1
|
Pawliszak P, Beheshti A, Møller A, Blencowe A, Beattie DA, Krasowska M. Increasing surface hydrophilicity with biopolymers: a combined single bubble collision, QCM-D and AFM study. J Colloid Interface Sci 2024; 667:393-402. [PMID: 38640658 DOI: 10.1016/j.jcis.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
HYPOTHESIS Naturally extracted polysaccharides, such as guar gum, are promising candidates for environmentally friendly flotation reagents. It is hypothesized that the kinetics of collision of sub- to millimeter gas bubbles with a hydrophobic graphite surface, and the stability of thin liquid film formed between the bubble and surface is affected by an adsorbed layer of guar gum. EXPERIMENTS A combination of gravimetric (quartz crystal microbalance with dissipation) and imaging (atomic force microscopy) techniques was used to investigate the adsorption of guar gum on graphite surface, while high-speed camera imaging allowed for direct observation of the bubble collision process with guar gum-modified graphite surfaces with millisecond resolution. FINDINGS Atomic force microscope topography images revealed a guar gum concentration-dependent interconnected network of guar gum molecules adsorbed at graphite surface. These adsorbed molecules at low surface coverage, changed the wettability of the graphite surface, resulting in a film drainage time longer by an order of magnitude, while at higher surface coverage successfully prevented bubble attachment to the graphite surface. Most importantly, the adsorbed layer changed the strength of the bubble's bouncing off the graphite surface. This enhanced bubble bouncing can be correlated with the film drainage time and used to predict a successful bubble-particle attachment.
Collapse
Affiliation(s)
- Piotr Pawliszak
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia; ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia
| | - Amir Beheshti
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia; ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Amalie Møller
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia; ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - David A Beattie
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia; ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia.
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia; ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia.
| |
Collapse
|
2
|
Jung MU, Kim YC, Bournival G, Ata S. Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state-of-the-art and perspectives. Adv Colloid Interface Sci 2023; 322:103047. [PMID: 37976913 DOI: 10.1016/j.cis.2023.103047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The depletion of high-grade and coarse-grain ores has led to an increasing demand for the development of efficient separation technologies for low-grade and fine-grain ores. However, conventional froth flotation techniques are not adequate to efficiently recover fine and ultrafine particles (typically <10-15 μm) due to the low collision probability between these particles and the relatively large bubbles used in the process. The introduction of microbubbles has shown promise in enhancing particle recovery, making it a subject of significant interest. Thus, this review focuses on microbubble generation methods that have the potential to be scaled up for industrial applications, with a specific emphasis on their suitability for froth flotation. The methods are categorized based on their scalability: high-hydrodynamic cavitation, porous media/medium-dissolved air, electrolysis/low-microfluidics, and acoustic methods. The bubble generation mechanisms, characteristics, advantages and limitations of each method and its applications in froth flotation are discussed to provide suggestions for improvement. There is still no appropriate technology that can optimize bubble size distribution, production rate and cost together for industrial froth flotation application. Therefore, novel approaches of combining multiple methods are also explored to achieve the potential synergic effects. By addressing the limitations of current microbubble generation methods and proposing potential enhancements, this review aims to contribute to the development of efficient and cost-effective microbubble generation technologies for fine and ultrafine particles in the froth flotation industry.
Collapse
Affiliation(s)
- Min Uk Jung
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yeo Cheon Kim
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ghislain Bournival
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Seher Ata
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Pawliszak P, Ulaganathan V, Bradshaw-Hajek BH, Miller R, Beattie DA, Krasowska M. Can small air bubbles probe very low frother concentration faster? SOFT MATTER 2021; 17:9916-9925. [PMID: 34672316 DOI: 10.1039/d1sm01318a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The existing literature on the rise velocities of air bubbles in aqueous surfactant solutions adsorbing at the water-air interface focuses mainly on large bubbles (D > 1.2 mm). In addition, due to the way the bubbles in rising bubble experiments are formed, their size is dependent on interfacial tension (the lower the interfacial tension the smaller the bubble). In this paper, smaller air bubbles (D < 505 ± 3 μm) are used to investigate the effect of the bubble size on the detection of two flotation frothers of different adsorption kinetics via bubble rise velocity measurements. We use an alternative method for bubble generation, allowing us to compare the rise velocity of bubbles of the same size in solutions of frothers of varying bulk concentration. The approach taken (ensuring consistent bubble size) ascertains that the buoyancy force component is kept constant when comparing the different solutions. As a consequence, any variations in the bubble rise velocity can be related to changes in the hydrodynamic drag force acting on a rising bubble. The interfacial behavior of frothers, i.e. the adsorption kinetics, interfacial activity and the maximum amount of molecules adsorbed at the interface, are determined from interfacial tension measurements and adsorption isotherms. The differences in the degree of tangential immobilisation caused by two different frothers are discussed in the context of differences in the structure of the dynamic adsorption layer, which is formed during the bubble rise.
Collapse
Affiliation(s)
- Piotr Pawliszak
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Vamseekrishna Ulaganathan
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | | | - Reinhard Miller
- Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - David A Beattie
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia
- ARC Training Centre for Integrated Operations for Complex Resources, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia
- ARC Training Centre for Integrated Operations for Complex Resources, Australia
| |
Collapse
|
4
|
Webber JL, Namivandi-Zangeneh R, Drozdek S, Wilk KA, Boyer C, Wong EHH, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep 2021; 11:1690. [PMID: 33462270 PMCID: PMC7814039 DOI: 10.1038/s41598-020-79702-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
An antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.89 µg cm-2 nisin Z was contained within a 4.5 bilayer film. The antimicrobial properties of these films were also investigated. The peptide containing films were able to kill over 90% and 99% of planktonic and biofilm cells, respectively, against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) strains compared to control films. Additionally, surface topography and wettability studies using atomic force microscopy (AFM) and the captive bubble technique revealed that surface roughness and hydrophobicity was similar for both nisin containing multilayers. This suggests that the antimicrobial efficacy of the peptide is unaffected by its location within the multilayer. Overall, these results demonstrate the potential to embed and protect natural antimicrobials within a multilayer to create functionalised coatings that may be desired by industry, such as in the food, biomaterials, and pharmaceutical industry sectors.
Collapse
Affiliation(s)
- Jessie L Webber
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sławomir Drozdek
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Marta Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
5
|
Ketola A, Xiang W, Hjelt T, Pajari H, Tammelin T, Rojas OJ, Ketoja JA. Bubble Attachment to Cellulose and Silica Surfaces of Varied Surface Energies: Wetting Transition and Implications in Foam Forming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7296-7308. [PMID: 32510965 PMCID: PMC7660937 DOI: 10.1021/acs.langmuir.0c00682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/06/2020] [Indexed: 05/25/2023]
Abstract
To better understand the complex system of wet foams in the presence of cellulosic fibers, we investigate bubble-surface interactions by following the effects of surface hydrophobicity and surface tension on the contact angle of captive bubbles. Bubbles are brought into contact with model silica and cellulose surfaces immersed in solutions of a foaming surfactant (sodium dodecyl sulfate) of different concentrations. It is observed that bubble attachment is controlled by surface wetting, but a significant scatter in the behavior occurs near the transition from partial to complete wetting. For chemically homogeneous silica surfaces, this transition during bubble attachment is described by the balance between the energy changes of the immersed surface and the frictional surface tension of the moving three-phase contact line. The situation is more complex with chemically heterogeneous, hydrophobic trimethylsilyl cellulose (TMSC). TMSC regeneration, which yields hydrophilic cellulose, causes a dramatic drop in the bubble contact angle. Moreover, a high interfacial tension is required to overcome the friction caused by microscopic (hydrophilic) pinning sites of the three-phase contact line during bubble attachment. A simple theoretical framework is introduced to explain our experimental observations.
Collapse
Affiliation(s)
- Annika
E. Ketola
- VTT
Technical Research Centre of Finland Ltd., P. O. Box 1603, FI-02150 Espoo, Finland
| | - Wenchao Xiang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Tuomo Hjelt
- VTT
Technical Research Centre of Finland Ltd., P. O. Box 1603, FI-02150 Espoo, Finland
| | - Heikki Pajari
- VTT
Technical Research Centre of Finland Ltd., P. O. Box 1603, FI-02150 Espoo, Finland
| | - Tekla Tammelin
- VTT
Technical Research Centre of Finland Ltd., P. O. Box 1603, FI-02150 Espoo, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
- Departments
of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, 2036 Main Mall,
and 2424 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jukka A. Ketoja
- VTT
Technical Research Centre of Finland Ltd., P. O. Box 1603, FI-02150 Espoo, Finland
| |
Collapse
|
6
|
Liu J, Chen P, Qin D, Jia S, Jia C, Li L, Bian H, Wei J, Shao Z. Nanocomposites membranes from cellulose nanofibers, SiO 2 and carboxymethyl cellulose with improved properties. Carbohydr Polym 2020; 233:115818. [PMID: 32059879 DOI: 10.1016/j.carbpol.2019.115818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 01/13/2023]
Abstract
The binary nanocomposites blended by carboxymethyl cellulose (CMC) and SiO2 nanoparticles were constructed to prepare the films with superior thermal stability and flame retardant properties. The incorporation of cellulose nanofibers(CNFs) and SiO2 nanoparticles were followed to prepare ternary nanocomposite films exhibiting excellent mechanical properties. The mechanism and chemical reaction of the thermal decomposition for the CMC/SiO2 composite membrane were proposed, which showed that the mass residuals were Na2CO3, SiO2 and Na2SiO3, Na2CO3 when the content of the SiO2 nanoparticles was lowered and higher than 9.6 %, respectively. Compared with the pure CMC, micro combustion calorimeter (MCC) showed that the total heat release (THR) and the peak heat release rate (PHRR) both decreased from 6.4 kJ/g to 5.8 kJ/g, 134 w/g to 27 w/g, respectively. Moreover, mechanical properties of CMC/CNFs/SiO2 membrane showed that the toughness and rigidity of the nanocomposites increased by 56.0 % and 63.0 % on the basis of CMC, respectively.
Collapse
Affiliation(s)
- Jianxin Liu
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Pan Chen
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Dujian Qin
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Jia
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Jia
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Lei Li
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hongli Bian
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jie Wei
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ziqiang Shao
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
7
|
Yang S, Bao S, Liu C, Yuan D, Huang W. An analytical model of the growth of invisible bubbles on solid surfaces in a supersaturated solution. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Recent advances in studies of bubble-solid interactions and wetting film stability. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Botka B, McQuillan AJ, Krasowska M, Beattie DA. Adsorption of Carboxymethyl Cellulose onto Titania Particle Films Studied with in Situ IR Spectroscopic Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10734-10743. [PMID: 31362506 DOI: 10.1021/acs.langmuir.9b01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Adsorption of carboxymethyl cellulose (CMC) in aqueous solution onto a titania nanoparticle film has been studied using in situ attenuated total reflectance infrared spectroscopy (ATR-IR). CMC was adsorbed onto the positively charged titania surface in neutral, partially charged, and fully charged state. The response of the adsorbed polyelectrolyte layer was monitored upon changing the electrolyte pH and ionic strength. The degree of dissociation of the CMC increased upon adsorption onto the titania surface and changed with the surface coverage. Ionic strength change was observed to influence the degree of dissociation of the adsorbed CMC similar as when in solution. No significant peak shifts were observed in the spectrum of the adsorbed CMC during adsorption or in response to changing solution conditions; therefore, inner-sphere complexation between the carboxyl groups and the titania could not be confirmed. The effect of ion identity on the adsorption process was studied using soft and hard cations and mono- and divalent cations. The presence of a divalent counterion was observed to cause changes in the carboxymethyl vibrations, which can be related to formation of intra- or interchain linkages.
Collapse
Affiliation(s)
| | - A James McQuillan
- Department of Chemistry , University of Otago , P.O. Box 56, Dunedin , New Zealand
| | | | | |
Collapse
|
10
|
Liu S, Xie L, Liu G, Zhong H, Wang Y, Zeng H. Hetero-difunctional Reagent with Superior Flotation Performance to Chalcopyrite and the Associated Surface Interaction Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4353-4363. [PMID: 30802069 DOI: 10.1021/acs.langmuir.9b00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface modification by chemical reagents is of profound importance to modulate the surface characteristic and functionality of materials, which has attracted tremendous interest in many research fields and industrial applications, such as froth flotation of minerals. In this work, a new reagent S-[(2-hydroxyamino)-2-oxoethyl]- O-octyl-dithiocarbonate ester (HAOODE) with heterodifunctional ligands was designed and synthesized to improve the flotability of chalcopyrite (CuFeS2). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results showed the co-adsorption of heterodifunctional ligands (i.e., dithiocarbonate and hydroxamate groups) of HAOODE on chalcopyrite via Cu(I)-S and Cu(II)-O covalent bonds. The bubble probe atomic force microscopy (AFM) technique was employed to quantitatively measure the air bubble-chalcopyrite interactions with and without the reagent adsorption. AFM force results revealed that the bubble could be more readily attached to flat chalcopyrite after HAOODE treatment under different hydrodynamic conditions because of the enhanced hydrophobic interaction, with the decay length D0 increasing from 0.65 to 1.20 nm. The calculated bubble-particle interaction forces also demonstrated the critical influence of HAOODE treatment, hydrodynamic conditions, and bubble size on the interaction behavior and thin-film drainage process in flotation. In froth flotation, HAOODE exhibited superior recovery for chalcopyrite over pH 3-12 and excellent selectivity for chalcopyrite against pyrite (FeS2) above pH 10.5, as compared to the conventional reagent sodium isobutyl xanthate. This work provides a useful approach to develop effective reagents that could selectively adsorb on desired mineral surfaces through heterodifunctional ligands and to quantitatively evaluate the role of reagent adsorption in the interactions between air bubbles and mineral surfaces at the nano- and microscale. Our results show implications on developing molecular design principles of novel reagents for surface modifications of materials in a wide range of engineering and biological applications.
Collapse
Affiliation(s)
- Sheng Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Guangyi Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry , McGill University , Sainte Anne de Bellevue , Québec H9X 3V9 , Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
11
|
Atluri V, Jin J, Shrimali K, Dang L, Wang X, Miller JD. The hydrophobic surface state of talc as influenced by aluminum substitution in the tetrahedral layer. J Colloid Interface Sci 2019; 536:737-748. [PMID: 30415178 DOI: 10.1016/j.jcis.2018.10.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Talc is both an important industrial mineral product recovered by flotation, and also in other cases, a gangue mineral of concern in the flotation of certain sulfide ores, such as the PGM ores from South Africa and from the United States. The talc face surface is naturally hydrophobic with a water sessile drop contact angle of nearly 80°, which accounts for its flotation recovery in one case, and its contamination of sulfide mineral concentrates in other instances. Due to the presence of impurities in the talc structure the surface properties change. One such effect is the presence of aluminum, which can replace silicon in the silica tetrahedral layer of the talc structure. This results in a charge imbalance on the face surface because Si+4 is replaced by Al+3. Sessile drop contact angle and bubble attachment time measurements were made, and these results were compared to the results from molecular dynamics simulations (MDS). The extent of aluminum substitution in the silica tetrahedral layer was considered, and the sessile drop contact angle was found to decrease with increased aluminum content, decreasing from about 80° for no substitution (talc) to 0° for extensive substitution (phlogopite). The water film was found to be stable at the surface of highly aluminum substituted crystals due to the interaction between water molecules and the increased polarity of the surface state. This stable water film restricts the air bubble from attaching to such face surfaces. However, in the absence of aluminum substitution, no interactions between the water molecules and the face surface were observed and the air bubble readily attached to the face surface. This study provides additional understanding of how aluminum substitution in the tetrahedral layer affects the fundamental surface properties of talc, paving the way for the design of improved reagents for talc flotation as an industrial mineral product, and for talc depression in the recovery of sulfide mineral concentrates.
Collapse
Affiliation(s)
- Venkata Atluri
- Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135 S 1460 E, Room 412, Salt Lake City, UT 84112-0114, USA
| | - Jiaqi Jin
- Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135 S 1460 E, Room 412, Salt Lake City, UT 84112-0114, USA
| | - Kaustubh Shrimali
- Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135 S 1460 E, Room 412, Salt Lake City, UT 84112-0114, USA
| | - Liem Dang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA.
| | - Xuming Wang
- Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135 S 1460 E, Room 412, Salt Lake City, UT 84112-0114, USA.
| | - Jan D Miller
- Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135 S 1460 E, Room 412, Salt Lake City, UT 84112-0114, USA.
| |
Collapse
|
12
|
|
13
|
Xing Y, Gui X, Pan L, Pinchasik BE, Cao Y, Liu J, Kappl M, Butt HJ. Recent experimental advances for understanding bubble-particle attachment in flotation. Adv Colloid Interface Sci 2017; 246:105-132. [PMID: 28619381 DOI: 10.1016/j.cis.2017.05.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/27/2022]
Abstract
Bubble-particle interaction is of great theoretical and practical importance in flotation. Significant progress has been achieved over the past years and the process of bubble-particle collision is reasonably well understood. This, however, is not the case for bubble-particle attachment leading to three-phase contact line formation due to the difficulty in both theoretical analysis and experimental verification. For attachment, surface forces play a major role. They control the thinning and rupture of the liquid film between the bubble and the particle. The coupling between force, bubble deformation and film drainage is critical to understand the underlying mechanism responsible for bubble-particle attachment. In this review we first discuss the advances in macroscopic experimental methods for characterizing bubble-particle attachment such as induction timer and high speed visualization. Then we focus on advances in measuring the force and drainage of thin liquid films between an air bubble and a solid surface at a nanometer scale. Advances, limits, challenges, and future research opportunities are discussed. By combining atomic force microscopy and reflection interference contrast microscopy, the force, bubble deformation, and liquid film drainage can be measured simultaneously. The simultaneous measurement of the interaction force and the spatiotemporal evolution of the confined liquid film hold great promise to shed new light on flotation.
Collapse
Affiliation(s)
- Yaowen Xing
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiahui Gui
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Lei Pan
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton 49931, USA
| | - Bat-El Pinchasik
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yijun Cao
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Jiongtian Liu
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Kinetics of the bubble attachment and quartz flotation in mixed solutions of cationic and non-ionic surface-active substances. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|