1
|
Pradhan MK, Gupta D, Namdev KR, Miglani C, Pal A, Srivastava A. Anion-responsive self-assembled hydrogels of a phenylalanine-TREN conjugate allow sequential release of propranolol and doxorubicin. NANOSCALE 2022; 14:15079-15090. [PMID: 36200975 DOI: 10.1039/d2nr04320c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stimuli-responsive self-assembled and supramolecular hydrogels derived from peptide amphiphiles have opened exciting new avenues in biomedicine and drug delivery. Herein, we screened a series of phenylalanine-amphiphiles possessing polyamine and oxyethylene appendages for their self-assembly and anion-responsiveness and found that the tris(aminoethyl)amine (TREN) containing amphiphile NapF-TREN formed injectable hydrogels that could be disrupted upon the addition of stoichiometric amounts of tetrahedral monovalent anions such as H2PO4- and HSO4-, while the addition of other anions such as Cl-, HPO42-, CO32-, HCO3- or SO42- did not affect the gel stability. The anion-gelator interaction was investigated by 1H and 31P NMR spectroscopy as well as by Isothermal Titration Calorimetry (ITC). These studies confirmed a 1 : 1 stoichiometry and revealed negative enthalpy and negative entropy for the binding of H2PO4- with NapF-TREN. Microscopic investigations by TEM, AFM, and SAXS revealed that H2PO4- anions induced a nanofiber-to-nanoglobule morphological change in the aqueous self-assemblies of NapF-TREN. However, upon ageing the samples, slow reformation of the nanofibers was also observed, reflecting the reversibility of the anion-gelator interaction. The anion- and pH-responsive nature of the NapF-TREN hydrogels was exploited to program sequential release of entrapped drugs propranolol and doxorubicin.
Collapse
Affiliation(s)
- Manas Kumar Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Deepika Gupta
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab 140306, India.
| | - Kavthekar Rupesh Namdev
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab 140306, India.
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab 140306, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| |
Collapse
|
2
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
3
|
Bhagat SD, Chanchal A, Gujrati M, Banerjee A, Mishra RK, Srivastava A. Implantable HDAC-inhibiting chemotherapeutics derived from hydrophobic amino acids for localized anticancer therapy. Biomater Sci 2021; 9:261-271. [PMID: 33196720 DOI: 10.1039/d0bm01417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epigenetic targeting of different cancers by inhibiting particular histone deacetylase (HDAC) isozymes is a promising treatment approach against cancer. Development of locally-implantable molecular inhibitors of HDAC (henceforth called HDACi) promises high tumour site concentration and reduced systemic degradation of the HDACi. Herein, we report the design of such implantable HDACi based on amphiphilic derivatives of hydrophobic amino acids endowed with a hydroxamic acid (hxa)-based zinc-binding residue. The amino acids present in HDACi influenced the HDAC isozyme that could be inhibited most effectively; the l-phenylalanine derivative 4e inhibited the HDAC6 isozyme most potently (IC50 ∼ 88 nM), while the l-isoleucine derivative 4h was most effective against the isozyme HDAC2 (IC50 ∼ 94 nM). We also noticed that the l-Phe derivative 4e was up to 5× more potent towards inhibiting HDAC6 than its optical antipode 4f derived from d-Phe. This was rationalized in terms of the varying extent of penetration of the enantiomeric inhibitors inside the catalytic tunnel of the enzyme. Since the isozymes HDAC6 and HDAC2 are overexpressed in different cancer cells, 4e and 4h elicited selective anticancer activity in different cancer cell lines. Additive therapeutic action of the combination therapy of 4e and 4h was observed on lung cancer cells that overexpress both these isozymes. Further, 4e formed implantable self-assembled hydrogels that achieved sustained and selective killing of cancer cells in the vicinity of implantation.
Collapse
Affiliation(s)
- Somnath Dharmaraj Bhagat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India.
| | | | | | | | | | | |
Collapse
|
4
|
Ohtomi T, Higashi SL, Mori D, Shibata A, Kitamura Y, Ikeda M. Effect of side chain phenyl group on the self‐assembled morphology of dipeptide hydrazides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Taku Ohtomi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
| | - Daisuke Mori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
- Center for Highly Advanced Integration of Nano and Life Sciences Gifu University (G‐CHAIN) Gifu Japan
- Institute of Nano‐Life‐Systems, Institute of Innovation for Future Society Nagoya University Nagoya Japan
- Institute for Glyco‐core Research (iGCORE) Gifu University Nagoya Japan
| |
Collapse
|
5
|
Awasthi AK, Bhagat SD, Ramakrishnan R, Srivastava A. Chirally Twisted Ultrathin Polydopamine Nanoribbons: Synthesis and Spontaneous Assembly of Silver Nanoparticles on Them. Chemistry 2019; 25:12905-12910. [DOI: 10.1002/chem.201902600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Anand Kumar Awasthi
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| | - Somnath D. Bhagat
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| | - Reshma Ramakrishnan
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| | - Aasheesh Srivastava
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| |
Collapse
|
6
|
Tsuzuki T, Kabumoto M, Arakawa H, Ikeda M. The effect of carbohydrate structures on the hydrogelation ability and morphology of self-assembled structures of peptide-carbohydrate conjugates in water. Org Biomol Chem 2018; 15:4595-4600. [PMID: 28497834 DOI: 10.1039/c7ob00816c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe the construction of peptide-carbohydrate conjugates, namely glycopeptides, capable of self-assembling in water. We found that disaccharide structures (epimer or glycosidic-bond geometry) appended to the glycopeptides have a noticeable effect on the hydrogel formation ability as well as the morphology of the self-assembled structures. The soft materials consisting of self-assembled structures with carbohydrates on their surface and various types of morphologies might be useful as matrices to investigate the function of carbohydrates in biological events.
Collapse
Affiliation(s)
- Tomoya Tsuzuki
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
7
|
Saito N, Yamaguchi M. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers. Molecules 2018; 23:E277. [PMID: 29382168 PMCID: PMC6017771 DOI: 10.3390/molecules23020277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.
Collapse
Affiliation(s)
- Nozomi Saito
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Masahiko Yamaguchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
8
|
Chu NT, Chakravarthy RD, Shih NC, Lin YH, Liu YC, Lin JH, Lin HC. Fluorescent supramolecular hydrogels self-assembled from tetraphenylethene (TPE)/single amino acid conjugates. RSC Adv 2018; 8:20922-20927. [PMID: 35542335 PMCID: PMC9080846 DOI: 10.1039/c8ra02296h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/26/2018] [Indexed: 11/21/2022] Open
Abstract
TPE-Ser molecules exhibit non-covalent interactions necessary for hydrogelation under physiological pH conditions.
Collapse
Affiliation(s)
- Nien-Tzu Chu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Nai-Chia Shih
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Yen-Hsu Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Yen-Chu Liu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Jhong-Hua Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| |
Collapse
|
9
|
Fitremann J, Lonetti B, Fratini E, Fabing I, Payré B, Boulé C, Loubinoux I, Vaysse L, Oriol L. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays. J Colloid Interface Sci 2017. [PMID: 28622565 DOI: 10.1016/j.jcis.2017.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new low molecular weight hydrogelator with a saccharide (lactobionic) polar head linked by azide-alkyne click chemistry was prepared in three steps. It was obtained in high purity without chromatography, by phase separation and ultrafiltration of the aqueous gel. Gelation was not obtained reproducibly by conventional heating-cooling cycles and instead was obtained by shearing the aqueous solutions, from 2 wt% to 0.25 wt%. This method of preparation favored the formation of a quite unusual network of interconnected large but thin 2D-sheets (7nm-thick) formed by the association side-by-side of long and aligned 7nm diameter wormlike micelles. It was responsible for the reproducible gelation at the macroscopic scale. A second network made of helical fibres with a 10-13nm diameter, more or less intertwined was also formed but was scarcely able to sustain a macroscopic gel on its own. The gels were analysed by TEM (Transmission Electronic Microscopy), cryo-TEM and SAXS (Small Angle X-ray Scattering). Molecular modelling was also used to highlight the possible conformations the hydrogelator can take. The gels displayed a weak and reversible transition near 20°C, close to room temperature, ascribed to the wormlike micelles 2D-sheets network. Heating over 30°C led to the loss of the gel macroscopic integrity, but gel fragments were still observed in suspension. A second transition near 50°C, ascribed to the network of helical fibres, finally dissolved completely these fragments. The gels showed thixotropic behaviour, recovering slowly their initial elastic modulus, in few hours, after injection through a needle. Stable gels were tested as scaffold for neural cell line culture, showing a reduced biocompatibility. This new gelator is a clear illustration of how controlling the pathway was critical for gel formation and how a new kind of self-assembly was obtained by shearing.
Collapse
Affiliation(s)
- Juliette Fitremann
- CNRS - Université de Toulouse III Paul Sabatier, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP, UMR 5623), Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Barbara Lonetti
- CNRS - Université de Toulouse III Paul Sabatier, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP, UMR 5623), Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence, Italy
| | - Isabelle Fabing
- CNRS UMR 5068, LSPCMIB, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Bruno Payré
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, Université de Toulouse III Paul Sabatier, Bâtiment A5, R.D.C., 133 Route de Narbonne, 31400 Toulouse, France
| | - Christelle Boulé
- Université Claude Bernard UCBL Lyon1, Service de Prestations CTµ EZUS, Bâtiment Darwin B, 5 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France
| | - Isabelle Loubinoux
- TONIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laurence Vaysse
- TONIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Luis Oriol
- Instituto de Ciencia de Materiales de Aragon (ICMA),Universidad de Zaragoza-CSIC, Dpto. Quimica Organica, Facultad de Ciencias, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
10
|
Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials 2017; 129:1-27. [PMID: 28319779 PMCID: PMC5470592 DOI: 10.1016/j.biomaterials.2017.03.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
11
|
Sawato T, Saito N, Shigeno M, Yamaguchi M. Mechanical Stirring Induces Heteroaggregate Formation and Self-assembly of Pseudoenantiomeric Oxymethylene Helicene Oligomers in Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201700303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tsukasa Sawato
- Department of Organic Chemistry; Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aoba Sendai 980-8578 Japan
| | - Nozomi Saito
- Department of Organic Chemistry; Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aoba Sendai 980-8578 Japan
| | - Masanori Shigeno
- Department of Organic Chemistry; Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aoba Sendai 980-8578 Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry; Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aoba Sendai 980-8578 Japan
| |
Collapse
|
12
|
Gupta S, Singh M, M. AR, Yavvari PS, Srivastava A, Bajaj A. Interactions governing the entrapment of anticancer drugs by low-molecular-weight hydrogelator for drug delivery applications. RSC Adv 2016. [DOI: 10.1039/c5ra25847b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present the effect of size, charge, and hydrophobicity of anticancer drugs on their drug encapsulation efficacy in anl-alanine-based small-molecule hydrogelator.
Collapse
Affiliation(s)
- Siddhi Gupta
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Manish Singh
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- India
| | - Amarendar Reddy M.
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Prabhu S. Yavvari
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Aasheesh Srivastava
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- India
| |
Collapse
|
13
|
Bhagat SD, Srivastava A. Rods, helices and spherulites: diverse self-assembled architectures froml-phenylalanine derivatives. CrystEngComm 2016. [DOI: 10.1039/c5ce02545a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1332] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
15
|
Vilaça H, Hortelão ACL, Castanheira EMS, Queiroz MJRP, Hilliou L, Hamley IW, Martins JA, Ferreira PMT. Dehydrodipeptide Hydrogelators Containing Naproxen N-Capped Tryptophan: Self-Assembly, Hydrogel Characterization, and Evaluation as Potential Drug Nanocarriers. Biomacromolecules 2015; 16:3562-73. [PMID: 26443892 DOI: 10.1021/acs.biomac.5b01006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we introduce dipeptides containing tryptophan N-capped with the nonsteroidal anti-inflammatory drug naproxen and C-terminal dehydroamino acids, dehydrophenylalanine (ΔPhe), dehydroaminobutyric acid (ΔAbu), and dehydroalanine (ΔAla) as efficacious protease resistant hydrogelators. Optimized conditions for gel formation are reported. Transmission electron microscopy experiments revealed that the hydrogels consist of networks of micro/nanosized fibers formed by peptide self-assembly. Fluorescence and circular dichroism spectroscopy indicate that the self-assembly process is driven by stacking interactions of the aromatic groups. The naphthalene groups of the naproxen moieties are highly organized in the fibers through chiral stacking. Rheological experiments demonstrated that the most hydrophobic peptide (containing C-terminal ΔPhe) formed more elastic gels at lower critical gelation concentrations. This gel revealed irreversible breakup, while the C-terminal ΔAbu and ΔAla gels, although less elastic, exhibited structural recovery and partial healing of the elastic properties. A potential antitumor thieno[3,2-b]pyridine derivative was incorporated (noncovalently) into the gel formed by the hydrogelator containing C-terminal ΔPhe residue. Fluorescence and Förster resonance energy transfer measurements indicate that the drug is located in a hydrophobic environment, near/associated with the peptide fibers, establishing this type of hydrogel as a good drug-nanocarrier candidate.
Collapse
Affiliation(s)
| | | | | | | | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém , 4800-058 Guimarães, Portugal
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights , P.O. Box 224, Reading RG6 6AD, U.K
| | | | | |
Collapse
|
16
|
Reddy M A, Srivastava A. In aquo ppm level detection of acrylamide through S-to-N acyl transfer mediated activation of pro-sensors. Chem Commun (Camb) 2015; 51:11072-5. [DOI: 10.1039/c5cc02721g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-soluble pro-sensors for acryl compounds including acrylamide (AM) were developed.
Collapse
Affiliation(s)
- Amarendar Reddy M
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Aasheesh Srivastava
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| |
Collapse
|