Chervanyov AI. Temperature dependence of the conductivity of filled diblock copolymers.
Phys Rev E 2020;
102:052504. [PMID:
33327154 DOI:
10.1103/physreve.102.052504]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
We demonstrate that an insulating diblock copolymer system (DBC) filled with conductive fillers can be used as an electrically responsive soft composite that changes its conductivity in response to temperature-induced changes in its morphology. By combining the phase field model describing the morphology of the DBC system with the Monte Carlo simulations and the resistor network model describing electrical properties of the filler network, we calculate the conductivity of this composite. The calculated conductivity is found to essentially depend, in particular, on the temperature of the composite. Changing the temperature is shown to result in morphological changes in the DBC system causing the structural changes in the filler network. In particular, the order-disorder transition in the host DBC system is found to be accompanied by the conductor-insulator transition in the filler network. The effect of the difference between the affinities of the fillers for dissimilar copolymer blocks on the composite conductivity, as well as the effect of the repulsive and attractive interaction between fillers, is considered in detail.
Collapse