1
|
Azimijou N, Karimi-Soflou R, Karkhaneh A. CD44 targeted-chondroitin sulfate nanoparticles: Fine-tuning hydrophobic groups to enhance in vitro pH-responsiveness and in vivo efficacy for advanced breast cancer treatment. BIOMATERIALS ADVANCES 2024; 158:213776. [PMID: 38244368 DOI: 10.1016/j.bioadv.2024.213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
The design of tumor-targeting nanoparticles with precisely controlled physical-biological properties may improve the delivery of chemotherapeutic agents. This study introduces pH-sensitive chondroitin sulfate-cholesterol (ChS-Chol) nano-assemblies for targeted intracellular doxorubicin (Dox) delivery in breast cancer treatment. Various ChS-Chol copolymers were synthesized, yielding self-assembling nanostructures with adjustable lipophilic content. In an aqueous environment, the ChS-Chol conjugates could form self-assembled nanostructures with a narrower size variation and a high negative potential. Moreover, the carriers would rapidly disassemble and release Dox in response to acidic pH. The in vitro cytotoxicity assay exhibited concentration-related anti-proliferation activity with Dox-loaded nanoparticles against 4T1, MCF-7, and MDA-MB-231 breast cancer cells. The nanoparticles demonstrated enhanced early apoptosis induction, efficient cellular uptake, and improved prevention of tumor cell proliferation compared to free Dox. In vivo results showcased significant tumor growth inhibition, underscoring the potential of these nanoparticle-based drug delivery systems for breast cancer therapy. The study emphasizes tailored nanocarrier design, leveraging pH-responsiveness and precise hydrophobic tuning to achieve targeted and potent therapeutic effects in the fight against breast cancer.
Collapse
Affiliation(s)
- Nayereh Azimijou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
2
|
Gupta R, Kadhim MM, Turki Jalil A, Obayes AM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Tayyib NA, Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. ENVIRONMENTAL RESEARCH 2023; 228:115767. [PMID: 36966991 DOI: 10.1016/j.envres.2023.115767] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm al- Qura University, Makkah, Saudi Arabia
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
3
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Sharma VK, Liu X, Oyarzún DA, Abdel-Azeem AM, Atanasov AG, Hesham AEL, Barik SK, Gupta VK, Singh BN. Microbial polysaccharides: An emerging family of natural biomaterials for cancer therapy and diagnostics. Semin Cancer Biol 2022; 86:706-731. [PMID: 34062265 DOI: 10.1016/j.semcancer.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Microbial polysaccharides (MPs) offer immense diversity in structural and functional properties. They are extensively used in advance biomedical science owing to their superior biodegradability, hemocompatibility, and capability to imitate the natural extracellular matrix microenvironment. Ease in tailoring, inherent bio-activity, distinct mucoadhesiveness, ability to absorb hydrophobic drugs, and plentiful availability of MPs make them prolific green biomaterials to overcome the significant constraints of cancer chemotherapeutics. Many studies have demonstrated their application to obstruct tumor development and extend survival through immune activation, apoptosis induction, and cell cycle arrest by MPs. Synoptic investigations of MPs are compulsory to decode applied basics in recent inclinations towards cancer regimens. The current review focuses on the anticancer properties of commercially available and newly explored MPs, and outlines their direct and indirect mode of action. The review also highlights cutting-edge MPs-based drug delivery systems to augment the specificity and efficiency of available chemotherapeutics, as well as their emerging role in theranostics.
Collapse
Affiliation(s)
- Vivek K Sharma
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Shanghai 200032, China.
| | - Diego A Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Atanas G Atanasov
- Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Saroj K Barik
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| |
Collapse
|
5
|
Lu J, Long X, Wu A, Wang X, Liang Y, Dai X, Cao Y, Li X. Delivery of silybin using a zein-pullulan nanocomplex: Fabrication, characterization, in vitro release properties and antioxidant capacity. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
7
|
Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
9
|
Chen D, Ge S, Zuo L, Wang S, Liu M, Li S. Adjudin-loaded redox-sensitive paclitaxel-prodrug micelles for overcoming multidrug resistance with efficient targeted Colon cancer therapy. Drug Deliv 2021; 27:1094-1105. [PMID: 32706289 PMCID: PMC7470106 DOI: 10.1080/10717544.2020.1797245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is the primary cause for the failure of chemotherapy in the treatment of colon cancer. Recent research has indicated that the combination of a chemotherapeutic agent and a mitochondrial inhibitor might represent a promising strategy to help overcome MDR. However, for this approach to be clinically effective, it is important that the two drugs can be actively and simultaneously delivered into tumor cells at an optimal ratio and completely released drug within cells. To address these challenges, we designed and prepared a folate receptor-targeted and redox-responsive drug delivery system (FA-ss-P/A) that was able to co-deliver paclitaxel (PTX) and adjudin (ADD) to reverse colon cancer MDR. The PTX prodrug was obtained by conjugating PTX to dextrin via a disulfide-linkage. Then, folic acid (FA) was modified on the PTX prodrug. Finally, ADD, a mitochondrial inhibitor, was encapsulated in the PTX prodrug-formed micelles. A series of in vitro and in vivo experiments subsequently demonstrated that FA-ss-P/A can effectively reverse MDR by increasing cell uptake, inhibiting PTX efflux, and improving drug release.
Collapse
Affiliation(s)
- Deli Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiqing Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Ke L, Wei F, Liao X, Rees TW, Kuang S, Liu Z, Chen Y, Ji L, Chao H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. NANOSCALE 2021; 13:7590-7599. [PMID: 33884385 DOI: 10.1039/d1nr00773d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is a promising noninvasive cancer treatment. PDT in the clinic faces several hurdles due to the unique tumor environment, a feature of which is high levels of glutathione (GSH). An excess amount of GSH consumes reactive oxygen species (ROS) generated by photosensitizers (PSs), reducing PDT efficiency. Herein, nano-photosensitizers (RuS1 NPs and RuS2 NPs) are reported. These consist of ruthenium complexes joined by disulfide bonds forming GSH sensitive polymer nanoparticles. The NPs achieve enhanced uptake compared to their constituent monomers. Inside cancer cells, high levels of GSH break the S-S bonds releasing PS molecules in the cell. The level of GSH is also then reduced leading to excellent PDT activity. Furthermore, RuS2 NPs functionalized with tumor targeting hyaluronic acid (HA@RuS2 NPs) assessed in vivo were highly effective with minimal side effects. To the best of our knowledge, RuS NPs are the first metal complex-based nano-assembled photosensitizers which exhibit enhanced specificity and consume endogenous GSH simultaneously, thus achieving excellent two-photon PDT efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Sui J, Zhao M, Yang Y, Guo Z, Ma M, Xu Z, Liang J, Sun Y, Fan Y, Zhang X. Acid-labile polysaccharide prodrug via lapatinib-sensitizing effect substantially prevented metastasis and postoperative recurrence of triple-negative breast cancer. NANOSCALE 2020; 12:13567-13581. [PMID: 32555923 DOI: 10.1039/d0nr03395b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surgical resection and chemotherapy are routinely performed for triple-negative breast cancer (TNBC) because it is insensitive to endocrine therapy and molecular targeted therapy. Here, the optimal surface charge (-28 mV) and particle size (51 nm) enabled the acid-labile hyaluronic acid pullulan prodrug (HPP)-doxorubicin (Dox)/lapatinib (Lap) conjugate to circulate in the blood for a lengthy period of time and enhance the electron paramagnetic resonance effect, while the targeted molecule hyaluronic acid accelerated CD44 receptor-mediated 4T1 cell internalization. The inefficient anti-proliferation capability of Lap increased more than 10-fold after sensitization of Dox to metastatic 4T1 cells, while cellular uptake significantly increased, and cell viability dramatically decreased to nearly 20% of the free Dox group. Furthermore, HPP-Dox/Lap more effectively inhibited lateral mobility, vertical migration, and invasion ability of 4T1 cells. The ex vivo biodistribution of representative Dox indicated that Lap obviously facilitated the intratumoral infiltration and accumulation. The in vivo research revealed that there were overwhelming advantages in using HPP-Dox/Lap to inhibit tumor growth, progression, and lung metastasis even at a low dosage (1 mg kg-1), and it decreased postoperative recurrence and pulmonary metastatic nodules. Because of the excellent biosafety and visible therapeutic effect on the 4T1 metastasis and recurrence model, there is great potential value for HPP-Dox/Lap to be used to treat metastatic TNBC.
Collapse
Affiliation(s)
- Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Feng Z, Xu J, Ni C. Preparation of redox responsive modified xanthan gum nanoparticles and the drug controlled release. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zhiyun Feng
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, P. R. China
| | - Jie Xu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China
| | - Caihua Ni
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
13
|
Li M, Li Q, Hou W, Zhang J, Ye H, Li H, Zeng D, Bai J. A redox-sensitive core-crosslinked nanosystem combined with ultrasound for enhanced deep penetration of nanodiamonds into tumors. RSC Adv 2020; 10:15252-15263. [PMID: 35495450 PMCID: PMC9052314 DOI: 10.1039/d0ra01776k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/07/2023] Open
Abstract
Nanodiamonds (NDs) as drug delivery vehicles are of great significance in anticancer therapy through enhancing drug retention. However, the major barrier to clinical application of NDs is insufficient tumor penetration owing to their strong aggregation and low passive penetration efficiency. Herein, the core-crosslinked pullulan carrier, assembled using the visible light-induced diselenide (Se-Se) bond crosslinking method for encapsulating nanodiamonds-doxorubicin (NDX), is proposed to improve monodispersity. Furthermore, the core-crosslinked diselenide bond provides the nanosystem with redox-responsive capability and improved structural stability in a physiological environment, which prevents premature drug leakage and achieves tumor site-specific controlled release. What's more, ultrasound (US) is utilized to promote nanosystem intratumoral penetration via enlarged tumor vascular endothelium cell gaps. As expected, the nanosystem combined with ultrasound can enhance anti-tumor efficacy with deep penetration and excellent retention performance in a HepG2 xenograft mouse model. This study highlights the ability of the integrated therapeutic paradigm to overcome the limitation of nanodiamonds and the potential for further application in cancer therapy.
Collapse
Affiliation(s)
- Meixuan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Qianyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Wei Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Jingni Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Hemin Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Deping Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
14
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
15
|
Zhang L, Ding Y, Wen Q, Ni C. Synthesis of core-crosslinked zwitterionic polymer nano aggregates and pH/Redox responsiveness in drug controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110288. [DOI: 10.1016/j.msec.2019.110288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/22/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
|
16
|
Li H, Li Q, Hou W, Zhang J, Yu C, Zeng D, Liu G, Li F. Enzyme-Catalytic Self-Triggered Release of Drugs from a Nanosystem for Efficient Delivery to Nuclei of Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43581-43587. [PMID: 31664812 DOI: 10.1021/acsami.9b15460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimulus-responsive drug delivery nanosystems (DDSs) are of great significance in improving cancer therapy for intelligent control over drug release. However, among them, many DDSs are unable to realize rapid and sufficient drug release because most internal stimulants might be consumed during the release process. To address the plight, an abundant supply of stimulants is highly desirable. Herein, a core crosslinked pullulan-di-(4,1-hydroxybenzylene)diselenide nanosystem, which could generate abundant exogenous-stimulant reactive oxygen species (ROS) via tumor-specific NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, was constructed by the encapsulation of β-lapachone. The enzyme-catalytic-generated ROS induced self-triggered cascade amplification release of loaded doxorubicin (DOX) in the tumor cells, thus achieving efficient delivery of DOX to the nuclei of tumor cells by breaking the diselenide bond of the nanosystem. As a result, the antitumor effect of this nanosystem was significantly improved in the HepG2 xenograft model. In general, this study offers a new paradigm for utilizing the interaction between the loaded agent and carrier in the tumor cells to obtain self-triggered drug release in the design of DDSs for enhanced cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , Fujian , P. R. China
| | | |
Collapse
|
17
|
Zhang Y, Cui Z, Mei H, Xu J, Zhou T, Cheng F, Wang K. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr Polym 2019; 219:143-154. [DOI: 10.1016/j.carbpol.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/24/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
|
18
|
Chen S, Xu XL, Zhou B, Tian J, Luo BM, Zhang LM. Acidic pH-Activated Gas-Generating Nanoparticles with Pullulan Decorating for Hepatoma-Targeted Ultrasound Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22194-22205. [PMID: 31199110 DOI: 10.1021/acsami.9b06745] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Contrast-enhanced ultrasound (US) is a widely used imaging modality for hepatocellular carcinoma diagnosis. Mostly, US imaging is confined to the intravascular process because of the limitation of the microbubble contrast agent currently utilized. Targeted contrast agents that incline to accumulate in tumor tissue or tumor cells and enhance the US signal may advance the sensitivity of ultrasonography and exploit the dimension of US imaging of tumor at the molecular level. In this study, we developed CaCO3/pul-PCB (CPP) hybrid nanoparticles with hepatoma-targeting pullulan decorating on the surface through a mineralization route using the pullulan- graft-poly(carboxybetaine methacrylate) (pul-PCB) copolymer as a modifier. This particle was stable in blood physiological pH and generated echogenic CO2 bubbles under tumoral acidic conditions, which enabled the US signal enhancement. Upon intravenous injection, CPP hybrid nanoparticles accumulated efficiently in tumor tissue and exhibited sixfold contrast enhancement in 35 min at the tumor site in the hepatoma-bearing mice model. By contrast, there was barely any signal change in normal liver tissue. Therefore, the presented CPP hybrid nanoparticle is a promising contrast agent for effective US imaging of hepatoma.
Collapse
Affiliation(s)
- Shanshan Chen
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiao-Lin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Boyang Zhou
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Bao-Ming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
19
|
Li H, Ma M, Zhang J, Hou W, Chen H, Zeng D, Wang Z. Ultrasound-Enhanced Delivery of Doxorubicin-Loaded Nanodiamonds from Pullulan-all-trans-Retinal Nanoparticles for Effective Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20341-20349. [PMID: 31082187 DOI: 10.1021/acsami.9b03559] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanodiamond as a drug carrier is of great significance in improving cancer therapy by overcoming chemoresistance. However, its clinical application is severely limited because of insufficient tumor vascular penetration. To address this limitation, pullulan-all-trans-retinal (pullulan-ATR) self-assembled nanoparticles were prepared as nanocarriers, which encapsulated doxorubicin-loaded nanodiamonds, to construct a core-shell structured coloading nanosystem. The obtained composite nanoparticles show a homogeneous size distribution with good dispersity and pH sensitivity. Furthermore, ultrasound was utilized to promote the intratumoral penetration of these nanoparticles. As a result, the intracellular retention of DOX was efficiently enhanced, and DOX in the tumor tissue reached 17.3% of the injected dosage. The antitumor effect of this combined strategy was remarkably improved in both the DOX-sensitive HepG2 and DOX-resistant HepG2/ADR tumor models in vivo. This new strategy might serve as a powerful method to address the limitation of nanodiamonds and provide innovative ideas for the application of nanoparticles in clinical cancer therapy.
Collapse
Affiliation(s)
- Huanan Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 200050 Shanghai , P. R. China
| | - Jingni Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Wei Hou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 200050 Shanghai , P. R. China
| | - Deping Zeng
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| |
Collapse
|
20
|
Li H, Yu C, Zhang J, Li Q, Qiao H, Wang Z, Zeng D. pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. Int J Pharm 2019; 556:226-235. [DOI: 10.1016/j.ijpharm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
|
21
|
Drug Delivery Systems Based on Pullulan Polysaccharides and Their Derivatives. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-01881-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
23
|
Preparations of hyperbranched polymer nano micelles and the pH/redox controlled drug release behaviors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Gao C, Tang F, Zhang J, Lee SMY, Wang R. Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells. J Mater Chem B 2017; 5:2337-2346. [DOI: 10.1039/c6tb03032g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
GSH-responsive nanoparticles based on disulfide crosslinked amphiphilic alginate demonstrated selected drug release in cancer cells with a much improved safety profile.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Jianxiang Zhang
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
25
|
Pan Q, Lv Y, Williams GR, Tao L, Yang H, Li H, Zhu L. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr Polym 2016; 151:812-820. [DOI: 10.1016/j.carbpol.2016.06.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/20/2016] [Accepted: 06/04/2016] [Indexed: 11/29/2022]
|
26
|
Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, Zhong Z. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J Control Release 2016; 233:29-38. [DOI: 10.1016/j.jconrel.2016.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023]
|
27
|
Wu L, Zhang L, Shi G, Ni C. Zwitterionic pH/redox nanoparticles based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:278-85. [PMID: 26838851 DOI: 10.1016/j.msec.2015.12.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/10/2015] [Accepted: 12/13/2015] [Indexed: 11/19/2022]
Abstract
Zwitterionic nanoparticles have excellent serum stability. In this study, pH/redox responsive polymer was synthesized through a modification of dextran using succinic acid, followed by crosslinking with cystamine. The polymer could self-assemble into stable nanoparticles (NPs) in aqueous solution. The NPs carried certain amount of free carboxyl and amino groups on the surface, which endowed the NPs excellent anti-protein adsorption ability. The surface charge was negative at pH7.4 and was converted to positive at pH5.0. It was revealed that the NPs showed little non-specific protein adsorption and had excellent serum stability, and the NPs could be internalized in Hela cells rapidly. This result was ascribed to the charge reversible feature of the NPs. Doxorubicin (DOX) was loaded in the NPs for release studies in vitro. The DOX-loaded NPs exhibited obvious pH and reduction sensitivities in response to the environment in tumor cells due to the introduction of carboxyl groups, amino groups and disulfide bonds in the NPs. The NPs were biocompatible, biodegradable, and could be potentially applied as anticancer drug carriers for enhancement of tumor intercellular uptake of doxorubicin.
Collapse
Affiliation(s)
- Luyan Wu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
28
|
Alhaique F, Matricardi P, Di Meo C, Coviello T, Montanari E. Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Ferreira LM, Cervi VF, Gehrcke M, da Silveira EF, Azambuja JH, Braganhol E, Sari MH, Zborowski VA, Nogueira CW, Cruz L. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration. Colloids Surf B Biointerfaces 2015; 130:272-7. [DOI: 10.1016/j.colsurfb.2015.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
|
30
|
Li H, Sun Y, Liang J, Fan Y, Zhang X. pH-Sensitive pullulan–DOX conjugate nanoparticles for co-loading PDTC to suppress growth and chemoresistance of hepatocellular carcinoma. J Mater Chem B 2015; 3:8070-8078. [DOI: 10.1039/c5tb01210d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Co-delivery of DOX and PDTC using pH-sensitive pullulan–DOX conjugate nanoparticles helped to suppress growth and chemoresistance of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huanan Li
- College of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
31
|
Sun Y, Wang Y, Cui Y, Zou W, Tan Y, Liang J, Fan Y, Zhang X. DOX-encapsulated intelligent PAA-g-PEG/PEG–Fa polymeric micelles for intensifying antitumor therapeutic effect via active-targeted tumor accumulation. J Mater Chem B 2015; 3:5478-5489. [DOI: 10.1039/c5tb00438a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction-breakable active targeting polymeric micelles as drug delivery systems could improve delivery efficiency by tumor-specific recognition.
Collapse
Affiliation(s)
- Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yaning Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yani Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Wen Zou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
32
|
Wang X, Wang J, Bao Y, Wang B, Wang X, Chen L. Novel reduction-sensitive pullulan-based micelles with good hemocompatibility for efficient intracellular doxorubicin delivery. RSC Adv 2014. [DOI: 10.1039/c4ra12276c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A novel reduction-sensitive pullulan-based biocompatible material can self-assemble into nanomicelles and release loaded drug triggered by reductive condition.
Collapse
Affiliation(s)
- Xianwu Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- School of Life Science and Biotechnology
- Dalian 116024, P. R. China
| | - Jingyun Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- School of Life Science and Biotechnology
- Dalian 116024, P. R. China
- State Key Laboratory of Fine Chemicals
| | - Yongming Bao
- School of Life Science and Biotechnology
- Dalian University of Technology
- School of Life Science and Biotechnology
- Dalian 116024, P. R. China
| | - Benhua Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024, P. R. China
| | - Xiaohong Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- School of Life Science and Biotechnology
- Dalian 116024, P. R. China
| | - Lili Chen
- School of Life Science and Biotechnology
- Dalian University of Technology
- School of Life Science and Biotechnology
- Dalian 116024, P. R. China
| |
Collapse
|