1
|
Faisal KS, Clulow AJ, Krasowska M, Gillam T, Miklavcic SJ, Williamson NH, Blencowe A. Interrogating the relationship between the microstructure of amphiphilic poly(ethylene glycol-b-caprolactone) copolymers and their colloidal assemblies using non-interfering techniques. J Colloid Interface Sci 2022; 606:1140-1152. [PMID: 34492457 DOI: 10.1016/j.jcis.2021.08.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Understanding the microstructural parameters of amphiphilic copolymers that control the formation and structure of aggregated colloids (e.g., micelles) is essential for the rational design of hierarchically structured systems for applications in nanomedicine, personal care and food formulations. Although many analytical techniques have been employed to study such systems, in this investigation we adopted an integrated approach using non-interfering techniques - diffusion nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS) and synchrotron small-angle X-ray scattering (SAXS) - to probe the relationship between the microstructure of poly(ethylene glycol-b-caprolactone) (PEG-b-PCL) copolymers [e.g., block molecular weight (MW) and the mass fraction of PCL (fPCL)] and the structure of their aggregates. Systematic trends in the self-assembly behaviour were determined using a large family of well-defined block copolymers with variable PEG and PCL block lengths (number-average molecular weights (Mn) between 2 and 10 and 0.5-15 kDa, respectively) and narrow dispersity (Ð < 1.12). For all of the copolymers, a clear transition in the aggregate structure was observed when the hydrophobic fPCL was increased at a constant PEG block Mn, although the nature of this transition is also dependent on the PEG block Mn. Copolymers with low Mn PEG blocks (2 kDa) were observed to transition from unimers and loosely associated unimers to metastable aggregates and finally, to cylindrical micelles as the fPCL was increased. In comparison, copolymers with PEG block Mn of between 5 and 10 kDa transitioned from heterogenous metastable aggregates to cylindrical micelles and finally, well-defined ellipsoidal micelles (of decreasing aspect ratios) as the fPCL was increased. In all cases, the diffusion NMR spectroscopy, DLS and synchrotron SAXS results provided complementary information and the grounds for a phase diagram relating copolymer microstructure to aggregation behaviour and structure. Importantly, the absence of commonly depicted spherical micelles has implications for applications where properties may be governed by shape, such as, cellular uptake of nanomedicine formulations.
Collapse
Affiliation(s)
- Khandokar Sadique Faisal
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marta Krasowska
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Todd Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia; Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nathan H Williamson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
2
|
Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv 2020; 17:1781-1805. [DOI: 10.1080/17425247.2020.1819979] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Angelo Luis Caron
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
3
|
Nayem J, Zhang Z, Tomlinson A, Zarraga IE, Wagner NJ, Liu Y. Micellar Morphology of Polysorbate 20 and 80 and Their Ester Fractions in Solution via Small-Angle Neutron Scattering. J Pharm Sci 2019; 109:1498-1508. [PMID: 31887262 DOI: 10.1016/j.xphs.2019.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 11/15/2022]
Abstract
Surfactants are commonly used in therapeutic protein formulations in biopharmaceuticals to impart protein stability; however, their solution morphology and the role of the individual components in these structurally heterogeneous commercial grade surfactants at physiologically and pharmaceutically relevant temperatures have not been investigated systematically. The micellar morphologies of Polysorbate 20 and Polysorbate 80 and their primary components monoester fractions, as well as the diester fractions, are evaluated at 4, 22°C, 40°C, and 50°C using small-angle neutron scattering to determine the aggregation number, radius of gyration, core radius, critical micelle concentration, shell thickness, and shell hydration. The sizes and aggregation numbers of the diester fractions of PS20 above 80°C and PS80 above 50°C exhibit significant changes in shape. The analysis of the small-angle neutron scattering data of PS20 confirms that the critical micellar concentration of the monoester fraction is significantly higher at 4°C compared to the diester fraction and their original material, all-laurate PS20. Overall, these experiments identify the dominant components responsible for the temperature-dependent behavior of these surfactants in pharmaceutical protein formulations.
Collapse
Affiliation(s)
- Jannatun Nayem
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Zhenhuan Zhang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Anthony Tomlinson
- Late Stage Pharmaceutical Development, Genentech Inc., South San Francisco, California 94080
| | - Isidro E Zarraga
- Late Stage Pharmaceutical Development, Genentech Inc., South San Francisco, California 94080
| | - Norman J Wagner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716.
| | - Yun Liu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716.
| |
Collapse
|
4
|
Valldeperas M, Dabkowska AP, Pálsson GK, Rogers S, Mahmoudi N, Carnerup A, Barauskas J, Nylander T. Interfacial properties of lipid sponge-like nanoparticles and the role of stabilizer on particle structure and surface interactions. SOFT MATTER 2019; 15:2178-2189. [PMID: 30742188 DOI: 10.1039/c8sm02634c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The advantage of using nonlamellar lipid liquid crystalline phases has been demonstrated in many applications, such as drug delivery, protein encapsulation and crystallisation. We have recently reported that a mixture of mono- and diglycerides is able to form sponge-like nanoparticles (L3-NPs) with large enough aqueous pores to encapsulate macromolecules such as proteins. Here we use small angle neutron scattering (SANS) to reveal morphology, structural and chemical composition of these polysorbate 80 (P80) stabilized sponge phase nanoparticles, not previously known. Our results suggest that L3-NPs have a core-shell sphere structure, with a shell rich in P80. It was also found that even if P80 is mostly located on the surface, it also contributes to the formation of the inner sponge phase structure. An important aspect for the application and colloidal stability of these particles is their interfacial properties. Therefore, the interfacial behaviour of the nanoparticles on hydrophilic silica was revealed by Quartz crystal microbalance with dissipation (QCM-D) and neutron reflectivity (NR). Adsorption experiments reveal the formation of a thin lipid layer, with the dimension corresponding to a lipid bilayer after L3-NPs are in contact with hydrophilic silica. This suggests that the diglycerol monoleate/Capmul GMO-50/P80 particles reorganize themselves on this surface, probably due to interactions between P80 head group and SiO2.
Collapse
Affiliation(s)
- Maria Valldeperas
- Physical Chemistry, Department Chemistry, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Deuterated phytantriol - A versatile compound for probing material distribution in liquid crystalline lipid phases using neutron scattering. J Colloid Interface Sci 2018; 534:399-407. [PMID: 30245337 DOI: 10.1016/j.jcis.2018.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
Phytantriol is an interfacially-active lipid that is chemically robust, non-digestible and forms particles with internal bicontinuous cubic phase structures (cubosomes) when dispersed with non-ionic surfactants at ambient and physiological temperatures. The liquid crystalline internal structure of phytantriol-based cubosomes can be changed to alter the interfacial contact area/topology with the aqueous dispersant to trigger bioactive payload release or to alter the local membrane curvature around bound or embedded proteins. To enable the study of payload distribution, structure and transformation kinetics within phytantriol particles by neutron scattering techniques it is desirable to have access to a deuterated version of this molecule but to date a synthetic route has not been available. The first successful synthesis of phytantriol-d39 is presented here alongside a preliminary physical characterisation of related particle structures when phytantriol-d39 is dispersed using two non-ionic surfactants, Tween® 80 and Pluronic® F127. Synchrotron small angle X-ray scattering (SAXS) was used to confirm that phytantriol-d39-based nanoparticles in D2O form similar liquid crystalline structures to those of their natural isotopic abundance (phytantriol/H2O) counterparts as a function of temperature. Finally, small angle neutron scattering (SANS) with solvent contrast to match out the phytantriol-d39 structuring was used to show that the spatial correlations between the Tween® and Pluronic® non-ionic surfactant molecules are different within dispersed phytantriol-d39 particles with different liquid crystalline structures in D2O. The surfactant molecules in phytantriol-d39/Tween® 80 particles with Im3m cubic structures were found to follow a self-avoiding walk, whereas in phytantriol-d39/Pluronic® F127 particles with Pn3m cubic structures they were found to follow a more rod-like packing arrangement.
Collapse
|
6
|
Younus M, Hawley A, Boyd BJ, Rizwan SB. Bulk and dispersed aqueous behaviour of an endogenous lipid, selachyl alcohol: Effect of Tween 80 and Pluronic F127 on nanostructure. Colloids Surf B Biointerfaces 2018; 169:135-142. [DOI: 10.1016/j.colsurfb.2018.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/24/2022]
|
7
|
Bakthavatchalam YD, Pragasam AK, Biswas I, Veeraraghavan B. Polymyxin susceptibility testing, interpretative breakpoints and resistance mechanisms: An update. J Glob Antimicrob Resist 2018; 12:124-136. [DOI: 10.1016/j.jgar.2017.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
|
8
|
Bakthavatchalam YD, Veeraraghavan B. Challenges, Issues and Warnings from CLSI and EUCAST Working Group on Polymyxin Susceptibility Testing. J Clin Diagn Res 2017; 11:DL03-DL04. [PMID: 28969129 DOI: 10.7860/jcdr/2017/27182.10375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/11/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Yamuna Devi Bakthavatchalam
- Research Associate, Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Professor and Head, Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery. Colloids Surf B Biointerfaces 2017; 153:310-319. [PMID: 28285062 DOI: 10.1016/j.colsurfb.2017.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/11/2017] [Accepted: 02/24/2017] [Indexed: 12/17/2022]
Abstract
Sponge-type nanocarriers (spongosomes) are produced upon dispersion of a liquid crystalline sponge phase formed by self-assembly of an amphiphilic lipid in excess aqueous phase. The inner organization of the spongosomes is built-up by randomly ordered bicontinuous lipid membranes and their surfaces are stabilized by alginate chains providing stealth properties and colloidal stability. The present study elaborates spongosomes for improved encapsulation of Brucea javanica oil (BJO), a traditional Chinese medicine that may strongly inhibit proliferation and metastasis of various cancers. The inner structural organization and the morphology characteristics of BJO-loaded nanocarriers at varying quantities of BJO were determined by cryogenic transmission electron microscopy (Cryo-TEM), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Additionally, the drug loading and drug release profiles for BJO-loaded spongosome systems also were determined. We found that the sponge-type liquid crystalline lipid membrane organization provides encapsulation efficiency rate of BJO as high as 90%. In vitro cytotoxicity and apoptosis study of BJO spongosome nanoparticles with A549 cells demonstrated enhanced anti-tumor efficiency. These results suggest potential clinical applications of the obtained safe spongosome formulations.
Collapse
|
10
|
Poletto F, Lima F, Lundberg D, Nylander T, Loh W. Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: A potential platform for sustained drug release. Colloids Surf B Biointerfaces 2016; 147:210-216. [DOI: 10.1016/j.colsurfb.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/27/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023]
|
11
|
Shelton CK, Jones RL, Dura JA, Epps TH. Tracking Solvent Distribution in Block Polymer Thin Films during Solvent Vapor Annealing with in Situ Neutron Scattering. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cameron K. Shelton
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Materials Science and Engineering Division and ∥NIST Center for
Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ronald L. Jones
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Materials Science and Engineering Division and ∥NIST Center for
Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Joseph A. Dura
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Materials Science and Engineering Division and ∥NIST Center for
Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Materials Science and Engineering Division and ∥NIST Center for
Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
12
|
Valldeperas M, Wiśniewska M, Ram-On M, Kesselman E, Danino D, Nylander T, Barauskas J. Sponge Phases and Nanoparticle Dispersions in Aqueous Mixtures of Mono- and Diglycerides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8650-8659. [PMID: 27482838 DOI: 10.1021/acs.langmuir.6b01356] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lipid liquid crystalline sponge phase (L3) has the advantages that it is a nanoscopically bicontinuous bilayer network able to accommodate large amounts of water and it is easy to manipulate due to its fluidity. This paper reports on the detailed characterization of L3 phases with water channels large enough to encapsulate bioactive macromolecules such as proteins. The aqueous phase behavior of a novel lipid mixture system, consisting of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) was studied. In addition, sponge-like nanoparticles (NPs) stabilized by Polysorbate 80 (P80) were prepared based on the DGMO/GMO-50 system, and their structure was correlated with the phase behavior of the corresponding bulk system. These NPs were characterized by dynamic light scattering (DLS), cryo-transmission electron microscopy (Cryo-TEM) and small angle X-ray scattering (SAXS) to determine their size, shape, and inner structure as a function of the DGMO/GMO-50 ratio. In addition, the effect of P80 as stabilizer was investigated. We found that the NPs have aqueous pores with diameters up to 13 nm, similar to the ones in the bulk phase.
Collapse
Affiliation(s)
- Maria Valldeperas
- Department of Physical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
| | - Małgorzata Wiśniewska
- Biomedical Science, Faculty of Health and Society, Malmö University , P.O. Box 124, SE-20506 Malmö, Sweden
- Department of Chemistry, University of Bergen , P.O. Box 7803, 5020 Bergen, Norway
| | | | | | | | - Tommy Nylander
- Department of Physical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
- NanoLund, Lund University , P.O. Box 118, SE-22100 Lund, Sweden
| | - Justas Barauskas
- Biomedical Science, Faculty of Health and Society, Malmö University , P.O. Box 124, SE-20506 Malmö, Sweden
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden
| |
Collapse
|
13
|
Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, Saulnier P. Lipid-based nanoformulations for peptide delivery. Int J Pharm 2016; 502:80-97. [DOI: 10.1016/j.ijpharm.2016.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
|
14
|
Chang DP, Dabkowska AP, Campbell RA, Wadsäter M, Barauskas J, Tiberg F, Nylander T. Interfacial properties of POPC/GDO liquid crystalline nanoparticles deposited on anionic and cationic silica surfaces. Phys Chem Chem Phys 2016; 18:26630-26642. [DOI: 10.1039/c6cp04506e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversed lipid liquid crystalline nanoparticles (LCNPs) of the cubic micellar (I2) phase have high potential in drug delivery applications due to their ability to encapsulate both hydrophobic and hydrophilic drug molecules.
Collapse
Affiliation(s)
- Debby P. Chang
- Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 Lund
- Sweden
| | | | | | - Maria Wadsäter
- Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 Lund
- Sweden
| | - Justas Barauskas
- Camurus AB
- Ideon Science Park
- SE-22379 Lund
- Sweden
- Biomedical Science
| | | | - Tommy Nylander
- Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 Lund
- Sweden
| |
Collapse
|