1
|
Apolinario SWS. Structural evolution of particle configurations: Zero-temperature phases under increasing confinement. J Chem Phys 2025; 162:044501. [PMID: 39846800 DOI: 10.1063/5.0251112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
In this study, we investigate the phase behavior and structural organization of colloidal particles in a two-dimensional (2D) system under isotropic harmonic confinement using overdamped Langevin dynamics simulations. We employ a modified mermaid potential, which introduces an additional short-distance term resulting in a null-force region, distinct from the conventional mermaid potential. This modification facilitates a richer exploration of self-assembled structures, revealing a variety of phases influenced by the interplay between confinement strength V0 and the interaction potential. Our analysis spans a wide range of parameters, resulting in a detailed phase diagram that captures transitions from dispersed clusters to well-ordered patterns, including square, triangular, rhomboidal, and mixed configurations, as the confinement strength increases. The findings underscore the intricate balance of forces governing the self-assembly of colloidal systems and offer valuable insights for future experimental realizations.
Collapse
Affiliation(s)
- S W S Apolinario
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
2
|
Reichhardt C, Reichhardt CJO. Peak effect and dynamics of stripe- and pattern-forming systems on a periodic one-dimensional substrate. Phys Rev E 2024; 109:054606. [PMID: 38907437 DOI: 10.1103/physreve.109.054606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/24/2024]
Abstract
We examine the ordering, pinning, and dynamics of two-dimensional pattern-forming systems interacting with a periodic one-dimensional substrate. In the absence of the substrate, particles with competing long-range repulsion and short-range attraction form anisotropic crystal, stripe, and bubble states. When the system is tuned across the stripe transition in the presence of a substrate, we find that there is a peak effect in the critical depinning force when the stripes align and become commensurate with the substrate. Under an applied drive, the anisotropic crystal and stripe states can exhibit soliton depinning and plastic flow. When the stripes depin plastically, they dynamically reorder into a moving stripe state that is perpendicular to the substrate trough direction. We also find that when the substrate spacing is smaller than the widths of the bubbles or stripes, the system forms pinned stripe states that are perpendicular to the substrate trough direction. The system exhibits multiple reentrant pinning effects as a function of increasing attraction, with the anisotropic crystal and large bubble states experiencing weak pinning but the stripe and smaller bubble states showing stronger pinning. We map out the different dynamic phases as a function of filling, the strength of the attractive interaction term, the substrate strength, and the drive, and demonstrate that the different phases produce identifiable features in the transport curves and particle orderings.
Collapse
|
3
|
Prestipino S, Pini D, Costa D, Malescio G, Munaò G. A density functional theory and simulation study of stripe phases in symmetric colloidal mixtures. J Chem Phys 2023; 159:204902. [PMID: 38010334 DOI: 10.1063/5.0177209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
In a binary mixture, stripes refer to a one-dimensional periodicity of the composition, namely, a regular alternation of layers filled with particles of mostly one species. We have recently introduced [Munaò et al., Phys. Chem. Chem. Phys. 25, 16227 (2023)] a model that possibly provides the simplest binary mixture endowed with stripe order. The model consists of two species of identical hard spheres with equal concentration, which mutually interact through a square-well potential. In that paper, we have numerically shown that stripes are present in both liquid and solid phases when the attraction range is rather long. Here, we study the phase behavior of the model in terms of a density functional theory capable to account for the existence of stripes in the dense mixture. Our theory is accurate in reproducing the phases of the model, at least insofar as the composition inhomogeneities occur on length scales quite larger than the particle size. Then, using Monte Carlo simulations, we prove the existence of solid stripes even when the square well is much thinner than the particle diameter, making our model more similar to a real colloidal mixture. Finally, when the width of the attractive well is equal to the particle diameter, we observe a different and more complex form of compositional order in the solid, where each species of particle forms a regular porous matrix holding in its holes the other species, witnessing a surprising variety of emergent behaviors for a very basic model of interaction.
Collapse
Affiliation(s)
- Santi Prestipino
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Pini
- Dipartimento di Fisica "A. Pontremoli," Università di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Dino Costa
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Gianpietro Malescio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Xu X, Tang T, Gu M. Structural transitions in two-dimensional modulated systems under triangular confinement. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:72. [PMID: 36070024 DOI: 10.1140/epje/s10189-022-00229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
We study numerically the structural transitions of two-dimensional systems of classic particles with competing interactions under a triangular confinement with two different types of soft-wall potentials. We observe a variety of novel confinement-induced equilibrium configurations as a function of particle density and confinement steepness for each considered confinement potential. The specific role played by the confining potentials on the ordering of the particle clusters is revealed. These findings allow us to control the self-organization of modulated systems through using external confinements.
Collapse
Affiliation(s)
- Xibin Xu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China.
| | - Tao Tang
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| | - Min Gu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Xu XB, Tang T, Wang ZH, Xu XN, Fang GY, Gu M. Nonequilibrium pattern formation in circularly confined two-dimensional systems with competing interactions. Phys Rev E 2021; 103:012604. [PMID: 33601588 DOI: 10.1103/physreve.103.012604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/19/2020] [Indexed: 11/07/2022]
Abstract
We numerically investigate the nonequilibrium behaviors of classic particles with competing interactions confined in a two-dimensional logarithmic trap. We reveal a quench-induced surprising dynamics exhibiting rich dynamic patterns depending upon confinement strength and trap size, which is attributed to the time-dependent competition between interparticle repulsions and attractions under a circular confinement. Moreover, in the collectively diffusive motions of the particles, we find that the emergence of dynamic structure transformation coincides with a diffusive mode transition from superdiffusion to subdiffusion. These findings are likely useful in understanding the pattern selection and evolution in various chemical and biological systems in addition to modulated systems, and add a new route to tailoring the morphology of pattern-forming systems.
Collapse
Affiliation(s)
- X B Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - T Tang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Z H Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - X N Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - G Y Fang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - M Gu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
6
|
Xu XB, Wang ZH, Xu XN, Fang GY, Gu M. Structural transitions for 2D systems with competing interactions in logarithmic traps. J Chem Phys 2020; 152:054906. [DOI: 10.1063/1.5140816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- X. B. Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Z. H. Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - X. N. Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - G. Y. Fang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - M. Gu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
7
|
Lima EO, Pereira PCN, Löwen H, Apolinario SWS. Complex structures generated by competing interactions in harmonically confined colloidal suspensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:325101. [PMID: 29974867 DOI: 10.1088/1361-648x/aad14f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the structural properties of colloidal particle systems interacting via an isotropic pair potential and confined by a three-dimensional harmonic potential. The interaction potential has a repulsive-attractive-repulsive profile that varies with the interparticle distance (also known as a 'mermaid' potential). We performed Langevin dynamics simulations to find the equilibrium configurations of the system. We show that particles can self-assemble in complex structural patterns, such as compact disks, fringed disks, rods, spherical clusters with superficial entrances among others. Also, for particular values of the parameters of the interaction potential, we could identify that some configurations were formed by quasi two-dimensional (2D) structures which are stable for 2D systems.
Collapse
Affiliation(s)
- E O Lima
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | | | | |
Collapse
|
8
|
McDermott D, Olson Reichhardt CJ, Reichhardt C. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression. SOFT MATTER 2016; 12:9549-9560. [PMID: 27834430 DOI: 10.1039/c6sm01939k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.
Collapse
Affiliation(s)
- Danielle McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. and Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA.
| | | | - Charles Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|