1
|
Benkowska-Biernacka D, Mucha SG, Firlej L, Formalik F, Bantignies JL, Anglaret E, Samoć M, Matczyszyn K. Strongly Emitting Folic Acid-Derived Carbon Nanodots for One- and Two-Photon Imaging of Lyotropic Myelin Figures. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366586 DOI: 10.1021/acsami.3c05656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs). Structural and optical properties of these new FA CNDs were first extensively characterized; they revealed remarkable fluorescence performance in linear and non-linear excitation regimes, justifying further applications. Then, confocal fluorescence microscopy and two-photon excited fluorescence microscopy were used to investigate a three-dimensional distribution of FA CNDs within the phospholipid-based MFs. Our results showed that FA CNDs are effective markers for imaging various forms and parts of multilamellar microstructures.
Collapse
Affiliation(s)
- Dominika Benkowska-Biernacka
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Sebastian G Mucha
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Lucyna Firlej
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Filip Formalik
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jean-Louis Bantignies
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Eric Anglaret
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Marek Samoć
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173051. [PMID: 36080088 PMCID: PMC9458162 DOI: 10.3390/nano12173051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 05/11/2023]
Abstract
Efficient conventional chemotherapy is limited by its nonspecific nature, which causes severe systemic toxicity that can lead to patient discomfort and low therapeutic efficacy. The emergence of smart drug delivery systems (SDDSs) utilizing nanoparticles as drug nanocarriers has shown great potential in enhancing the targetability of anticancer agents and limiting their side effects. Liposomes are among the most investigated nanoplatforms due to their promising capabilities of encapsulating hydrophilic, lipophilic, and amphiphilic drugs, biocompatibility, physicochemical and biophysical properties. Liposomal nanodrug systems have demonstrated the ability to alter drugs' biodistribution by sufficiently delivering the entrapped chemotherapeutics at the targeted diseased sites, sparing normal cells from undesired cytotoxic effects. Combining liposomal treatments with ultrasound, as an external drug release triggering modality, has been proven effective in spatially and temporally controlling and stimulating drug release. Therefore, this paper reviews recent literature pertaining to the therapeutic synergy of triggering nanodrugs from liposomes using ultrasound. It also highlights the effects of multiple physical and chemical factors on liposomes' sonosensetivity, several ultrasound-induced drug release mechanisms, and the efficacy of ultrasound-responsive liposomal systems in cancer therapy. Overall, liposomal nanodrug systems triggered by ultrasound are promising cancer therapy platforms that can potentially alleviate the detriments of conventional cancer treatments.
Collapse
Affiliation(s)
- Wafa N. Bahutair
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Correspondence:
| |
Collapse
|
3
|
Lee H, Moon H, Kim HR. Effects of Lipid Shape and Interactions on the Conformation, Dynamics, and Curvature of Ultrasound-Responsive Liposomes. Pharmaceutics 2022; 14:1512. [PMID: 35890407 PMCID: PMC9320727 DOI: 10.3390/pharmaceutics14071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
We perform coarse-grained molecular dynamics simulations of bilayers composed of various lipids and cholesterol at their different ratios. Simulations show that cholesterol-lipid interactions restrict the lateral dynamics of bilayers but also promote bilayer curvature, indicating that these opposite effects simultaneously occur and thus cannot significantly influence bilayer stability. In contrast, lyso-lipids effectively pack the vacancy in the bilayer composed of cone-shaped lipids and thus reduce bilayer dynamics and curvature, showing that bilayers are more significantly stabilized by lyso-lipids than by cholesterol, in agreement with experiments. In particular, the bilayer composed of cone-shaped lipids shows higher dynamics and curvature than does the bilayer composed of cylindrical-shaped lipids. To mimic ultrasound, a high external pressure was applied in the direction of bilayer normal, showing the formation of small pores that are surrounded by hydrophilic lipid headgroups, which can allow the release of drug molecules encapsulated into the liposome. These findings help to explain experimental observations regarding that liposomes are more significantly stabilized by lyso-lipids than by cholesterol, and that the liposome with cone-shaped lipids more effectively releases drug molecules upon applying ultrasound than does the liposome with cylindrical-shaped lipids.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, Korea
| | - Hyungwon Moon
- R&D Center, IMGT Co., Ltd., 172, Dolma-ro, Bundang-gu, Seongnam-si 13605, Korea;
| | - Hyun-Ryoung Kim
- R&D Center, IMGT Co., Ltd., 172, Dolma-ro, Bundang-gu, Seongnam-si 13605, Korea;
| |
Collapse
|
4
|
Abstract
Hierarchic self-assembly underpins much of the form and function seen in synthetic or biological soft materials. Lipids are paramount examples, building themselves in nature or synthetically in a variety of meso/nanostructures. Synthetic block copolymers capture many of lipid's structural and functional properties. Lipids are typically biocompatible and high molecular weight polymers are mechanically robust and chemically versatile. The development of new materials for applications like controlled drug/gene/protein delivery, biosensors, and artificial cells often requires the combination of lipids and polymers. The emergent composite material, a "polymer-lipid hybrid membrane", displays synergistic properties not seen in pure components. Specific examples include the observation that hybrid membranes undergo lateral phase separation that can correlate in registry across multiple layers into a three-dimensional phase-separated system with enhanced permeability of encapsulated drugs. It is timely to underpin these emergent properties in several categories of hybrid systems ranging from colloidal suspensions to supported hybrid films. In this review, we discuss the form and function of a vast number of polymer-lipid hybrid systems published to date. We rationalize the results to raise new fundamental understanding of hybrid self-assembling soft materials as well as to enable the design of new supramolecular systems and applications.
Collapse
Affiliation(s)
- Yoo Kyung Go
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Carvalho PM, Makowski M, Domingues MM, Martins IC, Santos NC. Lipid membrane-based therapeutics and diagnostics. Arch Biochem Biophys 2021; 704:108858. [PMID: 33798534 DOI: 10.1016/j.abb.2021.108858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022]
Abstract
Success rates in drug discovery are extremely low, and the imbalance between new drugs entering clinical research and their approval is steadily widening. Among the causes of the failure of new therapeutic agents are the lack of safety and insufficient efficacy. On the other hand, timely disease diagnosis may enable an early management of the disease, generally leading to better and less costly outcomes. Several strategies have been explored to overcome the barriers for drug development and facilitate diagnosis. Using lipid membranes as platforms for drug delivery or as biosensors are promising strategies, due to their biocompatibility and unique physicochemical properties. We examine some of the lipid membrane-based strategies for drug delivery and diagnostics, including their advantages and shortcomings. Regarding synthetic lipid membrane-based strategies for drug delivery, liposomes are the archetypic example of a successful approach, already with a long period of well-succeeded clinical application. The use of lipid membrane-based structures from biological sources as drug carriers, currently under clinical evaluation, is also discussed. These biomimetic strategies can enhance the in vivo lifetime of drug and delivery system by avoiding fast clearance, consequently increasing their therapeutic window. The strategies under development using lipid membranes for diagnostic purposes are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marcin Makowski
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| |
Collapse
|
6
|
Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs). Sci Rep 2021; 11:2775. [PMID: 33531539 PMCID: PMC7854711 DOI: 10.1038/s41598-021-82140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/13/2021] [Indexed: 01/24/2023] Open
Abstract
Target delivery of large foreign materials to cells requires transient permeabilization of the cell membrane without toxicity. Giant unilamellar vesicles (GUVs) mimic the phospholipid bilayer of the cell membrane and are also useful drug delivery vehicles. Controlled increase of the permeability of GUVs is a delicate balance between sufficient perturbation for the delivery of the GUV contents and damage to the vesicles. Here we show that photoacoustic waves can promote the release of FITC-dextran or GFP from GUVs without damage. Real-time interferometric imaging offers the first movies of photoacoustic wave propagation and interaction with GUVs. The photoacoustic waves are seen as mostly compressive half-cycle pulses with peak pressures of ~ 1 MPa and spatial extent FWHM ~ 36 µm. At a repetition rate of 10 Hz, they enable the release of 25% of the FITC-dextran content of GUVs in 15 min. Such photoacoustic waves may enable non-invasive targeted release of GUVs and cell transfection over large volumes of tissues in just a few minutes.
Collapse
|
7
|
Bandara SR, Molley TG, Kim H, Bharath PA, Kilian KA, Leal C. The structural fate of lipid nanoparticles in the extracellular matrix. MATERIALS HORIZONS 2020; 7:125-134. [PMID: 31942243 PMCID: PMC6961836 DOI: 10.1039/c9mh00835g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loaded liposomes are the most successful nanomedicine to date, with multiple FDA-approved systems for a myriad of diseases. While liposome circulation time in blood and retention in tissues have been studied in detail, the structural fate of liposomes-and nanoparticles in general-in the body has not been extensively investigated. Here, we explore the interactions of liposomes with synthetic and natural hydrogel materials to understand how the natural extracellular matrix influences liposome structural characteristics. Small angle X-ray scattering, confocal microscopy, and cryogenic transmission electron microscopy data demonstrate that poly(ethylene glycol) (PEG), gelatin, alginate, and Matrigel® hydrogels cause 200-nm liposomes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to transform into micrometer-sized aggregates. These aggregates are composed of multilamellar vesicles around 100 nm in diameter with a mean interlamellar separation of 5.5 nm. Protecting the liposomes with a corona of PEG damps this restructuring effect, making the multilamellar vesicles less stable. We attribute this unilamellar to multilamellar transition to an osmotic driving force from the hydrogel environment. This lipid restructuring has broad ramifications in the design and use of nanomedicines, and in understanding the fate and function of natural lipid-based materials within the tissue microenvironment.
Collapse
Affiliation(s)
- Sarith R. Bandara
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas G. Molley
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Hojun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Priyalini A. Bharath
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Porras-Gomez M, Leal C. Lipid-based Liquid Crystalline Films and Solutions for the Delivery of Cargo to Cells. LIQUID CRYSTALS REVIEWS 2019; 7:167-182. [PMID: 31942262 PMCID: PMC6961842 DOI: 10.1080/21680396.2019.1666752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 05/20/2023]
Abstract
A major challenge in the delivery of cargo (genes and/or drugs) to cells using nanostructured vehicles is the ability to safely penetrate plasma membranes by escaping the endosome before degradation, later releasing the payload into the cytoplasm or organelle of interest. Lipids are a class of bio-compatible molecules that self-assemble into a variety of liquid crystalline constructs. Most of these materials can be used to encapsulate drugs, proteins, and nucleic acids to deliver them safely into various cell types. Lipid phases offer a plethora of structures capable of forming complexes with biomolecules, most notably nucleic acids. The physichochemical characteristics of the lipid molecular building blocks, one might say the lipid primary structure, dictates how they collectively interact to assemble into various secondary structures. These include bilayers, lamellar stacks of bilayers, two-dimensional (2D) hexagonal arrays of lipid tubes, and even 3D cubic constructs. The liquid crystalline materials can be present in the form of aqueous suspensions, bulk materials or confined to a film configuration depending on the intended application (e.g. bolus vs surface-based delivery). This work compiles recent findings of different lipid-based liquid crystalline constructs both in films and particles for gene and drug delivery applications. We explore how lipid primary and secondary structures endow liquid crystalline materials with the ability to carry biomolecular cargo and interact with cells.
Collapse
Affiliation(s)
- Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign. Urbana, IL 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign. Urbana, IL 61801, USA
| |
Collapse
|
9
|
Mackay SM, Myint DMA, Easingwood RA, Hegh DY, Wickens JR, Hyland BI, Jameson GNL, Reynolds JNJ, Tan EW. Dynamic control of neurochemical release with ultrasonically-sensitive nanoshell-tethered liposomes. Commun Chem 2019. [DOI: 10.1038/s42004-019-0226-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
The unique surface plasmon resonance of hollow gold nanoshells can be used to achieve drug release from liposomes upon laser stimulation, and adapted to mimic the intricate dynamics of neurotransmission ex vivo in brain preparations. However, to induce a physiological response in vivo requires the degree of temporal precision afforded by laser stimulation, but with a greater depth of penetration through tissue. Here we report that the attachment of hollow gold nanoshells to the surface of robust liposomes results in a construct that is highly sensitive to ultrasonic stimulation. The resulting construct can be remotely triggered by low intensity, therapeutic ultrasound. To our knowledge, this is the first example of nanoparticle-liposome system that can be activated by both laser and acoustic stimulation. The system is capable of encapsulating the neurochemical dopamine, and repeatedly releasing small amounts on-demand in a circulating environment, allowing for precise spatiotemporal control over the release profile.
Collapse
|
10
|
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019; 58:2958-2978. [PMID: 29926520 PMCID: PMC6606436 DOI: 10.1002/anie.201804067] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.
Collapse
Affiliation(s)
- Hanna M. G. Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
11
|
Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hanna M. G. Barriga
- Department of Medical Biochemistry and BiophysicsKarolinska Institute Stockholm Schweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska Institute Stockholm Schweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska Institute Stockholm Schweden
- Departments of Materials and Bioengineering and Institute of Biomedical EngineeringImperial College London London Großbritannien
| |
Collapse
|
12
|
Wilner SE, Xiao Q, Graber ZT, Sherman SE, Percec V, Baumgart T. Dendrimersomes Exhibit Lamellar-to-Sponge Phase Transitions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5527-5534. [PMID: 29660277 PMCID: PMC6010174 DOI: 10.1021/acs.langmuir.8b00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lamellar to nonlamellar membrane shape transitions play essential roles in key cellular processes, such as membrane fusion and fission, and occur in response to external stimuli, including drug treatment and heat. A subset of these transitions can be modeled by means of thermally inducible amphiphile assemblies. We previously reported on mixtures of hydrogenated, fluorinated, and hybrid Janus dendrimers (JDs) that self-assemble into complex dendrimersomes (DMSs), including dumbbells, and serve as promising models for understanding the complexity of biological membranes. Here we show, by means of a variety of complementary techniques, that DMSs formed by single JDs or by mixtures of JDs undergo a thermally induced lamellar-to-sponge transition. Consistent with the formation of a three-dimensional bilayer network, we show that DMSs become more permeable to water-soluble fluorophores after transitioning to the sponge phase. These DMSs may be useful not only in modeling isotropic membrane rearrangements of biological systems but also in drug delivery since nonlamellar delivery vehicles can promote endosomal disruption and cargo release.
Collapse
Affiliation(s)
- Samantha E. Wilner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Qi Xiao
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Zachary T. Graber
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Samuel E. Sherman
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Garello F, Terreno E. Sonosensitive MRI Nanosystems as Cancer Theranostics: A Recent Update. Front Chem 2018; 6:157. [PMID: 29868560 PMCID: PMC5949352 DOI: 10.3389/fchem.2018.00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
In the tireless search for innovative and more efficient cancer therapies, sonosensitive Magnetic Resonance Imaging (MRI) agents play an important role. Basically, these systems consist of nano/microvesicles composed by a biocompatible membrane, responsive to ultrasound-induced thermal or mechanical effects, and an aqueous core, filled up with a MRI detectable probe and a therapeutic agent. They offer the possibility to trigger and monitor in real time drug release in a spatio-temporal domain, with the expectation to predict the therapeutic outcome. In this review, the key items to design sonosensitive MRI agents will be examined and an overview on the different approaches available so far will be given. Due to the extremely wide range of adopted ultrasound settings and formulations conceived, it is hard to compare the numerous preclinical studies reported. However, in general, a significantly better therapeutic outcome was noticed when exploiting ultrasound triggered drug release in comparison to traditional therapies, thus paving the way to the possible clinical translation of optimized sonosensitive MRI agents.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Kang M, Tuteja M, Centrone A, Topgaard D, Leal C. Nanostructured Lipid-based Films for Substrate Mediated Applications in Biotechnology. ADVANCED FUNCTIONAL MATERIALS 2018; 28:10.1002/adfm.201704356. [PMID: 31080383 PMCID: PMC6508631 DOI: 10.1002/adfm.201704356] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amphiphilic in nature, lipids spontaneously self-assemble into a range of nanostructures in the presence of water. Among lipid self-assembled structures, liposomes and supported lipid bilayers have long held scientific interest for their main applications in drug delivery and plasma membrane models, respectively. In contrast, lipid-based multi-layered membranes on solid supports only recently begun drawing scientists' attention. New studies on lipid films show that the stacking of multiple bilayers on a solid support yields interestingly complex features to these systems. Namely, multiple layers exhibit cooperative structural and dynamic behavior. In addition, the materials enable compartmentalization, templating, and enhanced release of several molecules of interest. Importantly, supported lipid phases exhibit long-range periodic nano-scale order and orientation that is tunable in response to a changing environment. Herein, we summarize current and pertinent understanding of lipid-based film research focusing on how unique structural characteristics enable the emergence of new applications in biotechnology including label-free biosensors, macroscale drug delivery, and substrate-mediated gene delivery. Our very recent contributions to lipid-based films, focusing on the structural characterization at the meso, nano, and molecular-scale, using Small-Angle X-ray Scattering, Atomic Force Microscopy, Photothermal Induced Resonance, and Solid-State NMR will be also highlighted.
Collapse
Affiliation(s)
- Minjee Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mohit Tuteja
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- Maryland Nanocenter, University of Maryland, College Park, MD 20742, United States
| | - Andrea Centrone
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Kang M, Lee B, Leal C. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid-Polymer Hybrid Membranes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:9120-9132. [PMID: 31097879 PMCID: PMC6516788 DOI: 10.1021/acs.chemmater.7b02845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidence that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid-polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid-polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications.
Collapse
Affiliation(s)
- Minjee Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Wölk C, Janich C, Bakowsky U, Langner A, Brezesinski G. Malonic acid based cationic lipids - The way to highly efficient DNA-carriers. Adv Colloid Interface Sci 2017; 248:20-34. [PMID: 28842122 DOI: 10.1016/j.cis.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 01/21/2023]
Abstract
Cationic lipids play an important role as non-viral nucleic acid carriers in gene therapy since 3 decades. This review will introduce malonic acid derived cationic lipids as nucleic acid carriers which appeared in the literature dealing with lipofection 10years ago. The family of amino-functionalized branched fatty acid amides will be presented as well as different generations of malonic acid diamides. Both groups of cationic lipids yield lipid mixtures with highly efficient nucleic acid transfer activities in in-vitro cell culture models. The DNA transfer screening of lipid libraries with directed structural variations in the lipophilic as well as in the hydrophilic part of the amphiphiles yields structure/activity relationships. Furthermore, the detailed characterizations of selected lipid composites at the air/water interface and in bulk systems are summarized with regard to transfection determining physical-chemical properties. The findings are also discussed in comparison to results obtained with other families of cationic lipids.
Collapse
Affiliation(s)
- Christian Wölk
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany.
| | - Christopher Janich
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Andreas Langner
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
17
|
Steer D, Kang M, Leal C. Soft nanostructured films for directing the assembly of functional materials. NANOTECHNOLOGY 2017; 28:142001. [PMID: 28145900 DOI: 10.1088/1361-6528/aa5d77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipids are a class of biological small molecules with hydrophilic and hydrophobic constituents forming the structural membranes in cells. Over the past century an extensive understanding of lipid biology and biophysics has been developed illuminating lipids as an intricate, highly tunable, and hierarchical soft-matter system. In addition to serving as cell membrane models, lipids have been investigated as microphase separated structures in aqueous solutions. In terms of applications lipids have been realized as powerful structural motifs for the encapsulation and cellular delivery of genetic material. More recently, lipids have also revealed promise as thin film materials, exhibiting long-range periodic nano-scale order and tunable orientation. In this review we summarize the pertinent understanding of lipid nanostructure development in bulk aqueous systems followed by the current and potential perturbations to these results induced by introduction of a substrate. These effects are punctuated by a summary of our published results in the field of lipid thin films with added nucleic acids and key results introducing hard materials into lipid nanostructured substrates.
Collapse
Affiliation(s)
- D Steer
- Materials Science and Engineering, University of Illinois at Urbana Champaign, United States of America
| | | | | |
Collapse
|
18
|
Physicochemical characterization of lauryl glycinate-dodecyl sulfate equimolar complex: A base-triggerable catanionic liposomal system. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Fong WK, Sánchez-Ferrer A, Ortelli FG, Sun W, Boyd BJ, Mezzenga R. Dynamic formation of nanostructured particles from vesicles via invertase hydrolysis for on-demand delivery. RSC Adv 2017. [DOI: 10.1039/c6ra26688f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Controlled hydrolysis via invertase action alters molecular shape and therefore lipid curvature, consequently triggering the release of encapsulated drug.
Collapse
Affiliation(s)
- Wye-Khay Fong
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
- Drug Delivery, Disposition & Dynamics
| | | | | | - Wenjie Sun
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| | - Ben J. Boyd
- Drug Delivery, Disposition & Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Raffaele Mezzenga
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| |
Collapse
|
20
|
Fong WK, Negrini R, Vallooran JJ, Mezzenga R, Boyd BJ. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J Colloid Interface Sci 2016; 484:320-339. [PMID: 27623190 DOI: 10.1016/j.jcis.2016.08.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023]
Abstract
While stimuli-responsive polymers have received a huge amount of attention in the literature, responsive lipid-based mesophase systems offer unique opportunities in biomedical applications such as drug delivery and biosensing. The different mesophase equilibrium structures enables dynamic switching between nanostructures to facilitate drug release or as a transducer for recognition events. In drug delivery, this behavior offers researchers the means to deliver a therapeutic payload at a specific rate and time i.e. 'on-demand'. This review summarizes the distinctive features of these multifaceted materials and aggregates the current state of the art research from our groups and others into the use of these materials as bulk gels and nanostructured dispersions for drug delivery, biosensing and diagnostics.
Collapse
Affiliation(s)
- Wye-Khay Fong
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Renata Negrini
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Jijo J Vallooran
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland.
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
21
|
Janich C, Taßler S, Meister A, Hause G, Schäfer J, Bakowsky U, Brezesinski G, Wölk C. Structures of malonic acid diamide/phospholipid composites and their lipoplexes. SOFT MATTER 2016; 12:5854-66. [PMID: 27328379 DOI: 10.1039/c6sm00807k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As a continuation of previous work, the self-assembly process of cationic lipid formulations in the presence and absence of DNA was investigated with respect to binary lipid mixtures suitable as polynucleotide carrier systems. The lipid blends consist of one malonic-acid-based cationic lipid with a varying alkyl chain pattern, either N-{6-amino-1-[N-(9Z)-octadec-9-enylamino]-1-oxohexan-(2S)-2-yl}-N'-{2-[N,N-bis(2-aminoethyl)amino]ethyl}-2-hexadecylpropandiamide () or N-[6-amino-1-oxo-1-(N-tetradecylamino)hexan-(2S)-2-yl]-N'-{2-[N,N-bis(2-aminoethyl)amino]ethyl}-2-hexadecylpropandiamide (), and one neutral co-lipid, either 1,2-di-[(9Z)-octadec-9-enoyl]-sn-glycero-3-phosphocholine (DOPE) or 1,2-di-(hexadecanoyl)-sn-glycero-3-phosphocholine (DPPC). Although the cationic lipids exhibit only slight differences in their structure, the DNA transfer efficiency varies drastically. Therefore, self-assembly was studied in 3D systems by small- and wide-angle X-ray scattering (SAXS and WAXS) and transmission electron microscopy (TEM) as well as in 2D systems by infrared reflection-absorption spectroscopy (IRRAS) on Langmuir films. The investigated lipid mixtures show quite different self-assembly in the absence of DNA, with varying structures from vesicles (/DOPE; /DOPE) and tubes (/DOPE) to discoid structures (/DPPC; /DPPC). Twisted ribbons and sheets, which were stabilized due to hydrogen-bond networks, were found in all investigated lipid mixtures in the absence of DNA. The addition of DNA leads to the formation of lamellar lipoplexes for all the investigated lipid compositions. The lipoplexes differ in crucial parameters, such as the lamellar repeat distance and the spacing between the DNA strands, indicating differences in the binding strength between DNA and the lipid composition. The formation of associates with an ideal charge density might emerge as a key parameter for efficient DNA transfer. Furthermore, the structures observed for the different lipid compositions in the absence of DNA prepare the way for other applications besides gene therapy.
Collapse
Affiliation(s)
- Christopher Janich
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany. and Philipps University Marburg, Department of Pharmaceutical Technology and Biopharmacy, Ketzerbach 63, 35037 Marburg, Germany
| | - Stephanie Taßler
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Annette Meister
- Martin Luther University Halle-Wittenberg, Institute of Chemistry, Physical Chemistry and Institute of Biochemistry and Biotechnology, von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, 06120 Halle, Saale, Germany
| | - Jens Schäfer
- Philipps University Marburg, Department of Pharmaceutical Technology and Biopharmacy, Ketzerbach 63, 35037 Marburg, Germany
| | - Udo Bakowsky
- Philipps University Marburg, Department of Pharmaceutical Technology and Biopharmacy, Ketzerbach 63, 35037 Marburg, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christian Wölk
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany.
| |
Collapse
|
22
|
Abstract
RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems.
Collapse
Affiliation(s)
- Hojun Kim
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Cintas P, Cravotto G, Barge A, Martina K. Interplay Between Mechanochemistry and Sonochemistry. Top Curr Chem (Cham) 2014; 369:239-84. [PMID: 25860254 DOI: 10.1007/128_2014_623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ultrasonic irradiation-based mechanochemical strategies have recently been the subject of intensive investigation because of the advantages they offer. These include simplicity, energy savings and wide applicability. Traditional areas of sonoprocessing such as cleaning, efficient mixing and solid activation have been extended to both macromolecular and micro/nanostructures, some of which are biologically significant, ultrasound-responsive actuators and crystal design, among others. Unlike conventional mechanochemical protocols, which require little solvent usage if any at all, mechanical (and chemical) effects promoted by ultrasound are observed in a liquid medium. Tensile forces, which share similarities with solid mechanochemistry, are generated by virtue of nonlinear effects, notably cavitation, when high-amplitude waves propagate in a fluid. This work aims to provide insight into some recent developments in the multifaceted field of sono-mechanochemistry using various examples that illustrate the role of ultrasonic activation, which is capable of boosting hitherto sterile transformations and inventing new crafts in applied chemistry. After a preliminary discussion of acoustics, which is intended to provide a mechanistic background, we mainly focus on experimental developments, while we often mention emerging science and occasionally delve into theoretical models and force simulations.
Collapse
Affiliation(s)
- Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Alessandro Barge
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|