1
|
Piras A, Floris E, Dall'Asta L, Gamba A. Sorting of multiple molecular species on cell membranes. Phys Rev E 2023; 108:024401. [PMID: 37723769 DOI: 10.1103/physreve.108.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/05/2023] [Indexed: 09/20/2023]
Abstract
Eukaryotic cells maintain their inner order by a hectic process of sorting and distillation of molecular factors taking place on their lipid membranes. A similar sorting process is implied in the assembly and budding of enveloped viruses. To understand the properties of this molecular sorting process, we have recently proposed a physical model [Zamparo et al., Phys. Rev. Lett. 126, 088101 (2021)]10.1103/PhysRevLett.126.088101, based on (1) the phase separation of a single, initially dispersed molecular species into spatially localized sorting domains on the lipid membrane and (2) domain-induced membrane bending leading to the nucleation of submicrometric lipid vesicles, naturally enriched in the molecules of the engulfed sorting domain. The analysis of the model showed the existence of an optimal region of parameter space where sorting is most efficient. Here the model is extended to account for the simultaneous distillation of a pool of distinct molecular species. We find that the mean time spent by sorted molecules on the membrane increases with the heterogeneity of the pool (i.e., the number of distinct molecular species sorted) according to a simple scaling law, and that a large number of distinct molecular species can in principle be sorted in parallel on cell membranes without significantly interfering with each other. Moreover, sorting is found to be most efficient when the distinct molecular species have comparable homotypic affinities. We also consider how valence (i.e., the average number of interacting neighbors of a molecule in a sorting domain) affects the sorting process, finding that higher-valence molecules can be sorted with greater efficiency than lower-valence molecules.
Collapse
Affiliation(s)
- Andrea Piras
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, km 3.95, 10060 Candiolo, Italy
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Strada Provinciale 142, km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
| | - Elisa Floris
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Luca Dall'Asta
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Strada Provinciale 142, km 3.95, 10060 Candiolo, Italy
- Collegio Carlo Alberto, Piazza Arbarello 8, 10122, Torino, Italy
| | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Strada Provinciale 142, km 3.95, 10060 Candiolo, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| |
Collapse
|
2
|
Floris E, Piras A, Pezzicoli FS, Zamparo M, Dall'Asta L, Gamba A. Phase separation and critical size in molecular sorting. Phys Rev E 2022; 106:044412. [PMID: 36397477 DOI: 10.1103/physreve.106.044412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Molecular sorting is a fundamental process that allows eukaryotic cells to distill and concentrate specific chemical factors in appropriate cell membrane subregions, thus endowing them with different chemical identities and functional properties. A phenomenological theory of this molecular distillation process has recently been proposed [M. Zamparo, D. Valdembri, G. Serini, I. V. Kolokolov, V. V. Lebedev, L. Dall'Asta, and A. Gamba, Phys. Rev. Lett. 126, 088101 (2021)0031-900710.1103/PhysRevLett.126.088101], based on the idea that molecular sorting emerges from the combination of (a) phase separation driven formation of sorting domains and (b) domain-induced membrane bending, leading to the production of submicrometric lipid vesicles enriched in the sorted molecules. In this framework, a natural parameter controlling the efficiency of molecular distillation is the critical size of phase separated domains. In the experiments, sorting domains appear to fall into two classes: unproductive domains, characterized by short lifetimes and low probability of extraction, and productive domains, that evolve into vesicles that ultimately detach from the membrane system. It is tempting to link these two classes to the different fates predicted by classical phase separation theory for subcritical and supercritical phase separated domains. Here, we discuss the implication of this picture in the framework of the previously introduced phenomenological theory of molecular sorting. Several predictions of the theory are verified by numerical simulations of a lattice-gas model. Sorting is observed to be most efficient when the number of sorting domains is close to a minimum. To help in the analysis of experimental data, an operational definition of the critical size of sorting domains is proposed. Comparison with experimental results shows that the statistical properties of productive and unproductive domains inferred from experimental data are in agreement with those predicted from numerical simulations of the model, compatibly with the hypothesis that molecular sorting is driven by a phase separation process.
Collapse
Affiliation(s)
- Elisa Floris
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Piras
- Italian Institute for Genomic Medicine and Candiolo Cancer Institute IRCCS, Strada Provinciale 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Francesco Saverio Pezzicoli
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, Gif-sur-Yvette, 91190 Île-de-France, France
| | - Marco Zamparo
- Dipartimento di Fisica, Università degli Studi di Bari, via Amendola 173, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Luca Dall'Asta
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine and Candiolo Cancer Institute IRCCS, Strada Provinciale 142, km 3.95, Candiolo (TO) 10060, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
- Collegio Carlo Alberto, Piazza Arbarello 8, 10122 Torino, Italy
| | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine and Candiolo Cancer Institute IRCCS, Strada Provinciale 142, km 3.95, Candiolo (TO) 10060, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| |
Collapse
|
3
|
Di Talia S. Geometry and symmetry-breaking in cell polarity. NATURE COMPUTATIONAL SCIENCE 2022; 2:473-474. [PMID: 38177804 DOI: 10.1038/s43588-022-00304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Floris E, Piras A, Dall’Asta L, Gamba A, Hirsch E, Campa CC. Physics of compartmentalization: How phase separation and signaling shape membrane and organelle identity. Comput Struct Biotechnol J 2021; 19:3225-3233. [PMID: 34141141 PMCID: PMC8190439 DOI: 10.1016/j.csbj.2021.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Compartmentalization of cellular functions is at the core of the physiology of eukaryotic cells. Recent evidences indicate that a universal organizing process - phase separation - supports the partitioning of biomolecules in distinct phases from a single homogeneous mixture, a landmark event in both the biogenesis and the maintenance of membrane and non-membrane-bound organelles. In the cell, 'passive' (non energy-consuming) mechanisms are flanked by 'active' mechanisms of separation into phases of distinct density and stoichiometry, that allow for increased partitioning flexibility and programmability. A convergence of physical and biological approaches is leading to new insights into the inner functioning of this driver of intracellular order, holding promises for future advances in both biological research and biotechnological applications.
Collapse
Affiliation(s)
- Elisa Floris
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Piras
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Luca Dall’Asta
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Collegio Carlo Alberto, Piazza Arbarello 8, 10122 Torino, Italy
| | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Torino, Via Giuria 1, 10125 Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| |
Collapse
|
5
|
Zamparo M, Valdembri D, Serini G, Kolokolov IV, Lebedev VV, Dall'Asta L, Gamba A. Optimality in Self-Organized Molecular Sorting. PHYSICAL REVIEW LETTERS 2021; 126:088101. [PMID: 33709726 DOI: 10.1103/physrevlett.126.088101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
We introduce a simple physical picture to explain the process of molecular sorting, whereby specific proteins are concentrated and distilled into submicrometric lipid vesicles in eukaryotic cells. To this purpose, we formulate a model based on the coupling of spontaneous molecular aggregation with vesicle nucleation. Its implications are studied by means of a phenomenological theory describing the diffusion of molecules toward multiple sorting centers that grow due to molecule absorption and are extracted when they reach a sufficiently large size. The predictions of the theory are compared with numerical simulations of a lattice-gas realization of the model and with experimental observations. The efficiency of the distillation process is found to be optimal for intermediate aggregation rates, where the density of sorted molecules is minimal and the process obeys simple scaling laws. Quantitative measures of endocytic sorting performed in primary endothelial cells are compatible with the hypothesis that these optimal conditions are realized in living cells.
Collapse
Affiliation(s)
- Marco Zamparo
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine c/o Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, 10060 Torino, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Candiolo, 10060 Torino, Italy
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, 10060 Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, 10060 Torino, Italy
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, 10060 Torino, Italy
| | - Igor V Kolokolov
- L.D. Landau Institute for Theoretical Physics, 142432, Moscow Region, Chernogolovka, Ak. Semenova, 1-A, Russia
- National Research University Higher School of Economics, 101000, Myasnitskaya 20, Moscow, Russia
| | - Vladimir V Lebedev
- L.D. Landau Institute for Theoretical Physics, 142432, Moscow Region, Chernogolovka, Ak. Semenova, 1-A, Russia
- National Research University Higher School of Economics, 101000, Myasnitskaya 20, Moscow, Russia
| | - Luca Dall'Asta
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine c/o Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, 10060 Torino, Italy
- Collegio Carlo Alberto, Piazza Arbarello 8, 10122 Torino, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Italy
| | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine c/o Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, 10060 Torino, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Italy
| |
Collapse
|
6
|
Iida K, Obata N, Kimura Y. Quantifying heterogeneity of stochastic gene expression. J Theor Biol 2019; 465:56-62. [PMID: 30611711 DOI: 10.1016/j.jtbi.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
The heterogeneity of stochastic gene expression, which refers to the temporal fluctuation in a gene product and its cell-to-cell variation, has attracted considerable interest from biologists, physicists, and mathematicians. The dynamics of protein production and degradation have been modeled as random processes with transition probabilities. However, there is a gap between theory and phenomena, particularly in terms of analytical formulation and parameter estimation. In this study, we propose a theoretical framework in which we present a basic model of a gene regulatory system, derive a steady-state solution, and provide a Bayesian approach for estimating the model parameters from single-cell experimental data. The proposed framework is demonstrated to be applicable for various scales of single-cell experiments at both the mRNA and protein levels and is useful for comparing kinetic parameters across species, genomes, and cell strains.
Collapse
Affiliation(s)
- Keita Iida
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | - Nobuaki Obata
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan.
| | - Yoshitaka Kimura
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
7
|
Camley BA, Zhao Y, Li B, Levine H, Rappel WJ. Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry. Phys Rev E 2017; 95:012401. [PMID: 28208438 DOI: 10.1103/physreve.95.012401] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 11/07/2022]
Abstract
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanxiang Zhao
- Department of Mathematics, The George Washington University, Washington, DC 20052, USA
| | - Bo Li
- Department of Mathematics and Graduate Program in Quantitative Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Herbert Levine
- Department of Bioengineering, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Abstract
Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.
Collapse
|