1
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
2
|
Alkattan N, Alasmael N, Ladelta V, Khashab NM, Hadjichristidis N. Poly(2-oxazoline)-based core cross-linked star polymers: synthesis and drug delivery applications. NANOSCALE ADVANCES 2023; 5:2794-2803. [PMID: 37205291 PMCID: PMC10187039 DOI: 10.1039/d3na00116d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Poly(2-oxazoline)s (POxs) are promising platforms for drug delivery applications due to their biocompatibility and stealth properties. In addition, the use of core cross-linked star (CCS) polymers based on POxs is expected to enhance drug encapsulation and release performances. In this study, we employed the "arm-first" strategy to synthesize a series of amphiphilic CCS [poly(2-methyl-2-oxazoline)]n-block-poly(2,2'-(1,4-phenylene)bis-2-oxazoline)-cross-link/copolymer-(2-n-butyl-2-oxazoline)s (PMeOx)n-b-P(PhBisOx-cl/co-ButOx)s by using microwave-assisted cationic ring-opening polymerization (CROP). First, PMeOx, as the hydrophilic arm, was synthesized by CROP of MeOx using methyl tosylate as the initiator. Subsequently, the living PMeOx was used as the macroinitiator to initiate the copolymerization/core-crosslinking reaction of ButOx and PhBisOx to form CCS POxs having a hydrophobic core. The molecular structures of the resulting CCS POxs were characterized by size exclusion chromatography and nuclear magnetic resonance spectroscopy. The CCS POxs were loaded with the anti-cancer drug doxorubicin (DOX), and the loading was detected by UV-vis spectrometry, dynamic light scattering, and transmission electron microscopy. In vitro studies showed that DOX release at pH 5.2 was faster than that at pH 7.1. The in vitro cytotoxicity study using HeLa cells revealed that the neat CCS POxs are compatible with the cells. In contrast, the DOX-loaded CCS POxs exhibited a cytotoxic effect in a concentration-dependent manner in HeLa cells, which strongly supports that the CSS POxs are potential candidates for drug delivery applications.
Collapse
Affiliation(s)
- Nedah Alkattan
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia +966-(0)12-8080789
- Refining and Petrochemical Technologies Institute, King Abdulaziz City for Science and Technology P. O Box 6086 Riyadh 11442 Saudi Arabia
| | - Noura Alasmael
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966-(0)12-8080789
| | - Viko Ladelta
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia +966-(0)12-8080789
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966-(0)12-8080789
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia +966-(0)12-8080789
| |
Collapse
|
3
|
Kashapov R, Kashapova N, Razuvayeva Y, Ziganshina A, Salnikov V, Zakharova L. Green-step assembly of the supramolecular amphiphile constructed by sodium carboxymethyl cellulose and calixarene for facile loading of hydrophobic food bioactive compounds. Food Chem 2023; 424:136293. [PMID: 37236075 DOI: 10.1016/j.foodchem.2023.136293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/23/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023]
Abstract
The use of biologically active compounds is often limited due to their poor aqueous solubility, which generally reduces their bioavailability and useful efficacy. In this regard, a wide search is currently underway for colloidal systems capable of encapsulating these compounds. In the creation of colloidal systems, long-chain molecules of surfactants and polymers are mainly used, which in an individual state do not always aggregate into homogeneous and stable nanoparticles. In the present work, cavity-bearing calixarene was used for the first time to order polymeric molecules of sodium carboxymethyl cellulose. A set of physicochemical methods demonstrated the spontaneous formation of spherical nanoparticles by non-covalent self-assembly contributed by macrocycle and polymer, and formed nanoparticles were able to encapsulate hydrophobic quercetin and oleic acid. The preparation of nanoparticles by supramolecular self-assembly without use of organic solvents, temperature and ultrasound effects can be an effective strategy for creating water-soluble forms of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia.
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str, 420111 Kazan, Russia; Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, 420008 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| |
Collapse
|
4
|
p-sulfonatocalix [8]arene and chitosan based vesicle formation studies by spectroscopic and thermal methods. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Morozova JE, Shumatbaeva AM, Antipin IS. Colloidal Solutions of Supramolecular para/meta-Cyclophane–Polyelectrolyte Complexes: Examples, Properties, and Application. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x2270003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Kravets K, Kravets M, Butkiewicz H, Kosiorek S, Sashuk V, Danylyuk O. Electrostatic co-assembly of pillar[n]pyridiniums and calix[4]arene in aqueous media. CrystEngComm 2022. [DOI: 10.1039/d2ce00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cationic pillar[n]pyridiniums and anionic p-sulfonatocalix[4]arene co-assemble into all-organic supersalts through encaging of the supercation units within/between the capsules emerged from superanion pairs. The encapsulation occures both in the solid...
Collapse
|
7
|
Sayed M, Pal H. An overview from simple host-guest systems to progressively complex supramolecular assemblies. Phys Chem Chem Phys 2021; 23:26085-26107. [PMID: 34787121 DOI: 10.1039/d1cp03556h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular chemistry involving macrocyclic hosts is a highly interdisciplinary and fast-growing research field in chemistry, biochemistry, and materials science. Host-guest based supramolecular assemblies, as constructed through non-covalent interactions, are highly dynamic in nature, and can be tuned easily using their responses to various external stimuli, providing a convenient approach to achieve excellent functional materials. Macrocyclic hosts, particularly cyclodextrins, cucurbit[n]urils, and calix[n]arenes, which have unique features like possessing hydrophobic cavities of different sizes, along with hydrophilic external surfaces, which are also amenable towards easy derivatizations, are versatile cavitands or host molecules to encapsulate diverse guest molecules to form stable host-guest complexes with many unique structures and properties. Interestingly, host-guest complexes possessing amphiphilic properties can easily lead to the formation of various advanced supramolecular assemblies, like pseudorotaxanes, rotaxanes, polyrotaxanes, supramolecular polymers, micelles, vesicles, supramolecular nanostructures, and so on. Moreover, these supramolecular assemblies, with varied morphologies and responsiveness towards external stimuli, have immense potential for applications in nanotechnology, materials science, biosensors, drug delivery, analytical chemistry and biomedical sciences. In this perspective, we present a stimulating overview, discussing simple host-guest systems to complex supramolecular assemblies in a systematic manner, aiming to encourage future researchers in this fascinating area of supramolecular chemistry to develop advanced supramolecular materials with superior functionalities, for their deployment in diverse applied areas.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.,Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
8
|
Affiliation(s)
- Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
9
|
Kashapov R, Razuvayeva Y, Ziganshina A, Sergeeva T, Kashapova N, Sapunova A, Voloshina A, Nizameev I, Salnikov V, Zakharova L. Supramolecular assembly of calix[4]resorcinarenes and chitosan for the design of drug nanocontainers with selective effects on diseased cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj02163f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective delivery systems for anticancer drugs were prepared through the self-assembly of calix[4]resorcinarenes and chitosan in an aqueous medium.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Tatiana Sergeeva
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Irek Nizameev
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics
- FRC Kazan Scientific Center of RAS
- 420111 Kazan
- Russia
- Kazan Federal University
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| |
Collapse
|
10
|
Wintgens V, Guigner JM, Miskolczy Z, Amiel C, Biczók L. 4-Sulfonatocalixarene-induced nanoparticle formation of methylimidazolium-conjugated dextrans: Utilization for drug encapsulation. Carbohydr Polym 2019; 223:115071. [DOI: 10.1016/j.carbpol.2019.115071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/06/2019] [Accepted: 07/06/2019] [Indexed: 01/03/2023]
|
11
|
Xiao T, Zhong W, Xu L, Sun XQ, Hu XY, Wang L. Supramolecular vesicles based on pillar[n]arenes: design, construction, and applications. Org Biomol Chem 2019; 17:1336-1350. [PMID: 30638249 DOI: 10.1039/c8ob03095b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular vesicles have attracted considerable attention due to their advantages of facile construction, high-cargo-loading capacity, and good biocompatibility. Pillar[n]arenes are a unique family of supramolecular macrocycles, exhibiting excellent features and broad applications due to their intrinsic topology and high functionality. In the past decade, the construction of pillar[n]arene-based supramolecular vesicles has been continuously attempted and developed rapidly. In this review, we mainly summarize the significant advancements of such supramolecular vesicles in the last three years. By showing some representative examples, the design strategies, construction methods, and potential applications of these dynamic nanocarriers are discussed in detail. In particular, the responsiveness of such vesicles to various external stimuli and their applications in drug delivery are highlighted. The outstanding performance of pillar[n]arene-based supramolecular vesicles would definitely enrich the family of supramolecular vesicles and promote the development of dynamic supramolecular materials.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | |
Collapse
|
12
|
Chen XM, Chen Y, Hou XF, Wu X, Gu BH, Liu Y. Sulfonato-β-Cyclodextrin Mediated Supramolecular Nanoparticle for Controlled Release of Berberine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24987-24992. [PMID: 30010314 DOI: 10.1021/acsami.8b08651] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A kind of supramolecular assemblies was constructed from two water-soluble and biocompatible saccharides, sulfonato-β-cyclodextrin (SCD) and chitosan, and characterized by dynamic light scattering (DLS), UV-vis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that such nanoparticles presented good stability and controlled loading/release property, which enabled them as good drug carrier for berberine chloride (BE), a representative drug from traditional Chinese herbs. That is, the nanoparticles can load BE with high stability in a low-pH environment like that of the stomach but released BE when moved to a high-pH environment like that of the intestine.
Collapse
Affiliation(s)
- Xu-Man Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Yong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Xiao-Fang Hou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xuan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Bo-Han Gu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| |
Collapse
|
13
|
Wang K, Ren XW, Cui JH, Guo JS, Xing SY, Dou HX, Wang MM. Multistimuli Responsive Supramolecular Polymeric Nanoparticles Formed by Calixpyridinium and Chondroitin 4-Sulfate. ChemistrySelect 2018. [DOI: 10.1002/slct.201800570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Xiao-Wei Ren
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Jian-Hua Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Jia-Shuang Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Hong-Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Meng-Meng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| |
Collapse
|
14
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Kazakova EK, Konovalov AI. The supramolecular polymer complexes with oppositely charged calixresorcinarene: hydrophobic domain formation and synergistic binding modes. SOFT MATTER 2018; 14:1799-1810. [PMID: 29442125 DOI: 10.1039/c8sm00015h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The association of branched polyethyleneimine (PEI) with a series of octacarboxy-calixresorcinarenes bearing different low-rim substituents leads to the formation of nanosized supramolecular complexes. The PEI-macrocycle complexes have fine-tunable sizes regulated by variations in the self-association capacity of the calixresorcinarenes. In the supramolecular complexes, hydrophobic fragments of the polymer and calixresorcinarenes form cooperative hydrophobic domains which provide synergistic enhancement of guest molecule binding. The formation of the supramolecular complexes was investigated by NMR FT-PGSE, NMR 2D NOESY, DLS and TEM methods. In addition, fluorimetry and UV-vis methods were used with the help of optical probes, namely water-soluble Crystal Violet and water-insoluble Orange OT. The investigation demonstrates the first example of the formation of cooperative hydrophobic domains in supramolecular polyelectrolyte-macrocycle complexes which enhance the binding of both water-soluble and water-insoluble organic compounds. The presented supramolecular systems have potential as sensory and drug delivery systems.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Han C, Dong S, Zhao D, Sun D. Mild Synthesis of Pillar[4]arene[1]cis
-diepoxy-p
-dione and Guest-Assisted Formation of a 2D Network in the Solid State. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chengyou Han
- Department of Chemistry; College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road 266580 Qingdao Huangdao District P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering; Hunan University; 410082 Changsha Hunan P. R. China
| | - Dezhi Zhao
- Department of Chemistry; College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road 266580 Qingdao Huangdao District P. R. China
| | - Daofeng Sun
- Department of Chemistry; College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road 266580 Qingdao Huangdao District P. R. China
| |
Collapse
|
16
|
Wintgens V, Harangozó JG, Miskolczy Z, Guigner JM, Amiel C, Biczók L. Effect of Headgroup Variation on the Self-Assembly of Cationic Surfactants with Sulfonatocalix[6]arene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8052-8061. [PMID: 28738151 DOI: 10.1021/acs.langmuir.7b01941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of headgroup variation on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[6]arene (SCX6) and cationic surfactant possessing tetradecyl substituent was studied in aqueous solutions at pH 7. When the surfactant contained hydrophilic trimethylammonium, pyridinium, or 1-methylimidazolium headgroup, highly reversible temperature-responsive nanoparticle-supramolecular micelle transformation could be attained at appropriately chosen component mixing ratios and NaCl concentrations. In these cases, the substantial negative molar heat capacity change (ΔCp) rendered nanoparticle formation strongly endothermic at low temperature, whereas the assembly to supramolecular micelle was always accompanied by enthalpy gain. The ΔCp values became less negative when the charge density and the hydrophilic character of the surfactant headgroup diminished. The association of the more hydrophobic 6-methoxyquinolinium and quinolinium surfactants with SCX6 did not lead to supramolecular micelle formation because the self-assembly into nanoparticles was highly exothermic.
Collapse
Affiliation(s)
- Véronique Wintgens
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F 94320 Thiais, France
| | - József G Harangozó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC, Sorbonne Universités-UPMC Université Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement , UR 206 4 Place Jussieu, F-75005 Paris, France
| | - Catherine Amiel
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F 94320 Thiais, France
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| |
Collapse
|
17
|
Ashwin BCMA, Saravanan C, Senthilkumaran M, Sumathi R, Suresh P, Muthu Mareeswaran P. Spectral and electrochemical investigation of p-sulfonatocalix[4]arene-stabilized vitamin E aggregation. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1351612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | - Ragupathi Sumathi
- Department of Industrial Chemistry, Alagappa University, Karaikudi, India
| | - Palanisamy Suresh
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
18
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Voloshina AD, Zobov VV, Antipin IS, Konovalov AI. Unusual nanosized associates of carboxy-calix[4]resorcinarene and cetylpyridinium chloride: the macrocycle as a glue for surfactant micelles. SOFT MATTER 2017; 13:2004-2013. [PMID: 28197613 DOI: 10.1039/c7sm00004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - V V Syakaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - Ya V Shalaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A M Ermakova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - I R Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan National Research Technical University, K. Marx str. 10, 420111 Kazan, Russian Federation
| | - M K Kadirov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - A D Voloshina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - V V Zobov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - I S Antipin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A I Konovalov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| |
Collapse
|
19
|
Gu D, O'Connor AJ, G H Qiao G, Ladewig K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin Drug Deliv 2016; 14:879-895. [PMID: 27705026 DOI: 10.1080/17425247.2017.1245290] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Smart hydrogel systems present opportunities to not only provide hydrophobic molecule encapsulation capability but to also respond to specific delivery routes. Areas covered: An overview of the design principles, preparation methods and applications of hydrogel systems for delivery of hydrophobic drugs is given. It begins with a summary of the advantages of hydrogels as delivery vehicles over other approaches, particularly macromolecular nanocarriers, before proceeding to address the design and preparation strategies and chemistry involved, with a particular focus on the introduction of hydrophobic domains into (naturally) hydrophilic hydrogels. Finally, the applications in different delivery routes are discussed. Expert opinion: Modifications to conventional hydrogels can endow them with the capability to carry hydrophobic drugs but other functions as well, such as the improved mechanical stability, which is important for long-term in vivo residence and/or self-healing properties useful for injectable delivery pathways. These modifications harness hydrophobic-hydrophobic forces, physical interactions and inclusion complexes. The lack of in-depth understanding of these interactions, currently limits more delicate and application-oriented designs. Increased efforts are needed in (i) understanding the interplay of gel formation and simultaneous drug loading; (ii) improving hydrogel systems with respect to their biosafety; and (iii) control over release mechanism and profile.
Collapse
Affiliation(s)
- Dunyin Gu
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Andrea J O'Connor
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Greg G H Qiao
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Katharina Ladewig
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| |
Collapse
|
20
|
Harangozó JG, Wintgens V, Miskolczy Z, Guigner JM, Amiel C, Biczók L. Effect of Macrocycle Size on the Self-Assembly of Methylimidazolium Surfactant with Sulfonatocalix[n]arenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10651-10658. [PMID: 27660853 DOI: 10.1021/acs.langmuir.6b02823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of macrocycle size on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[n]arene and 1-methyl-3-tetradecylimidazolium (C14mim+) was studied in aqueous solutions at pH 7. When the cavitand contained four sulfonatophenol units (SCX4), formation of spherical nanoparticles (NPs) was observed. By contrast, both supramolecular micelle (SM) and NP formation could be attained in the presence of NaCl when the larger, more flexible 4-sulfonatocalix[8]arene (SCX8) served as the host compound. The SCX8-promoted self-assembly into the SM was enthalpically more favorable than the NP production, but the molar heat capacity changes in the two processes barely differed. An addition of 50 mM NaCl significantly increased the enthalpy of C14mim+-SCX8 NP formation, thereby making the self-organization into the SM more favorable. The transformation of SM into NP at high temperatures was due to the substantial entropic contribution to the driving force behind the NP formation. The critical micelle concentration (cmc) and the local polarity in the headgroup domain were considerably lower for the SM compared with those of the conventional C14mim+Br- micelle.
Collapse
Affiliation(s)
- József G Harangozó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| | - Véronique Wintgens
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F 94320 Thiais, France
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités-UPMC Université Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement UR 206 , 4 Place Jussieu, F-75005 Paris, France
| | - Catherine Amiel
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F 94320 Thiais, France
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| |
Collapse
|
21
|
Gharat PM, Joseph S, Sundararajan M, Dutta Choudhury S, Pal H. Contrasting tunability of quinizarin fluorescence with p-sulfonatocalix[4,6]arene hosts. Org Biomol Chem 2016; 14:11480-11487. [DOI: 10.1039/c6ob02186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reveals the contrasting modulations in the photophysics of quinizarin on interaction with p-sulfonatocalix[n]arenes.
Collapse
Affiliation(s)
- Poojan Milan Gharat
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Sindhu Joseph
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | | | - Haridas Pal
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
22
|
Liu YC, Wang YY, Tian HW, Liu Y, Guo DS. Fluorescent nanoassemblies between tetraphenylethenes and sulfonatocalixarenes: a systematic study of calixarene-induced aggregation. Org Chem Front 2016. [DOI: 10.1039/c5qo00326a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrated a systematic study of calixarene-induced aggregation (CIA) that how and to what extent the structures of hosts and guests affect the assembly behavior by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Yan-Cen Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Yu-Ying Wang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Han-Wen Tian
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Dong-Sheng Guo
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| |
Collapse
|
23
|
Hou XF, Chen Y, Liu Y. Enzyme-responsive protein/polysaccharide supramolecular nanoparticles. SOFT MATTER 2015; 11:2488-2493. [PMID: 25679755 DOI: 10.1039/c4sm02896a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biocompatible and enzyme-responsive supramolecular assemblies have attracted more and more interest in biomaterial fields, and find many feasible applications especially in the controlled drug release at specific sites where the target enzyme is located. In this work, novel supramolecular nanoparticles were successfully constructed from two biocompatible materials, i.e. a cyclic polysaccharide named sulfato-β-cyclodextrin (SCD) and a protein named protamine, through non-covalent association, and fully characterized by means of atomic force microscopy (AFM) and high-resolution transmission electron microscopy (TEM). Significantly, the disassembly of the resulting nanoparticles can respond especially to trypsin over other enzymes. Owing to their trypsin-triggered disassembly behaviors, these nanoparticles can efficiently release the encapsulated model substrate in a controlled manner. That is, the model substrate can be encapsulated inside the nanoparticles with a high stability and released when treated with trypsin.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China.
| | | | | |
Collapse
|
24
|
Hu P, Chen Y, Liu Y. Hyaluronan/Ru( ii)-cyclodextrin supramolecular assemblies for colorimetric sensor of hyaluronidase activity. RSC Adv 2015. [DOI: 10.1039/c5ra19122j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hyaluronidase-induced colorimetric change was found in a hyaluronan/Ru(ii)-cyclodextrin supramolecular assembly under a laser (532 nm) irradiation.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
25
|
Gu D, Ladewig K, Klimak M, Haylock D, McLean KM, O'Connor AJ, Qiao GG. Amphiphilic core cross-linked star polymers as water-soluble, biocompatible and biodegradable unimolecular carriers for hydrophobic drugs. Polym Chem 2015. [DOI: 10.1039/c5py00655d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a series of amphiphilic, unimolecular, biocompatible, biodegradable and readily functionalisable PEG-PCL-based CCS polymers formed in a well-controlled manner and their application as a carrier of hydrophobic anthracycline drugs.
Collapse
Affiliation(s)
- D. Gu
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - K. Ladewig
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - M. Klimak
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - D. Haylock
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Materials Science and Engineering
- Clayton
- Australia
| | - K. M. McLean
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Materials Science and Engineering
- Clayton
- Australia
| | - A. J. O'Connor
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - G. G. Qiao
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| |
Collapse
|
26
|
Peng S, Gao J, Liu Y, Guo DS. Facile fabrication of cross-linked vesicle via “surface clicking” of calixarene-based supra-amphiphiles. Chem Commun (Camb) 2015; 51:16557-60. [DOI: 10.1039/c5cc05170c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cross-linked binary vesicle was constructed by calixarene-induced aggregation followed by a “click” reaction, showing improved performance over a dynamic vesicle.
Collapse
Affiliation(s)
- Shu Peng
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Jie Gao
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Dong-Sheng Guo
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| |
Collapse
|