1
|
Nemati A, Querciagrossa L, Callison C, Shadpour S, Nunes Gonçalves DP, Mori T, Cui X, Ai R, Wang J, Zannoni C, Hegmann T. Effects of shape and solute-solvent compatibility on the efficacy of chirality transfer: Nanoshapes in nematics. SCIENCE ADVANCES 2022; 8:eabl4385. [PMID: 35080976 PMCID: PMC8791610 DOI: 10.1126/sciadv.abl4385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chirality, as a concept, is well understood at most length scales. However, quantitative models predicting the efficacy of the transmission of chirality across length scales are lacking. We propose here a modus operandi for a chiral nanoshape solute in an achiral nematic liquid crystal host showing that that chirality transfer may be understood by unusually simple geometric considerations. This mechanism is based on the product of a pseudoscalar chirality indicator and of a geometric shape compatibility factor based on the two-dimensional isoperimetric quotients for each nanoshape solute. The model is tested on an experimental set of precisely engineered gold nanoshapes. These libraries of calculated and in-parallel acquired experimental data among related nanoshapes pave the way for predictive calculations of chirality transfer in nanoscale, macromolecular, and biological systems, from designing chiral discriminators and enantioselective catalysts to developing chiral metamaterials and understanding nature's innate ability to transfer homochirality across length scales.
Collapse
Affiliation(s)
- Ahlam Nemati
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Lara Querciagrossa
- Dipartimento di Chimica Industriale and INSTM, Università di Bologna, Bologna, Italy
| | - Corinne Callison
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Sasan Shadpour
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | | | - Taizo Mori
- Institute for Solid State Physics, The University of Tokyo, Tokyo, Japan
| | - Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale and INSTM, Università di Bologna, Bologna, Italy
- Corresponding author. (C.Z.); (T.H.)
| | - Torsten Hegmann
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Corresponding author. (C.Z.); (T.H.)
| |
Collapse
|
2
|
Fu D, Li J, Wei J, Guo J. Effects of terminal chain length in hydrogen-bonded chiral switches on phototunable behavior of chiral nematic liquid crystals: helicity inversion and phase transition. SOFT MATTER 2015; 11:3034-3045. [PMID: 25743076 DOI: 10.1039/c5sm00128e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel series of photoresponsive chiral switches are fabricated by a facile hydrogen-bonded (H-bonded) assembly method, in which the binaphthyl azobenzene molecule is used as the proton acceptor, and binaphthyl acids with opposite chiral configuration are proton donors. We find that the helical twisted power of H-bonded chiral switches and the helical handedness of induced chiral nematic liquid crystals (N*-LCs) are mainly determined by the terminal flexible chain length in proton donors of binaphthyl acids. Controlling the lengths of the terminal flexible chain leads to different photoswitching behaviors by light irradiation, such as a helical inversion in the N*-LCs and a phase transition from N*-LCs to nematic LCs. This is mainly because of chiral counteraction and intensity attenuation of opposite chiral configurations between the proton acceptor and proton donor during UV-vis irradiation. Additionally, the thermal switching behavior of N*-LCs doped with H-bonded chiral switches is also demonstrated, and the related tuning mechanism may be attributed to the H-bonded effect and the changes in a dihedral angle of the binaphthyl rings. This facile assembly approach provides a new way for the fabrication of functional chiral switches for photonic applications.
Collapse
Affiliation(s)
- Dengwei Fu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | | | |
Collapse
|