1
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
2
|
Wang X, Qi F, Xing H, Zhang X, Lu C, Zheng J, Ren X. Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Deliv 2019; 26:1178-1190. [PMID: 31738084 PMCID: PMC6882491 DOI: 10.1080/10717544.2019.1682719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022] Open
Abstract
Poor initial stability at the first four weeks after surgery is becoming the major causes for metal implant failure. Previous attempts neglected the control release of insulin for the bone regeneration among nondiabetic subjects. The major reason may lie in the adverse effects, such as attenuated bone formation, hypoglycemia or hyperinsulinemia, that caused by the excessive insulin. Thus, spatiotemporal release of insulin may serve as the promising strategy. To address this, through solvent extraction (EMS), solvent evaporation (SMS) and cosolvent methods (CMS), we prepared three types of PLGA microspheres with various internal structures, but similar size distribution. The effects of the preparation methods on the properties of the microspheres, such as their release behavior, degradation of molecular weight, and structural evolution, were investigated. Human bone marrow mesenchymal stromal cells (BMSCs) and rabbit implant models were used to test the bioactivity of the microspheres in vitro and in vivo, respectively. The result demonstrated that these three preparation methods did not influence the polymer degradation but instead affected the internal structural evolution, which plays a crucial role in the release behavior, osteogenesis and peri-implant bone regeneration. Compared with EMS and CMS microspheres, SMS microspheres exhibited a relatively steady release rate in the first four weeks, which evidently stimulated the osteogenic differentiation of the stem cells and peri-implant bone regeneration. Meanwhile, SMS microspheres significantly enhanced the stability of the implant at Week 4, which is promising to reduce early failure rate of the implant without inducing adverse effects on the serum biochemical indices.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Chunxiang Lu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jiajia Zheng
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|
3
|
Chen L, Wang D, Peng F, Qiu J, Ouyang L, Qiao Y, Liu X. Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. NANO LETTERS 2019; 19:3480-3489. [PMID: 31091110 DOI: 10.1021/acs.nanolett.9b00237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A proper immune response is key for the successful implantation of biomaterials, and designing and fabricating biomaterials to regulate immune responses is the future trend. In this work, three different nanostructures were constructed on the surface of titanium using a hydrothermal method, and through a series of in vitro and in vivo experiments, we found that the aspect ratio of nanostructures can affect the elastic modulus of a material surface and further regulate immune cell behaviors. This work demonstrates that nanostructures with a higher aspect ratio can endow a material surface with a lower elastic modulus, which was confirmed by experiments and theoretical analyses. The deflection of nanostructures under the cell adsorption force is a substantial factor in stretching macrophages to enhance cell adhesion and spreading, further inducing macrophage polarization toward the M1 phenotype and leading to intense immune responses. In contrast, a nanostructure with a lower aspect ratio on a material surface leads to a higher surface elastic modulus, making deflection of the material difficult and creating a surface that is not conducive to macrophage adhesion and spreading, thus reducing the immune response. Moreover, molecular biology experiments indicated that regulation of the immune response by the elastic modulus is primarily related to the NF-κB signaling pathway. These findings suggest that the immune response can be regulated by constructing nanostructural surfaces with the proper elastic modulus through their influence on cell adhesion and spreading, which provides new insights into the surface design of biomaterials.
Collapse
Affiliation(s)
- Lan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Feng Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
4
|
Zhao Q, Yi L, Hu A, Jiang L, Hong L, Dong J. Antibacterial and osteogenic activity of a multifunctional microporous coating codoped with Mg, Cu and F on titanium. J Mater Chem B 2019; 7:2284-2299. [PMID: 32254677 DOI: 10.1039/c8tb03377c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As preferred materials for bone tissue repair and replacement, titanium (Ti) and its alloys have been widely applied in clinical practice. However, since these materials are bioinert, synostosis cannot occur between these materials and natural bone. Therefore, modifying the surface of Ti with bioactive elements has been the subject of intense research. In the present study, a magnesium-copper-fluorine (Mg-Cu-F) codoped titanium dioxide microporous coating (MCFMT) was prepared on the surface of Ti by micro-arc oxidation (MAO). The coating had a micro/nanoporous structure and was uniformly doped with Mg, Cu and F. In vitro, the MCFMT could promote the adhesion, proliferation, differentiation, mineralization and apoptosis of MC3T3-E1 osteoblasts. In addition, MCFMT could inhibit the growth of Staphylococcus, providing a good antibacterial effect. Further studies showed that MCFMT promoted MAPK expression and might promote osteogenesis through ERK1/2 signaling. Therefore, establishing an MCFMT coating on the Ti surface is a feasible and effective way to improve the biological activity of Ti. This study provides a new concept and method for improving the biological activity of Ti and thus has important theoretical significance and potential applications.
Collapse
Affiliation(s)
- Quanming Zhao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
5
|
Tan J, Wang D, Cao H, Qiao Y, Zhu H, Liu X. Effect of Local Alkaline Microenvironment on the Behaviors of Bacteria and Osteogenic Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42018-42029. [PMID: 30412372 DOI: 10.1021/acsami.8b15724] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interactions between material surfaces and bacteria/cells have been widely investigated, based on which biomaterials with antibacterial and osteogenic abilities can be designed to conquer implant failures. The pH of environments is known to affect bacterial growth and bone formation/resorption, and it is possible that the antibacterial and osteogenic abilities of biomaterials can be simultaneously improved by regulating their surface alkalinity. Herein, we fabricated many kinds of films with various alkalinity levels on titanium surface to explore the effect of local alkaline microenvironments around material surfaces on the behaviors of bacteria and osteogenic cells. Both Gram-positive and -negative bacteria were cultured on sample surfaces to investigate their antibacterial effects. Cell adhesion, proliferation, and alkaline phosphatase (ALP) activities were investigated by culturing both bone mesenchymal stem cells (MSCs) and osteoblast cells on sample surfaces. The results show that an appropriate local alkaline environment can effectively inhibit the growth of both Gram-positive and -negative bacteria through inactivating ATP synthesis and inducing oxidative stress. Meanwhile, it can promote the osteogenic differentiation of bone MSCs and enhance the proliferation and ALP activities of osteoblast cells. In conclusion, material surfaces endowed with appropriate alkalinity can possess antibacterial and osteogenic properties, which provide a novel strategy to design multifunctional biomaterials for bone generation.
Collapse
Affiliation(s)
- Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Science , Beijing 100049 , China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| |
Collapse
|
6
|
Qian W, Qiu J, Su J, Liu X. Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing. Biomater Sci 2018; 6:304-313. [DOI: 10.1039/c7bm00931c] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Graphene oxide loaded with minocycline hydrochloride as an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing.
Collapse
Affiliation(s)
- Wenhao Qian
- Department of Prosthodontics
- School of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiansheng Su
- Department of Prosthodontics
- School of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
7
|
Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films. Colloids Surf B Biointerfaces 2017; 156:213-220. [DOI: 10.1016/j.colsurfb.2017.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 01/16/2023]
|
8
|
Qiu J, Geng H, Wang D, Qian S, Zhu H, Qiao Y, Qian W, Liu X. Layer-Number Dependent Antibacterial and Osteogenic Behaviors of Graphene Oxide Electrophoretic Deposited on Titanium. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12253-12263. [PMID: 28345852 DOI: 10.1021/acsami.7b00314] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Graphene oxide has attracted widespread attention in the biomedical fields due to its excellent biocompatibility. Herein we investigated the layer-number dependent antibacterial and osteogenic behaviors of graphene oxide in biointerfaces. Graphene oxide with different layer numbers was deposited on the titanium surfaces by cathodal electrophoretic deposition with varied deposition voltages. The initial cell adhesion and spreading, cell proliferation, and osteogenic differentiation were observed from all the samples using rat bone mesenchymal stem cells. Both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were used to investigate the antibacterial effect of the modified titanium surfaces. Cocultures of human gingival fibroblasts (HGF) cells with Escherichia coli and Staphylococcus aureus were conducted to simulate the conditions of the clinical practice. The results show that the titanium surfaces with graphene oxide exhibited excellent antibacterial and osteogenic effects. Increasing the layer-number of graphene oxide resulted in the augment of reactive oxygen species levels and the wrinkling, which led to the antibacterial and osteogenic effects, respectively. Compared to pure titanium surface in the cells-bacteria coculture process, the modified titanium surfaces with graphene oxide exhibited higher surface coverage percentage of cells.
Collapse
Affiliation(s)
- Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Geng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| |
Collapse
|
9
|
Hassanin H, Al-Kinani AA, ElShaer A, Polycarpou E, El-Sayed MA, Essa K. Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. J Mater Chem B 2017; 5:9384-9394. [DOI: 10.1039/c7tb02444d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porous biomedical implants hold great potential in preventing stress shielding while improving bone osseointegration and regeneration.
Collapse
Affiliation(s)
- Hany Hassanin
- School of Mechanical and Automotive Engineering
- Kingston University
- UK
| | - Ali A. Al-Kinani
- School of Life Sciences
- Pharmacy and Chemistry
- Kingston University
- UK
| | - Amr ElShaer
- School of Life Sciences
- Pharmacy and Chemistry
- Kingston University
- UK
| | - Elena Polycarpou
- School of Life Sciences
- Pharmacy and Chemistry
- Kingston University
- UK
| | - Mahmoud Ahmed El-Sayed
- Department of Industrial and Management Engineering
- Arab Academy for Science and Technology and Maritime Transport
- Abu Qir
- Alexandria
- Egypt
| | - Khamis Essa
- School of Engineering
- University of Birmingham
- UK
| |
Collapse
|
10
|
Ge F, Yu M, Yu C, Lin J, Weng W, Cheng K, Wang H. Improved rhBMP-2 function on MBG incorporated TiO 2 nanorod films. Colloids Surf B Biointerfaces 2016; 150:153-158. [PMID: 27914251 DOI: 10.1016/j.colsurfb.2016.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
Abstract
In the process of biomaterials mediated bone regeneration, rhBMP-2 delivery at efficient dose in sustained kinetics is crucial for promoting cell osteogenic differentiation. Meanwhile, surface morphology of the biomaterials could regulate cellular responses as well as strengthen the rhBMP-2 interaction with cells for better bone induction. Herein, TiO2 nanorod films with varied mesoporous bioactive glass (MBG) incorporation amount were designed to strengthen the efficacy of rhBMP-2, basing on optimized loading/release behaviors and surface nanostructure cooperatively. The MBG incorporation improved rhBMP-2 loading amount and regulated its release behavior. Consequently, the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) on the incorporated films was extremely enhanced, and the incorporated nanorod film with 200nm MBG thickness exhibited the best osteoinduction effect. However, MBG film and the incorporated nanorod film had the same loading amount of rhBMP-2, the latter showed a much higher expression of 7-day osteogenic differentiation index than the former, which could be attributed to the synergistic effect of optimized rhBMP-2 release behavior and surface morphology. The MBG incorporated TiO2 nanorod films here presents a promising strategy for enhancing osteoinduction through optimized rhBMP-2 release behavior.
Collapse
Affiliation(s)
- Fei Ge
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Mengfei Yu
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China
| | - Cuixia Yu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jun Lin
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Huiming Wang
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
11
|
Xiao M, Biao M, Chen Y, Xie M, Yang B. Regulating the osteogenic function of rhBMP 2 by different titanium surface properties. J Biomed Mater Res A 2016; 104:1882-93. [PMID: 26991341 DOI: 10.1002/jbm.a.35719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein 2 (BMP-2) is important for regulating the osteogenic differentiation of mesenchymal stem cells and the response of bone tissue. It adsorbs on the surface of biomedical implants immediately and plays a role of mediator between the materials surfaces and the host cells. Studies usually connect the material surface properties and the new bone formation directly. However, interaction between the adsorbed BMP-2 on the implant surface and the cells in the tissue is the key to explaining the osteogenic properties of the material. So, in this article, we investigated the conformational and functional changes induced by the surface modified titanium metals. We found that the α-helix and β-sheet structure of rhBMP-2 can be well maintained on the anodic oxidation treated titanium surface. The osteogenic function of rhBMP-2 can sustain for a relatively long time even though there is less amount adhere to the surface compared with that on the acid alkali treated titanium. Surface properties, especially the morphology enable a larger amount of rhBMP-2 to adsorb to the surface of the acid alkali treated titanium, but the conformation of the protein is severely influenced. The percentage of α-helix structure is also significantly decreased so that the efficacy of rhBMP-2 is only maintained in the early time. This study indicated that different surface modification of the surface could regulate the structure of rhBMP-2 and then further influence its osteogenic function. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1882-1893, 2016.
Collapse
Affiliation(s)
- Ming Xiao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Meina Biao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Yangmei Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Meiju Xie
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| |
Collapse
|
12
|
Cytocompatibility of Si-incorporated TiO2 nanopores films. Colloids Surf B Biointerfaces 2015; 133:214-20. [PMID: 26111898 DOI: 10.1016/j.colsurfb.2015.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 11/21/2022]
Abstract
Si-incorporated TiO2 nanopores films were prepared by anodization and silicon plasma immersion ion implantation. The microstructure and phase composition of the films were investigated by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The hydrophilicity of the films was evaluated using water contact angle measurement and MG63 cells were cultured on the films to investigate the cytocompatibility. The results showed that the concentration and depth of silicon on the Si-incorporated TiO2 nanopores films increased with the duration time of implantation. Both the as-annealed and Si-incorporated nanopores films exhibited good hydrophilicity and cytocompatibility, while the TiO2 nanopores films implanted silicon for 1.0h showed higher proliferation rate and vitality of MG63 cells than others, indicating a great potential application for titanium implants.
Collapse
|
13
|
Liu L, Liu C, Nie L, Jiang T, Hong J, Zhang X, Luo L, Wang X. Study on the synergistic antibacterial effect of silver-carried layered zirconium alkyl-N,N-dimethylenephosphonate. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Zn/Ag micro-galvanic couples formed on titanium and osseointegration effects in the presence of S. aureus. Biomaterials 2015; 65:22-31. [PMID: 26141835 DOI: 10.1016/j.biomaterials.2015.06.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022]
Abstract
Titanium implants possessing simultaneous osseointegration and antibacterial ability are desirable. In this work, three types of Zn/Ag micro-galvanic couples are fabricated on titanium by plasma immersion ion implantation to investigate the osseointegration and antibacterial effects as well as the involved mechanisms. The in vitro findings disclose enhanced proliferation, osteogenic differentiation, and gene expressions of the rat bone mesenchymal stem cells (rBMSCs), as well as good antibacterial ability on all three micro-galvanic couples. Excellent antimicrobial ability is also observed in vivo and the micro-CT and histological results reveal notable osseointegration in vivo despite the presence of bacteria. The Zn/Ag micro-galvanic couple formed on Zn/Ag dual-ion co-implanted titanium shows the best osseointegration as well as good antibacterial properties in vivo obtained from a rabbit tibia model. The difference among the three Zn/Ag micro-galvanic couples can be ascribed to the contact between the Ag NPs and Zn film, which affects the corrosion process. Our results indicate that the biological behavior can be controlled by the corrosion process of the Zn/Ag micro-galvanic couples.
Collapse
|