1
|
Alhissi M, Zumbusch A, Fuchs M. Observation of liquid glass in molecular dynamics simulations. J Chem Phys 2024; 160:164502. [PMID: 38656602 DOI: 10.1063/5.0196599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Molecular anisotropy plays an important role in the glass transition of a liquid. Recently, a novel bulk glass state has been discovered by optical microscopy experiments on suspensions of ellipsoidal colloids. "Liquid glass" is a disordered analog of a nematic liquid crystal, in which rotation motion is hindered but particles diffuse freely. Global nematic order is suppressed as clusters of aligned particles intertwine. We perform Brownian dynamics simulations to test the structure and dynamics of a dense system of soft ellipsoidal particles. As seen in the experiments and in accordance with predictions from the mode coupling theory, on the time scale of our simulations, rotation motion is frozen but translation motion persists in liquid glass. Analyses of the dynamic structure functions for translation and rotation corroborates the presence of two separate glass transitions for rotation and translation, respectively. Even though the equilibrium state should be nematic, aligned structures remain small and orientational order rapidly decays with increasing size. Long-wavelength fluctuations are remnants of the isotropic-nematic transition.
Collapse
Affiliation(s)
- Mohammed Alhissi
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| | - Andreas Zumbusch
- Fachbereich Chemie, Universität Konstanz, 78464 Konstanz, Germany
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
2
|
Abritta P, Hoy RS. Structure of saturated random-sequential-adsorption ellipse packings. Phys Rev E 2022; 106:054604. [PMID: 36559385 DOI: 10.1103/physreve.106.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
Motivated by the recent observation of liquid glass in suspensions of ellipsoidal colloids, we examine the structure of (asymptotically) saturated RSA ellipse packings. We determine the packing fractions ϕ_{s}(α) to high precision, finding an empirical analytic formula that predicts ϕ_{s}(α) to within less than 0.1% for all α≤10. Then we explore how these packings' positional-orientational order varies with α. We find a transition from tip/side- to side/side-contact-dominated structure at α=α_{TS}≃2.4. At this aspect ratio, the peak value g_{max} of packings' positional-orientational pair correlation functions is minimal, and systems can be considered maximally locally disordered. For smaller (larger) α, g_{max} increases exponentially with deceasing (increasing) α. Local nematic order and structures comparable to the precursor domains observed in experiments gradually emerge as α increases beyond three. For α≳5, single-layer lamellae become more prominent and long-wavelength density fluctuations increase with α as packings gradually approach the rodlike limit.
Collapse
Affiliation(s)
- Pedro Abritta
- Department of Physics, University of South Florida, Tampa, Florida 33620 USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620 USA
| |
Collapse
|
3
|
Vaibhav V, Horbach J, Chaudhuri P. Finite-size effects in the diffusion dynamics of a glass-forming binary mixture with large size ratio. J Chem Phys 2022; 156:244501. [DOI: 10.1063/5.0090330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extensive molecular dynamics computer simulations of an equimolar, glass-forming AB mixture with a large size ratio are presented. While the large A particles show a glass transition around the critical density of mode-coupling theory ρ c, the small B particles remain mobile with a relatively weak decrease in their self-diffusion coefficient DB with increasing density. Surprisingly, around ρ c, the self-diffusion coefficient of species A, DA, also starts to show a rather weak dependence on density. We show that this is due to finite-size effects that can be understood from the analysis of the collective interdiffusion dynamics.
Collapse
Affiliation(s)
- Vinay Vaibhav
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Teich EG, van Anders G, Glotzer SC. Particle shape tunes fragility in hard polyhedron glass-formers. SOFT MATTER 2021; 17:600-610. [PMID: 33201958 DOI: 10.1039/d0sm01067g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate that fragility, a technologically relevant characteristic of glass formation, depends on particle shape for glass-formers comprised of hard polyhedral particles. We find that hard polyhedron glass-formers become stronger (less fragile) as particle shape becomes increasingly tetrahedral. We correlate fragility with local structure, and show that stronger systems display a stronger preference for a pairwise face-to-face motif that frustrates global periodic ordering and gives rise in most systems studied to bond angle distributions that are peaked around the ideal tetrahedral bond angle. We demonstrate through mean-field-like simulations of explicit particle pairs and surrounding baths of "ghost" particles that the prevalence of this pairwise configuration can be explained via free volume exchange and emergent entropic force arguments. Our study provides a clear and direct link between the local geometry of fluid structure and the properties of glass formation, independent of interaction potential or other non-geometric tuning parameters. We ultimately demonstrate that the engineering of fragility in colloidal systems via slight changes to particle shape is possible.
Collapse
Affiliation(s)
- Erin G Teich
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Greg van Anders
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon C Glotzer
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA and Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Mizani S, Gurin P, Aliabadi R, Salehi H, Varga S. Demixing and tetratic ordering in some binary mixtures of hard superellipses. J Chem Phys 2020; 153:034501. [PMID: 32716200 DOI: 10.1063/5.0009705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We examine the fluid phase behavior of binary mixtures of hard superellipses using the scaled particle theory. The superellipse is a general two-dimensional convex object that can be tuned between the elliptical and rectangular shapes continuously at a given aspect ratio. We find that the shape of the particle affects strongly the stability of isotropic, nematic, and tetratic phases in the mixture even if the side lengths of both species are fixed. While the isotropic-isotropic demixing transition can be ruled out using the scaled particle theory, the first order isotropic-nematic and the nematic-nematic demixing transition can be stabilized with strong fractionation between the components. It is observed that the demixing tendency is strongest in small rectangle-large ellipse mixtures. Interestingly, it is possible to stabilize the tetratic order at lower densities in the mixture of hard squares and rectangles where the long rectangles form a nematic phase, while the squares stay in the tetratic order.
Collapse
Affiliation(s)
- Sakine Mizani
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Roohollah Aliabadi
- Department of Physics, Faculty of Science, Fasa University, 74617-81189 Fasa, Iran
| | - Hamdollah Salehi
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
6
|
|
7
|
Shiraishi K, Mizuno H, Ikeda A. Vibrational properties of two-dimensional dimer packings near the jamming transition. Phys Rev E 2019; 100:012606. [PMID: 31499851 DOI: 10.1103/physreve.100.012606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/07/2022]
Abstract
Jammed particulate systems composed of various shapes of particles undergo the jamming transition as they are compressed or decompressed. To date, sphere packings have been extensively studied in many previous works, where isostaticity at the transition and scaling laws with the pressure of various quantities, including the contact number and the vibrational density of states, have been established. Additionally, much attention has been paid to nonspherical packings, and particularly recent work has made progress in understanding ellipsoidal packings. In this work, we study the dimer packings in two dimensions, which have been much less understood than systems of spheres and ellipsoids. We first study the contact number of dimers near the jamming transition. It turns out that packings of dimers have "rotational rattlers," each of which still has a free rotational motion. After correcting this effect, we show that dimers become isostatic at the jamming, and the excess contact number obeys the same critical law and finite-size scaling law as those of spheres. We next study the vibrational properties of dimers near the transition. We find that the vibrational density of states of dimers exhibits two characteristic plateaus that are separated by a peak. The high-frequency plateau is dominated by the translational degree of freedom, while the low-frequency plateau is dominated by the rotational degree of freedom. We establish the critical scaling laws of the characteristic frequencies of the plateaus and the peak near the transition. In addition, we present detailed characterizations of the real space displacement fields of vibrational modes in the translational and rotational plateaus.
Collapse
Affiliation(s)
- Kumpei Shiraishi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
8
|
Wang L, Mei B, Song J, Lu Y, An L. Structural relaxation and glass transition behavior of binary hard-ellipse mixtures. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9151-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Xu WS, Duan X, Sun ZY, An LJ. Glass formation in a mixture of hard disks and hard ellipses. J Chem Phys 2015; 142:224506. [DOI: 10.1063/1.4922379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Li-Jia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|