat flux. In marked contrast, emulsions exhibit non-steady dynamics with fluctuations in the heat flux. In this paper, we aim at the characterisation of such non-steady dynamics via detailed studies on the time-averaged heat flux and its fluctuations. To quantitatively understand the time-averaged heat flux, we propose a side-by-side comparison between the emulsion system and a single-phase (SP) system, whose viscosity is suitably constructed from the shear rheology of the emulsion. We show that such local closure works well only when a suitable degree of coarse-graining (at the droplet scale) is introduced in the local viscosity. To delve deeper into the fluctuations in the heat flux, we furthermore propose a side-by-side comparison between a Newtonian emulsion (i.e., with a small droplet concentration) and a non-Newtonian emulsion (i.e., with a large droplet concentration), at fixed time-averaged heat flux. This comparison elucidates that finite-size droplets and the non-Newtonian rheology cooperate to trigger enhanced heat-flux fluctuations at the droplet scales. These enhanced fluctuations are rooted in the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation function. The observed findings offer insights on heat transfer properties for confined systems possessing finite-size constituents.
Collapse
Affiliation(s)
- Francesca Pelusi
- Department of Physics, University of Rome "Tor Vergata" & INFN - Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
3
|
Kumar P, Benzi R, Trampert J, Toschi F. A multi-component lattice Boltzmann approach to study the causality of plastic events. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190403. [PMID: 32564715 PMCID: PMC7333947 DOI: 10.1098/rsta.2019.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Using a multi-component lattice Boltzmann (LB) model, we perform fluid kinetic simulations of confined and concentrated emulsions. The system presents the phenomenology of soft-glassy materials, including a Herschel-Bulkley rheology, yield stress, ageing and long relaxation time scales. Shearing the emulsion in a Couette cell below the yield stress results in plastic topological re-arrangement events which follow established empirical seismic statistical scaling laws, making this system a good candidate to study the physics of earthquakes. One characteristic of this model is the tendency for events to occur in avalanche clusters, with larger events, triggering subsequent re-arrangements. While seismologists have developed statistical tools to study correlations between events, a process to confirm causality remains elusive. We present here, a modification to our LB model, involving small, fast vibrations applied to individual droplets, effectively a macroscopic forcing, which results in the arrest of the topological plastic re-arrangements. This technique provides an excellent tool for identifying causality in plastic event clusters by examining the evolution of the dynamics after 'stopping' an event, and then checking which subsequent events disappear. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Collapse
Affiliation(s)
- Pinaki Kumar
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Roberto Benzi
- Dipartimento di Fisica, Università di Roma ‘Tor Vergata’ and INFN, Via della Ricerca Scientifica, 1-00133 Roma, Italy
| | - Jeannot Trampert
- Department of Earth Sciences, Utrecht University, PO Box 80115, NL-3508 TC, Utrecht, The Netherlands
| | - Federico Toschi
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Kumar P, Korkolis E, Benzi R, Denisov D, Niemeijer A, Schall P, Toschi F, Trampert J. On interevent time distributions of avalanche dynamics. Sci Rep 2020; 10:626. [PMID: 31953412 PMCID: PMC6969144 DOI: 10.1038/s41598-019-56764-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/29/2019] [Indexed: 11/09/2022] Open
Abstract
Physical systems characterized by stick-slip dynamics often display avalanches. Regardless of the diversity of their microscopic structure, these systems are governed by a power-law distribution of avalanche size and duration. Here we focus on the interevent times between avalanches and show that, unlike their distributions of size and duration, the interevent time distributions are able to distinguish different mechanical states of the system. We use experiments on granular systems and numerical simulations of emulsions to show that systems having the same probability distribution for avalanche size and duration can have different interevent time distributions. Remarkably, these interevent time distributions look similar to those for earthquakes and, if different from an exponential, are indirect evidence of non trivial space-time correlations among avalanches. Our results therefore indicate that interevent time statistics are essential to characterise the dynamics of avalanches.
Collapse
Affiliation(s)
- Pinaki Kumar
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Evangelos Korkolis
- Department of Earth Sciences, Utrecht University, P.O. Box 80115, 3508, TC, Utrecht, The Netherlands
| | - Roberto Benzi
- Dip. di Fisica and INFN, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133, Roma, Italy
| | - Dmitry Denisov
- Institute of Physics, University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - André Niemeijer
- Department of Earth Sciences, Utrecht University, P.O. Box 80115, 3508, TC, Utrecht, The Netherlands
| | - Peter Schall
- Institute of Physics, University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - Federico Toschi
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands. .,Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands. .,Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185, Rome, Italy.
| | - Jeannot Trampert
- Department of Earth Sciences, Utrecht University, P.O. Box 80115, 3508, TC, Utrecht, The Netherlands
| |
Collapse
|
5
|
Pelusi F, Sbragaglia M, Benzi R. Avalanche statistics during coarsening dynamics. SOFT MATTER 2019; 15:4518-4524. [PMID: 31098607 DOI: 10.1039/c9sm00332k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the coarsening dynamics of a two-dimensional system via numerical simulations. The system under consideration is a biphasic system consisting of domains of a dispersed phase closely packed together in a continuous phase and separated by thin interfaces. Such a system is elastic and typically out of equilibrium. The equilibrium state is attained via the coarsening dynamics, wherein the dispersed phase slowly diffuses through the interfaces, causing the domains to change in size and eventually rearrange abruptly. The effect of rearrangements is propagated throughout the system via the intrinsic elastic interactions and may cause rearrangements elsewhere, resulting in intermittent bursts of activity and avalanche behaviour. Here we aim at quantitatively characterizing the corresponding avalanche statistics (i.e. size, duration, and inter-avalanche time). Despite the coarsening dynamics is triggered by an internal driving mechanism, we find quantitative indications that such avalanche statistics displays scaling-laws very similar to those observed in the response of disordered materials to external loads.
Collapse
Affiliation(s)
- Francesca Pelusi
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma RM, Italy.
| | | | | |
Collapse
|
6
|
Pinney R, Liverpool TB, Royall CP. Yielding of a model glass former: An interpretation with an effective system of icosahedra. Phys Rev E 2018; 97:032609. [PMID: 29776085 DOI: 10.1103/physreve.97.032609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 11/07/2022]
Abstract
We consider the yielding under simple shear of a binary Lennard-Jones glass former whose super-Arrhenius dynamics are correlated with the formation of icosahedral structures. We recast this glass former as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)JCPSA60021-960610.1063/1.4938424]. Looking at the small-strain region of sheared simulations, we observe that shear rates affect the shear localization behavior particularly at temperatures below the glass transition as defined with a fit to the Vogel-Fulcher-Tamman equation. At higher temperature, shear localization starts immediately on shearing for all shear rates. At lower temperatures, faster shear rates can result in a delayed start in shear localization, which begins close to the yield stress. Building from a previous work which considered steady-state shear [Pinney et al., J. Chem. Phys. 143, 244507 (2015)JCPSA60021-960610.1063/1.4938424], we interpret the response to shear and the shear localization in terms of a local effective temperature with our system of icosahedra. We find that the effective temperatures of the regions undergoing shear localization increase significantly with increasing strain (before reaching a steady-state plateau).
Collapse
Affiliation(s)
- Rhiannon Pinney
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom.,Bristol Centre for Complexity Science, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom.,BrisSynBio, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom.,School of Chemistry, University of Bristol, Cantock Close, Bristol BS8 1TS, United Kingdom.,Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
7
|
Derzsi L, Filippi D, Mistura G, Pierno M, Lulli M, Sbragaglia M, Bernaschi M, Garstecki P. Fluidization and wall slip of soft glassy materials by controlled surface roughness. Phys Rev E 2017; 95:052602. [PMID: 28618470 DOI: 10.1103/physreve.95.052602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 05/04/2023]
Abstract
We present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We find a scaling law describing the roughness-induced fluidization as a function of the density of the grooves, thus fluidization can be predicted and quantitatively regulated. This suggests common scenarios for droplet trapping and release, potentially applicable for other jammed systems as well. Numerical simulations confirm these views and provide a direct link between fluidization and the spatial distribution of plastic rearrangements.
Collapse
Affiliation(s)
- Ladislav Derzsi
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Daniele Filippi
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Giampaolo Mistura
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Lulli
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Mauro Sbragaglia
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Massimo Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini, 9, 00185 Roma, Italy
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Gerloff S, Klapp SHL. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow. Phys Rev E 2017; 94:062605. [PMID: 28085345 DOI: 10.1103/physreve.94.062605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/07/2022]
Abstract
Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.
Collapse
Affiliation(s)
- Sascha Gerloff
- Institut für Theoretische Physik, Hardenbergstrasse 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstrasse 36, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
9
|
Laurati M, Maßhoff P, Mutch KJ, Egelhaaf SU, Zaccone A. Long-Lived Neighbors Determine the Rheological Response of Glasses. PHYSICAL REVIEW LETTERS 2017; 118:018002. [PMID: 28106420 DOI: 10.1103/physrevlett.118.018002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 05/23/2023]
Abstract
Glasses exhibit a liquidlike structure but a solidlike rheological response with plastic deformations only occurring beyond yielding. Thus, predicting the rheological behavior from the microscopic structure is difficult, but important for materials science. Here, we consider colloidal suspensions and propose to supplement the static structural information with the local dynamics, namely, the rearrangement and breaking of the cage of neighbors. This is quantified by the mean squared nonaffine displacement and the number of particles that remain nearest neighbors for a long time, i.e., long-lived neighbors, respectively. Both quantities are followed under shear using confocal microscopy and are the basis to calculate the affine and nonaffine contributions to the elastic stress, which is complemented by the viscoelastic stress to give the total stress. During start-up of shear, the model predicts three transient regimes that result from the interplay of affine, nonaffine, and viscoelastic contributions. Our prediction quantitatively agrees with rheological data and their dependencies on volume fraction and shear rate.
Collapse
Affiliation(s)
- M Laurati
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
- División de Ciencias e Ingeniería, Universidad de Guanajuato, León 37150, Mexico
| | - P Maßhoff
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - K J Mutch
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - S U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - A Zaccone
- Department of Chemical Engineering and Biotechnology, and Cavendish Laboratory, University of Cambridge, Cambridge CB2 3RA, United Kingdom
| |
Collapse
|
10
|
Puosi F, Rottler J, Barrat JL. Plastic response and correlations in athermally sheared amorphous solids. Phys Rev E 2016; 94:032604. [PMID: 27739859 DOI: 10.1103/physreve.94.032604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 11/07/2022]
Abstract
The onset of irreversible deformation in low-temperature amorphous solids is due to the accumulation of elementary events, consisting of spatially and temporally localized atomic rearrangements involving only a few tens of atoms. Recently, numerical and experimental work addressed the issue of spatiotemporal correlations between these plastic events. Here, we provide further insight into these correlations by investigating, via molecular dynamics (MD) simulations, the plastic response of a two-dimensional amorphous solid to artificially triggered local shear transformations. We show that while the plastic response is virtually absent in as-quenched configurations, it becomes apparent if a shear strain was previously imposed on the system. Plastic response has a fourfold symmetry, which is characteristic of the shear stress redistribution following the local transformation. At high shear rate we report evidence for a fluctuation-dissipation relation, connecting plastic response and correlation, which seems to break down if lower shear rates are considered.
Collapse
Affiliation(s)
- F Puosi
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France.,CNRS, LIPHY, F-38000 Grenoble, France
| | - J Rottler
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - J-L Barrat
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France.,CNRS, LIPHY, F-38000 Grenoble, France.,Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble, France
| |
Collapse
|
11
|
Kim J, Sung BJ. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:235102. [PMID: 25993620 DOI: 10.1088/0953-8984/27/23/235102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.
Collapse
Affiliation(s)
- Jeongmin Kim
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | | |
Collapse
|
12
|
Non-locality and viscous drag effects on the shear localisation in soft-glassy materials. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
|