1
|
Oaki Y, Fujii S. Cascading responses of stimuli-responsive materials. Chem Commun (Camb) 2024; 60:9163-9176. [PMID: 39051149 DOI: 10.1039/d4cc02827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Responsiveness to stimuli is important in daily life: natural biological activity is governed by continuous stimulus responsiveness. The design of stimuli-responsive materials is required for the development of advanced sensing systems. Although fully controlled stimuli-responsive systems have been constructed in nature, artificial systems remain a challenge. Conventional stimuli-responsive materials show direct responsiveness to an applied stimulus (Stimulus 1), with structural changes in their molecules and organized states. This feature article focuses on cascading responses as a new concept for integrating stimuli-responsive material design. In cascading responses, an original stimulus (Stimulus 1) is converted into other stimuli (Stimulus 2, 3, …, N) through successive conversions. Stimulus N provides the eventual output response. Integration of multiple stimuli-responsive materials is required to achieve cascading responses. Although cascade, domino, and tandem chemical reactions have been reported at the molecular level, they are not used for materials with higher organized structures. In this article, we introduce functional carriers and sensors based on cascading responses as model cases. The concept of cascading responses enables the achievement of transscale responsivity and sensitivity, which are not directly induced by the original stimulus or its responsive material, for the development of advanced dynamic functional materials.
Collapse
Affiliation(s)
- Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan.
| |
Collapse
|
2
|
Onodera E, Usuda S, Hara H, Harun-Or-Rashid M, Fujii S, Nakamura Y, Yusa SI. pH- and Photoresponsive Liquid Plasticine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11757-11765. [PMID: 38769613 DOI: 10.1021/acs.langmuir.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Liquid marbles (LMs) can be prepared by adsorption of hydrophobic particles at the air-liquid interface of a water droplet. LMs have been studied for their application as microreaction vessels. However, their opaqueness poses challenges for internal observation. Liquid plasticines (LPs), akin to LMs, can be prepared by the adsorption of hydrophobic particles with a diameter of 50 nm or less, at the air-liquid interface of a water droplet. Unlike LMs, LPs are transparent, allowing for internal observation, thus presenting promising applications as reactors and culture vessels on a microliter scale. In this study, the surface of silica particles, approximately 20 nm in diameter, was rendered hydrophobic to prepare hydrophobic silica particles (SD0). A small amount of poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) was then grafted onto the surface of SD0, yielding SD1. SD0 particles exhibited consistent hydrophobicity irrespective of the environmental pH atmosphere. Under acidic conditions, SD1 became hydrophilic due to the protonation of pendant tertiary amines in the grafted PDPA chains. However, SD1 alone was unsuitable for LP preparation due to its high surface wettability regardless of atmospheric pH, attributable to the presence of PDPA-grafted chains. Therefore, to prepare pH-responsive LP, SD1 and SD0 were mixed (SD1/SD0 = 3/7). Upon exposure to HCl gas, these LPs ruptured, with the leaked water from the LPs being absorbed by adjacent paper. Moreover, clear LPs, prepared using an aqueous solution containing a water-soluble photoacid generator (PAG), disintegrated upon exposure to light as PAG generated acid, leading to LP breakdown. In summary, pH-responsive LPs, capable of disintegration under acidic conditions and upon light irradiation, were successfully prepared in this study.
Collapse
Affiliation(s)
- Ema Onodera
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Sari Usuda
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Hodaka Hara
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Md Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
3
|
He J, Huang C, Liu C, Wu P, Jiang W. Preparation of Oriented Superhydrophobic Surface to Reduce Agglomeration in Preparing Melt Marbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38319711 DOI: 10.1021/acs.langmuir.3c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Numerous innovative granulation techniques utilizing the concept of liquid marbles have been proposed before. However, these processes frequently encounter issues such as collisions, aggregation, and fragmentation of liquid/melt marble during the granulation process. In this study, the oriented superhydrophobic surface (OSS) was successfully prepared by utilizing copper wire to solve the above problem, facilitating efficient batch production and guided transportation of uniform marbles. The parameters and mechanisms of this process were thoroughly studied. The optimized structure is that the copper wire spacing (d) and height (h) are set as 1.0 and 0.1 mm, respectively. This resulted in a surface contact angle (CA) of 156° and anisotropic sliding (ΔSA) of 16.3 ± 1.34°. Using the prepared substrate, high-quality urea products were successfully obtained through the controlled transport of urea melt marbles. The mechanism of guided and directional drag reduction, based on the solid/solid contact on the surface, is proposed. These findings in this study have significant implications for improving granulation processes.
Collapse
Affiliation(s)
- Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Chunni Huang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
4
|
He J, Liu S, Zhao Y, Wu P, Liu C, Jiang W. Preparation of Phase Change Melt Marbles with High Thermal Stability by Spontaneous Shrinkage and Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12644-12656. [PMID: 36194874 DOI: 10.1021/acs.langmuir.2c02113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid marbles (LMs) are widely used in the fields of microfluids, gas sensitivity equipment, and microreactors. However, the thermal stability of the encapsulated liquid poses difficulty to the high-temperature stability of LMs. In this study, polar phase-change materials (PCMs) with high melting points were used as the encapsulated liquid of LMs. According to the required temperature, suitable PCMs were selected as the core and encapsulated by hydrophobic SiO2 particles to form melt marbles (MMs). The types of PCMs used to prepare the MMs include erythritol, elemental sulfur, urea, and molten salts. Based on the premixed melting method, a series of MMs with high melting points and thermal stability were successfully developed. The highest acceptable temperature of the MMs exceeded 323 °C, and the evaporation rate of erythritol MMs was less than 1% at 140 °C in 8 h. Thus, the MMs maintained their excellent stability through multiple phase transitions. In the molten state, the MMs exhibited the properties of bounce ability, cuttability, and deformation resistance. The performance of the PCMs in energy storage and release during phase transition demonstrates their potential applications in the field of heat storage.
Collapse
Affiliation(s)
- Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Shuyuan Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Yunqing Zhao
- College of Electrical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| |
Collapse
|
5
|
Zhang Y, Cui H, Binks BP, Shum HC. Liquid Marbles under Electric Fields: New Capabilities for Non-wetting Droplet Manipulation and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9721-9740. [PMID: 35918302 DOI: 10.1021/acs.langmuir.2c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of liquid marbles (LMs) composed of stabilizing liquid droplets with solid particles in a gaseous environment has matured into an established area in surface and colloid science. The minimized "solid-liquid-air" triphase interface enables LMs to drastically reduce adhesion to a solid substrate, making them unique non-wetting droplets transportable with limited energy. The small volume, enclosed environment, and simple preparation render them suitable microreactors in industrial applications and processes such as cell culture, material synthesis, and blood coagulation. Extensive application contexts request precise and highly efficient manipulations of these non-wetting droplets. Many external fields, including magnetic, acoustic, photothermal, and pH, have emerged to prepare, deform, actuate, coalesce, mix, and disrupt these non-wetting droplets. Electric fields are rising among these external stimuli as an efficient source for manipulating the LMs with high controllability and a significant ability to contribute further to proposed applications. This Feature Article attempts to outline the recent developments related to LMs with the aid of electric fields. The effects of electric fields on the preparation and manipulation of LMs with intricate interfacial processes are discussed in detail. We highlight a wealth of novel electric field-involved LM-based applications and beyond while also envisaging the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| | - Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| |
Collapse
|
6
|
Zhang J, Gu Y, Jiang J, Zheng R. pH-Responsive Liquid Marbles Based on Dihydroxystearic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5702-5707. [PMID: 35438998 DOI: 10.1021/acs.langmuir.2c00303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report pH-responsive liquid marbles stabilized by 9,10-dihydroxystearic acid (DHSA). The particle morphology and the pH-responsive behavior of the liquid marbles were investigated. The rolling time during the preparation of liquid marbles has a great influence on the thickness of powder adsorption and the stability of the marbles. Compared with the liquid marbles stabilized by other fatty acids (e.g., stearic acid and docosoic acid), the liquid marbles prepared by DHSA have a much higher mechanical robustness. The increase in the number of hydroxyl groups on the carbon chain of fatty acids improves the mechanical robustness of the liquid marbles. Such liquid marbles immediately disintegrated on the surface of an alkaline solution or after exposure to NH3 gas, which extends their applications in the NH3 sensor and chemical reactions.
Collapse
Affiliation(s)
- Jianxin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Yao Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Raojun Zheng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
7
|
Gallo A, Tavares F, Das R, Mishra H. How particle-particle and liquid-particle interactions govern the fate of evaporating liquid marbles. SOFT MATTER 2021; 17:7628-7644. [PMID: 34318861 DOI: 10.1039/d1sm00750e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Liquid marbles refer to droplets that are covered with a layer of non-wetting particles. They are observed in nature and have practical significance. These squishy objects bounce, coalesce, break, inflate, and deflate while the liquid does not touch the substrate underneath. Despite the considerable cross-disciplinary interest and value of the research on liquid marbles, a unified framework for describing the mechanics of deflating liquid marbles-as the liquid evaporates-is unavailable. For instance, analytical approaches for modeling the evaporation of liquid marbles exploit empirical parameters that are not based on liquid-particle and particle-particle interactions. Here, we have combined complementary experiments and theory to fill this gap. To unentangle the contributions of particle size, roughness, friction, and chemical make-up, we investigated the evaporation of liquid marbles formed with particles of sizes varying over 7 nm-300 μm and chemical compositions ranging from hydrophilic to superhydrophobic. We demonstrate that the potential final states of evaporating liquid marbles are characterized by one of the following: (I) constant surface area, (II) particle ejection, or (III) multilayering. Based on these insights, we developed an evaporation model for liquid marbles that takes into account their time-dependent shape evolution. The model fits are in excellent agreement with our experimental results. Furthermore, this model and the general framework can provide mechanistic insights into extant literature on the evaporation of liquid marbles. Altogether, these findings advance our fundamental understanding of liquid marbles and should contribute to the rational development of technologies.
Collapse
Affiliation(s)
- A Gallo
- Interfacial Lab (iLab), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | | | | | | |
Collapse
|
8
|
Lin ES, Song Z, Ong JW, Abid HA, Chung Kim Chung D, Huynh SH, Liew OW, Ng TW. Liquid marble clearance and restoration via gas bubble insertion and bursting. SOFT MATTER 2021; 17:2512-2517. [PMID: 33506846 DOI: 10.1039/d0sm02117b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is hitherto a lack of a simple way to disrupt the coating of particles from liquid marbles in order to introduce additional reagents. Here, a 40 μL liquid marble, created on a superhydrophobic substrate with a 2 mm hole, forms an overhead and overhanging liquid component from which a single gas bubble of up to 28 μL volume could be introduced via the latter. This caused a localized clearing of the particle shell at the apical region of the overhead component because the particles could not be energetically sustained at the thin film region of the bubble. The subsequent dispensation of 5 μL of an external liquid directly onto the shell-free apex of the liquid marble allowed the coalescence of the two liquid bodies, bubble rupture, and restoration of complete particle shell encapsulation. The addition of the liquid via the overhanging component was alternatively found incapable of increasing the size of the overhead drop component. The localized bubble-actuated transient shell clearance at the apex of the liquid marble to allow the addition of reagents shown here portends new vistas for liquid marbles to be used in biomedical applications.
Collapse
Affiliation(s)
- Eric Shen Lin
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Zhixiong Song
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Jian Wern Ong
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Hassan Ali Abid
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Dwayne Chung Kim Chung
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - So Hung Huynh
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia. and Radiometer Pacific Pty Ltd, 1/96 Ricketts Road, Mount Waverley, VIC3149, Australia
| | - Oi Wah Liew
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Centre for Translational Medicine, 14 Medical Drive, 117599, Singapore
| | - Tuck Wah Ng
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| |
Collapse
|
9
|
Chen Y, Qiu F, Tang C, Xing Z, Zhao X. Controllable self-patterning behaviours of flexible self-assembling peptide nanofibers. NANOSCALE ADVANCES 2021; 3:1603-1611. [PMID: 36132572 PMCID: PMC9419878 DOI: 10.1039/d0na00892c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023]
Abstract
Extremely long flexible self-assembling peptide nanofibers can be manipulated to form various two-dimensional patterns.
Collapse
Affiliation(s)
- Yongzhu Chen
- Laboratory of Anaesthesia and Critical Care Medicine
- Translational Neuroscience Centre
- National Clinical Research Center for Geriatrics
- West China Hospital
- Sichuan University
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine
- Translational Neuroscience Centre
- National Clinical Research Center for Geriatrics
- West China Hospital
- Sichuan University
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Zhihua Xing
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| |
Collapse
|
10
|
Fujii S. Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polym J 2019. [DOI: 10.1038/s41428-019-0233-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Zhu Y, Yi C, Hu Q, Wei W, Liu X. Effect of chain microstructure on self-assembly and emulsification of amphiphilic poly(acrylic acid)-polystyrene copolymers. Phys Chem Chem Phys 2018; 18:26236-26244. [PMID: 27711526 DOI: 10.1039/c6cp04978h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, a series of random copolymer poly(acrylic acid-co-styrene) (P(AA-co-St)) and block copolymer poly(acrylic acid)-b-polystyrene (PAA-b-PSt) with similar chemical composition but different chain microstructure were synthesized. The self-assembly behavior of random and block copolymers in selective solvent was investigated, and the structural evaluation of random and block copolymers micelles was carried out by transmission electron microscopy (TEM), dynamic light scattering (DLS) measurement, and X-ray photoelectron spectroscopy (XPS). Moreover, together with experimental characterization, the theoretical method dissipative particle dynamics (DPD) approach was applied to investigate the morphological structures of micelles composed from random and block copolymers. Results revealed that the structure of polymeric micelles is significantly affected by the distribution sequence of hydrophilic and hydrophobic monomers in copolymer chains. Furthermore, polymeric micelles based on P(AA-co-St) and PAA-b-PSt with about 50 mol% hydrophilic composition were chosen as the model to investigate the influence of micellar structure on emulsifying performance. For PAA-b-PSt micelles (B48), stable water-in-oil (w/o) emulsions could only obtained when the pH values were lower than 5. As a comparison, the P(AA-co-St) micelles (R49) had an excellent emulsification performance at 4-10 pH, and the pH-induced phase inversion derived from obtained emulsions observed at pH higher than 6. Preliminary results confirm that the micellar structure controlled by chain microstructure plays an important role in the interface behavior of polymer micelles. Compared with PAA-b-PSt micelles, P(AA-co-St) micelles have better interfacial performance and are more tailorable and controllable; thus they can be used as a model for further study of polymeric particulate emulsifiers. This paper provides new insight into the principles governing extremely high emulsifying efficiency of polymeric particulate emulsifiers and pH-responsive properties of the formed emulsions.
Collapse
Affiliation(s)
- Ye Zhu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Chenglin Yi
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qiong Hu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Wei
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoya Liu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Oliveira NM, Reis RL, Mano JF. The Potential of Liquid Marbles for Biomedical Applications: A Critical Review. Adv Healthc Mater 2017; 6. [PMID: 28795516 DOI: 10.1002/adhm.201700192] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/20/2017] [Indexed: 12/31/2022]
Abstract
Liquid marbles (LM) are freestanding droplets covered by micro/nanoparticles with hydrophobic/hydrophilic properties, which can be manipulated as a soft solid. The phenomenon that generates these soft structures is regarded as a different method to generate a superhydrophobic behavior in the liquid/solid interface without modifying the surface. Several applications for the LM have been reported in very different fields, however the developments for biomedical applications are very recent. At first, the LM properties are reviewed, namely shell structure, LM shape, evaporation, floatability and robustness. The different strategies for LM manipulation are also described, which make use of magnetic, electrostatic and gravitational forces, ultraviolet and infrared radiation, and approaches that induce LM self-propulsion. Then, very distinctive applications for LM in the biomedical field are presented, namely for diagnostic assays, cell culture, drug screening and cryopreservation of mammalian cells. Finally, a critical outlook about the unexplored potential of LM for biomedical applications is presented, suggesting possible advances on this emergent scientific area.
Collapse
Affiliation(s)
- Nuno M. Oliveira
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
13
|
Rong X, Yang H, Zhao N. Rationally Turning the Interface Activity of Mesoporous Silicas for Preparing Pickering Foam and "Dry Water". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9025-9033. [PMID: 28803476 DOI: 10.1021/acs.langmuir.7b01702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a novel protocol to prepare smart, gas/water interface-active, mesoporous silica particles. This protocol involves modification of highly mesoporous silicas with a mixture of hydrophobic octyl organosilane and hydrophilic triamine organosilane. Their structure and compositions are characterized by transmission electron microscopy (TEM), N2 sorption, solid state NMR, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TGA), and elemental analysis. It is demonstrated that our protocol enables the interface activity of mesoporous silica particles to be facilely tuned, so that the stable gas-water interfaces ranging from air bubbles dispersed in water (Pickering foam) and water droplets dispersed in air ("dry water") can be achieved, depending on the molar ratio of these two organosilanes. The "dry water" is not otherwise attainable for the analogous nonporous silica particles, indicting the uniqueness of the chosen mesoporous structures. Moreover, these particle-stabilized Pickering foams and "dry waters" can be disassembled in response to pH. Interestingly, it was found that aqueous potassium carbonate droplets stabilized by these interface-active mesoporous silica particles ("dry K2CO3-containing water") could automatically capture CO2 from a simulated flue gas with enhanced adsorption rate and adsorption capacity when compared to the aqueous potassium carbonate bulk solution. This study not only supplies a novel type of efficient, smart, gas/water interface-active mesoporous silica particles but also demonstrates an innovative application of mesoporous materials in gas adsorption.
Collapse
Affiliation(s)
- Xia Rong
- School of Chemistry and Chemical Engineering, Shanxi University , Wucheng Road 92, Taiyuan 030006, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University , Wucheng Road 92, Taiyuan 030006, China
| | - Ning Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences , Taoyuan South Road 27, Taiyuan 030001, China
| |
Collapse
|
14
|
Du G, Peng J, Zhang Y, Zhang H, Lü J, Fang Y. One-Step Synthesis of Hydrophobic Multicompartment Organosilica Microspheres with Highly Interconnected Macro-mesopores for the Stabilization of Liquid Marbles with Excellent Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5223-5235. [PMID: 28489386 DOI: 10.1021/acs.langmuir.7b00346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of an emulsion template with polymerization is a very convenient approach to the one-step realization of both simple control porous structures via a change in emulsion formulation and easy functionalization via the concomitant choice of an on-demand monomer. A major challenge of this approach is the inherent instability of the oil/water interface in emulsions, especially the occurrence of chemical reactions in oil or aqueous phases. This study reports the pioneering preparation of highly interconnected macro-mesopores and multicompartment (HIMC) vinyl organosilica microspheres with hydrophobicity by the one-step formation of W/O/W emulsions acting as a template. The emulsion system consists of acidified deionized water, a stabilizer, and vinyltriethoxysilane (VTEO) in which VTEO can be used to produce an organosilica skeleton of the resultant microsphere by a sol-gel process. The study demonstrated that the marvelous stability of W/O/W emulsions aids the formation of multicompartment organosilica microspheres with highly interconnected macro-mesopores by emulsion droplets rather than single-compartment (SC) microspheres. Meanwhile, the internal porous structure and surface morphology of as-prepared organosilica microspheres could be largely tuned by a simple variation of the pH value, the volume fraction of the water phase, and the stabilizer concentration in the initiating multiemulsions. Benefiting from such a well-orchestrated structure and the existence of numerous vinyl groups on the surface, HIMC organosilica microspheres exhibit very high hydrophobicity (with a water contact angle larger than 160°), which allows them to stabilize liquid marbles with excellent stability and high mechanical robustness. Because of its strong catalyst, Ag nanoparticles within HIMC organosilica microspheres enable Ag/HIMC-vinyl organosilica microsphere-based liquid marbles to be an efficient catalytic microreactor, realizing the complete degradation of MB to leuco methylene blue by NaBH4 in 10 min. The result of this work could provide some guidance for the easy, low-cost, benign preparation of HIMC microspheres having the potential to be excellent supporter of metal nanoparticles or other functionalized compounds for applications in sensing, optoelectronics, and catalysis.
Collapse
Affiliation(s)
- Guanqun Du
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Hongxia Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Jieli Lü
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| |
Collapse
|
15
|
Si Y, Guo Z. Novel pH-responsive Liquid Marble as Microfluidic Responder for Controlled Release. CHEM LETT 2016. [DOI: 10.1246/cl.160362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Wei W, Lu R, Ye W, Sun J, Zhu Y, Luo J, Liu X. Liquid Marbles Stabilized by Fluorine-Bearing Cyclomatrix Polyphosphazene Particles and Their Application as High-Efficiency Miniature Reactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1707-1715. [PMID: 26854870 DOI: 10.1021/acs.langmuir.5b04697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Increasing attention has been paid to fabricate multifunctional stabilizers of liquid marbles for expanding their application. Here, a kind of hydrophobic cyclomatrix polyphosphazene particles (PZAF) were facilely prepared using a one-step precipitation polycondensation of hexachlorocyclotriphosphazene and 4,4'-(hexafluoroisopropylidene)diphenol, and their ability to stabilize liquid marbles was first investigated. The Ag nanoparticle-decorated PZAF particles (Ag/PZAF) were then fabricated by an in situ reduction of silver nitrate onto PZAF particles and used to construct catalytic liquid marbles. The results revealed that the reduction of methylene blue (MB) in aqueous solution by sodium borohydride could be highly efficiently catalyzed in the catalytic liquid marbles, even with a large volume. An excellent cycle use performance of the catalytic liquid marbles without losing catalytic efficiency was also present. The high catalytic activity is mainly attributed to the uniform immobilization of Ag nanoparticles onto PZAF particles and the adsorption behavior of PZAF particles toward MB, which may play an effect on allowing high catalytic surface area and effective accelerating the mass transfer of MB to the Ag catalytic active sites, respectively. Therefore, the combination of Ag nanoparticles with PZAF particles has been demonstrated clearly to be a facile and effective strategy to obtain the functional stabilizer for preparing the catalytic liquid marbles as promising miniature reactors used in heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Wei Wei
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Rongjie Lu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Weitao Ye
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jianhua Sun
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Ye Zhu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Luo
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
17
|
Zeng Z, Yang S, Zhang L, Hua D. Phosphonate-functionalized polystyrene microspheres with controlled zeta potential for efficient uranium sorption. RSC Adv 2016. [DOI: 10.1039/c6ra16219c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new method has been developed for effective uranium(vi) sorption from aqueous solution through phosphonate-functionalized polystyrene microspheres with controlled zeta potentials.
Collapse
Affiliation(s)
- Zehua Zeng
- School for Radiological and Interdisciplinary Sciences (RAD–X) & College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Sen Yang
- School for Radiological and Interdisciplinary Sciences (RAD–X) & College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lixia Zhang
- School for Radiological and Interdisciplinary Sciences (RAD–X) & College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Daoben Hua
- School for Radiological and Interdisciplinary Sciences (RAD–X) & College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|