1
|
Wang Y, Sun Y, Zhang X, Wang S, Huang X, Xu K, Liu Y, Huang Y, Xu J, Wei X, Cheng H, Pan L, Wang J, Gu Z. A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes. J Am Chem Soc 2025; 147:4167-4179. [PMID: 39869523 DOI: 10.1021/jacs.4c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8+ T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection. A therapeutic that can reverse new-onset T1D without harming the immune system remains urgently needed. Herein, we have constructed cellular vesicles presenting granzyme B-responsive fusion proteins (designated aCD8-GrzBcs-IL2) composed of a single-chain variable fragment of anti-CD8 antibodies and a mutein interleukin-2 (IL2). aCD8-GrzBcs-IL2 is designed to simultaneously inhibit CD8+ T cells and promote Treg cells, especially when CD8+ T cells are attacking β-cells. In vitro, these cellular vesicles can inhibit the cell-killing effect of CD8+ T cells and enhance the expansion of Treg cells. Notably, intravenous administration of aCD8-GrzBcs-IL2-expressed cellular vesicles reversed newly onset diabetes in 77.8% of nonobese diabetic (NOD) mice without reducing blood CD3+ T cells and CD8+ T cells, indicating a favorable safety profile.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuwen Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Kairui Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Liqiang Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Liangzhu Laboratory, Hangzhou 311121, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Jia L, Wang R, Sun Y, Chen Y, Zhang T, Li M, Xie X, Wang S. Engineered surface design of recognition site-ordered biomimetic sensor for efficient detection of circulating tumor cells. Biosens Bioelectron 2025; 269:116946. [PMID: 39557009 DOI: 10.1016/j.bios.2024.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The oriented assembly of cell membrane coating plays an important role in advancing the application of this strategy in biomedical fields, particularly in detecting circulating tumor cells (CTCs). Unfortunately, there is a formidable challenge in achieving effective membrane orientation during the coating process owing to the asymmetric properties of cell membranes. Herein, magnetic vesicles released by tumor cells were designed to break down these barriers in the same way that microvesicles are actively secreted from cells, which completely inherited the orientation and characteristics of the parent cell membranes, exhibiting a satisfactory self-targeting ability for homologous cells. To cope with the complex application environment, spatially ordered aptamers were integrated into magnetic vesicles and combined with catalytic hairpin assembly (CHA) technology to construct a recognition site-ordered biomimetic sensor for high-performance detection of CTCs. In this strategy, the ordered arrangement of membrane proteins and aptamers markedly improved capture efficiency of traditional biomimetic strategy for CTCs. Additionally, CHA-induced fluorescence and colorimetric analysis ensured the detection accuracy and sensitivity, with a linear range of 0 to 104 cells mL-1 and a low detection limit of 3 cells mL-1 for fluorometry and 6 cells mL-1 for colorimetry. Overall, the biomimetic sensor offered broader possibilities for detecting rare CTCs and provided new insight to expand the application of cell membrane biomimetic strategies in biomedicine.
Collapse
Affiliation(s)
- Lanlan Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Runting Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Yihan Sun
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Yuxin Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Tingting Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Min Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China; School of Medicine, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
3
|
Liu Z, Wang X, Bai E, Zhao Y, Liu S, Xu Z, Chang Q, Huang X, Tian Y. A facile optical sensing strategy for glyphosate detection based on structure-switching signaling aptamers. Mikrochim Acta 2024; 191:748. [PMID: 39556276 DOI: 10.1007/s00604-024-06839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
A facile and highly specific optical sensing strategy is established for glyphosate (GLYP) detection using structure-switching signaling aptamers (F-SSSAs) with fluorescence signal reporting functionality. The strategy involves two domains: the FITC-labeled signal transduction domain for fluorescence signal reporting, while the functional domain (specific structure-switching aptamers) controls the target recognition. Graphene oxide (GO) works as a robust F-SSSAs quencher in the absence of GLYP. However, the F-SSSAs structure is switched in the presence of GLYP, prominently affecting the interaction with GO. The fluorescence of the structure-switching signaling aptamer-based sensing system is subsequently restored. The present strategy exhibits two dynamic linear relationships for GLYP detection in the ranges 0.2 to 80 ng·mL-1 and 100 to 800 ng·mL-1, with a low detection limit (LOD) of 0.07 ng·mL-1. Significantly, the proposed sensing system has been successfully utilized to detect GLYP in water, soil, and rice, demonstrating its potential applications in GLYP monitoring.
Collapse
Affiliation(s)
- Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China.
| | - Xin Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China.
| | - Yuhan Zhao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China
| | - Shasha Liu
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China
| | - Zhiwei Xu
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China
| | - Qing Chang
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China
| | - Xinru Huang
- School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun, 130024, Jilin, China
| | - Ye Tian
- Jilin Province Product Quality Supervision Testing Institute, Changchun, 130012, P.R. China
| |
Collapse
|
4
|
Jiang Y, Feng X, Qiao X, Li Y, Li X, Yang J, Han L. Plant-inspired visible-light-driven bioenergetic hydrogels for chronic wound healing. Bioact Mater 2024; 41:523-536. [PMID: 39210966 PMCID: PMC11359762 DOI: 10.1016/j.bioactmat.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic bioenergetic imbalances and inflammation caused by hyperglycemia are obstacles that delay diabetic wound healing. However, it is difficult to directly deliver energy and metabolites to regulate intracellular energy metabolism using biomaterials. Herein, we propose a light-driven bioenergetic and oxygen-releasing hydrogel (PTKM@HG) that integrates the thylakoid membrane-encapsulated polyphenol nanoparticles (PTKM NPs) to regulate the energy metabolism and inflammatory response in diabetic wounds. Upon red light irradiation, the PTKM NPs exhibited oxygen generation and H2O2 deletion capacity through a photosynthetic effect to restore hypoxia-induced mitochondrial dysfunction. Meanwhile, the PTKM NPs could produce exogenous ATP and NADPH to enhance mitochondrial function and facilitate cellular anabolism by regulating the leucine-activated mTOR signaling pathway. Furthermore, the PTKM NPs inherited antioxidative and anti-inflammatory ability from polyphenol. Finally, the red light irradiated PTKM@HG hydrogel augmented the survival and migration of cells keratinocytes, and then accelerated angiogenesis and re-epithelialization of diabetic wounds. In short, this study provides possibilities for effectively treating diseases by delivering key metabolites and energy based on such a light-driven bioenergetic hydrogel.
Collapse
Affiliation(s)
- Yuping Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaomin Feng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xin Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yufeng Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaozhuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
5
|
Qin X, Zhu L, Zhong Y, Wang Y, Luo X, Li J, Yan F, Wu G, Qiu J, Wang G, Qu K, Zhang K, Wu W. Universal cell membrane camouflaged nano-prodrugs with right-side-out orientation adapting for positive pathological vascular remodeling in atherosclerosis. Chem Sci 2024; 15:7524-7544. [PMID: 38784734 PMCID: PMC11110172 DOI: 10.1039/d4sc00761a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
A right-side-out orientated self-assembly of cell membrane-camouflaged nanotherapeutics is crucial for ensuring their biological functionality inherited from the source cells. In this study, a universal and spontaneous right-side-out coupling-driven ROS-responsive nanotherapeutic approach, based on the intrinsic affinity between phosphatidylserine (PS) on the inner leaflet and PS-targeted peptide modified nanoparticles, has been developed to target foam cells in atherosclerotic plaques. Considering the increased osteopontin (OPN) secretion from foam cells in plaques, a bioengineered cell membrane (OEM) with an overexpression of integrin α9β1 is integrated with ROS-cleavable prodrugs, OEM-coated ETBNPs (OEM-ETBNPs), to enhance targeted drug delivery and on-demand drug release in the local lesion of atherosclerosis. Both in vitro and in vivo experimental results confirm that OEM-ETBNPs are able to inhibit cellular lipid uptake and simultaneously promote intracellular lipid efflux, regulating the positive cellular phenotypic conversion. This finding offers a versatile platform for the biomedical applications of universal cell membrane camouflaging biomimetic nanotechnology.
Collapse
Affiliation(s)
- Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University Chongqing 400016 China
| | - Xiaoshan Luo
- Guizhou Information Engineering University Bijie 551700 China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
| | - Guicheng Wu
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- JinFeng Laboratory Chongqing 401329 China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- JinFeng Laboratory Chongqing 401329 China
| |
Collapse
|
6
|
Pan H, Yang S, Gao L, Zhou J, Cheng W, Chen G, Shuhang W, Li N, Veranič P, Musiol R, Cai Q, Shubhra QT. At the crossroad of nanotechnology and cancer cell membrane coating: Expanding horizons with engineered nanoplatforms for advanced cancer therapy harnessing homologous tumor targeting. Coord Chem Rev 2024; 506:215712. [DOI: 10.1016/j.ccr.2024.215712] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Dianzani C, Bozza A, Bordano V, Cangemi L, Ferraris C, Foglietta F, Monge C, Gallicchio M, Pizzimenti S, Marini E, Muntoni E, Valsania MC, Battaglia L. Cell Membrane Fragment-Wrapped Parenteral Nanoemulsions: A New Drug Delivery Tool to Target Gliomas. Cells 2024; 13:641. [PMID: 38607080 PMCID: PMC11011487 DOI: 10.3390/cells13070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Poor prognosis in high-grade gliomas is mainly due to fatal relapse after surgical resection in the absence of efficient chemotherapy, which is severely hampered by the blood-brain barrier. However, the leaky blood-brain-tumour barrier forms upon tumour growth and vascularization, allowing targeted nanocarrier-mediated drug delivery. The homotypic targeting ability of cell-membrane fragments obtained from cancer cells means that these fragments can be exploited to this aim. In this experimental work, injectable nanoemulsions, which have a long history of safe clinic usage, have been wrapped in glioma-cell membrane fragments via co-extrusion to give targeted, homogeneously sized, sterile formulations. These systems were then loaded with three different chemotherapeutics, in the form of hydrophobic ion pairs that can be released into the target site thanks to interactions with physiological components. The numerous assays performed in two-dimensional (2D) and three-dimensional (3D) cell models demonstrate that the proposed approach is a versatile drug-delivery platform with chemo-tactic properties towards glioma cells, with adhesive interactions between the target cell and the cell membrane fragments most likely being responsible for the effect. This approach's promising translational perspectives towards personalized nanomedicine mean that further in vivo studies are foreseen for the future.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Margherita Gallicchio
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10124 Turin, Italy;
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Maria Carmen Valsania
- Department of Chemistry, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| |
Collapse
|
8
|
Meng Y, Chen S, Wang C, Ni X. Advances in Composite Biofilm Biomimetic Nanodrug Delivery Systems for Cancer Treatment. Technol Cancer Res Treat 2024; 23:15330338241250244. [PMID: 38693842 PMCID: PMC11067686 DOI: 10.1177/15330338241250244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.
Collapse
Affiliation(s)
- Yanyan Meng
- School of Pharmacy, Changzhou University, Changzhou, China
- Department of Radiotherapy Oncology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, China
| | - Shaoqing Chen
- Department of Radiotherapy Oncology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, China
| |
Collapse
|
9
|
Xia D, Li J, Feng L, Gao Z, Liu J, Wang X, Hu Y. Advances in Targeting Drug Biological Carriers for Enhancing Tumor Therapy Efficacy. Macromol Biosci 2023; 23:e2300178. [PMID: 37466216 DOI: 10.1002/mabi.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Chemotherapy drugs continue to be the main component of oncology treatment research and have been proven to be the main treatment modality in tumor therapy. However, the poor delivery efficiency of cancer therapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. The recent integration of biological carriers and functional agents is expected to camouflage synthetic biomimetic nanoparticles for targeted delivery. The promising candidates, including but not limited to red blood cells and their membranes, platelets, tumor cell membrane, bacteria, immune cell membrane, and hybrid membrane are typical representatives of biological carriers because of their excellent biocompatibility and biodegradability. Biological carriers are widely used to deliver chemotherapy drugs to improve the effectiveness of drug delivery and therapeutic efficacy in vivo, and tremendous progress is made in this field. This review summarizes recent developments in biological vectors as targeted drug delivery systems based on microenvironmental stimuli-responsive release, thus highlighting the potential applications of target drug biological carriers. The review also discusses the possibility of clinical translation, as well as the exploitation trend of these target drug biological carriers.
Collapse
Affiliation(s)
- Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jia Li
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Lingzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Ziqing Gao
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jun Liu
- Department of Laboratory Medicine, Wuxi No. 5 People's Hospital Affiliated Jiangnan University, Wuxi, Jiangsu, 214005, P.R. China
| | - Xiangqian Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226361, P.R. China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
10
|
Li M, Guo Q, Zhong C, Zhang Z. Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective. Drug Deliv 2023; 30:2288797. [PMID: 38069500 PMCID: PMC10987056 DOI: 10.1080/10717544.2023.2288797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has ignited a transformative revolution in disease detection, prevention, management, and treatment. Central to this paradigm shift is the innovative realm of cell membrane-based nanocarriers, a burgeoning class of biomimetic nanoparticles (NPs) that redefine the boundaries of biomedical applications. These remarkable nanocarriers, designed through a top-down approach, harness the intrinsic properties of cell-derived materials as their fundamental building blocks. Through shrouding themselves in natural cell membranes, these nanocarriers extend their circulation longevity and empower themselves to intricately navigate and modulate the multifaceted microenvironments associated with various diseases. This comprehensive review provides a panoramic view of recent breakthroughs in biomimetic nanomaterials, emphasizing their diverse applications in cancer treatment, cardiovascular therapy, viral infections, COVID-19 management, and autoimmune diseases. In this exposition, we deliver a concise yet illuminating overview of the distinctive properties underpinning biomimetic nanomaterials, elucidating their pivotal role in biomedical innovation. We subsequently delve into the exceptional advantages these nanomaterials offer, shedding light on the unique attributes that position them at the forefront of cutting-edge research. Moreover, we briefly explore the intricate synthesis processes employed in creating these biomimetic nanocarriers, shedding light on the methodologies that drive their development.
Collapse
Affiliation(s)
- Mo Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Qiushi Guo
- Pharmacy Department, First Hospital of Jilin University—the Eastern Division, Changchun, China
| | - Chongli Zhong
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Ziyan Zhang
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Cheng Q, Kang Y, Yao B, Dong J, Zhu Y, He Y, Ji X. Genetically Engineered-Cell-Membrane Nanovesicles for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302131. [PMID: 37409429 PMCID: PMC10502869 DOI: 10.1002/advs.202302131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.
Collapse
Affiliation(s)
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yalan Zhu
- Jinhua Municipal Central HospitalJinhua321000China
| | - Yiling He
- Jinhua Municipal Central HospitalJinhua321000China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
12
|
Hao X, Gan J, Cao J, Zhang D, Liang J, Sun L. Biomimetic liposomes hybrid with erythrocyte membrane modulate dendritic cells to ameliorate systemic lupus erythematosus. Mater Today Bio 2023; 20:100625. [PMID: 37091811 PMCID: PMC10114516 DOI: 10.1016/j.mtbio.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Dendritic cells (DCs)-based immunotherapy has shown immense promise in systemic lupus erythematosus (SLE) treatment. However, existing carrier strategies such as polymers, liposomes, and polypeptides, are difficult to achieve active targeting to DCs due to their intricate interaction with biological systems. Since DCs represent a class of phagocytes responsible for the removal of senescent or damaged erythrocytes, we hypothesize that hybrid vesicles containing erythrocytes membrane components could be presented to be potent drug carriers to target DCs specifically. Herein, inspired by the cell membrane fusion technique, we develop hybrid biomimetic liposomes (R-Lipo) by fusing natural erythrocyte membrane vesicles and artificial liposomes for DCs-targeted SLE therapy. The resultant R-Lipo exhibited excellent biocompatibility and was shown to be effectively internalized by DCs both in vitro and in vivo. Using an immunosuppressant, mycophenolic acid (MPA), as the model drug, MPA-loaded R-Lipo powerfully suppressed DCs maturation and efficiently controlled the duration of lupus nephritis without apparent side effects. Our findings provide a safe, effective, and easy-to-prepare biomimetic vesicle platform for the treatment of SLE and other DC-associated diseases.
Collapse
Affiliation(s)
- Xubin Hao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Juan Cao
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
13
|
Foglietta F, Bozza A, Ferraris C, Cangemi L, Bordano V, Serpe L, Martina K, Lazzarato L, Pizzimenti S, Grattarola M, Cucci MA, Dianzani C, Battaglia L. Surface Functionalised Parenteral Nanoemulsions for Active and Homotypic Targeting to Melanoma. Pharmaceutics 2023; 15:pharmaceutics15051358. [PMID: 37242600 DOI: 10.3390/pharmaceutics15051358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Despite recent progressions in cancer genomic and immunotherapies, advanced melanoma still represents a life threat, pushing to optimise new targeted nanotechnology approaches for specific drug delivery to the tumour. To this aim, owing to their biocompatibility and favourable technological features, injectable lipid nanoemulsions were functionalised with proteins owing to two alternative approaches: transferrin was chemically grafted for active targeting, while cancer cell membrane fragments wrapping was used for homotypic targeting. In both cases, protein functionalisation was successfully achieved. Targeting efficiency was preliminarily evaluated using flow cytometry internalisation studies in two-dimensional cellular models, after fluorescence labelling of formulations with 6-coumarin. The uptake of cell-membrane-fragment-wrapped nanoemulsions was higher compared to uncoated nanoemulsions. Instead, the effect of transferrin grafting was less evident in serum-enriched medium, since such ligand probably undergoes competition with the endogenous protein. Moreover, a more pronounced internalisation was achieved when a pegylated heterodimer was employed for conjugation (p < 0.05).
Collapse
Affiliation(s)
- Federica Foglietta
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Chiara Ferraris
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loredana Serpe
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loretta Lazzarato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Marie Angele Cucci
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
14
|
Vasdev N, Pawar B, Gupta T, Mhatre M, Tekade RK. A Bird's Eye View of Various Cell-Based Biomimetic Nanomedicines for the Treatment of Arthritis. Pharmaceutics 2023; 15:1150. [PMID: 37111636 PMCID: PMC10146206 DOI: 10.3390/pharmaceutics15041150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Arthritis is the inflammation and tenderness of the joints because of some metabolic, infectious, or constitutional reasons. Existing arthritis treatments help in controlling the arthritic flares, but more advancement is required to cure arthritis meticulously. Biomimetic nanomedicine represents an exceptional biocompatible treatment to cure arthritis by minimizing the toxic effect and eliminating the boundaries of current therapeutics. Various intracellular and extracellular pathways can be targeted by mimicking the surface, shape, or movement of the biological system to form a bioinspired or biomimetic drug delivery system. Different cell-membrane-coated biomimetic systems, and extracellular-vesicle-based and platelets-based biomimetic systems represent an emerging and efficient class of therapeutics to treat arthritis. The cell membrane from various cells such as RBC, platelets, macrophage cells, and NK cells is isolated and utilized to mimic the biological environment. Extracellular vesicles isolated from arthritis patients can be used as diagnostic tools, and plasma or MSCs-derived extracellular vesicles can be used as a therapeutic target for arthritis. Biomimetic systems guide the nanomedicines to the targeted site by hiding them from the surveillance of the immune system. Nanomedicines can be functionalized using targeted ligand and stimuli-responsive systems to reinforce their efficacy and minimize off-target effects. This review expounds on various biomimetic systems and their functionalization for the therapeutic targets of arthritis treatment, and discusses the challenges for the clinical translation of the biomimetic system.
Collapse
Affiliation(s)
| | | | | | | | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opposite Air Force Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
15
|
Qin X, Zhu L, Zhong Y, Wang Y, Wu G, Qiu J, Wang G, Qu K, Zhang K, Wu W. Spontaneously Right-Side-Out-Orientated Coupling-Driven ROS-Sensitive Nanoparticles on Cell Membrane Inner Leaflet for Efficient Renovation in Vascular Endothelial Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205093. [PMID: 36703487 PMCID: PMC9951580 DOI: 10.1002/advs.202205093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Biomimetic cell membrane camouflaged technology has drawn extensive attention as a feasible and efficient way to realize the biological functions of nanoparticles from the parent cells. As the burgeoning nanotherapeutic, the right-side-out orientation self-assembly and pathological dependent "on-demand" cargo release of cell membrane camouflaged nanocarriers remarkably limit further development for practical applications. In the present study, a spontaneously right-side-out-orientated coupling-driven ROS-sensitive nanotherapeutic has been constructed for target endothelial cells (ECs) repair through the synergistic effects of spontaneously right-side-out-orientated camouflaging. This condition results from the specific affinity between the intracellular domain of key transmembrane receptors band 3 on cell membrane inner leaflet and the corresponding P4.2 peptide-modified nanoparticles without the additional coextrusion. The "on-demand" cargo release results from the pathological ROS-cleavable prodrug. Particularly, the red blood cell camouflaged nanotherapeutics (RBC-LVTNPs) can enhance target drug delivery through low oscillatory shear stress (LSS) blood flow in the injured ECs lesion. Both in vitro and in vivo results collectively confirm that RBC-LVTNPs can restore the damaged ECs and function with the recovered vascular permeability and low inflammation microenvironment. The findings provide a powerful and universal approach for developing the biomimetic cell membrane camouflaged nanotechnology.
Collapse
Affiliation(s)
- Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Yi Wang
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Guicheng Wu
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- JinFeng LaboratoryChongqing401329China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- JinFeng LaboratoryChongqing401329China
| |
Collapse
|
16
|
Precise assembly of inside-out cell membrane camouflaged nanoparticles via bioorthogonal reactions for improving drug leads capturing. Acta Pharm Sin B 2023; 13:852-862. [PMID: 36873174 PMCID: PMC9979189 DOI: 10.1016/j.apsb.2022.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Cell membrane camouflaged nanoparticles have been widely used in the field of drug leads discovery attribute to their unique biointerface targeting function. However, random orientation of cell membrane coating does not guarantee effective and appropriate binding of drugs to specific sites, especially when applied to intracellular regions of transmembrane proteins. Bioorthogonal reactions have been rapidly developed as a specific and reliable method for cell membrane functionalization without disturbing living biosystem. Herein, inside-out cell membrane camouflaged magnetic nanoparticles (IOCMMNPs) were accurately constructed via bioorthogonal reactions to screen small molecule inhibitors targeting intracellular tyrosine kinase domain of vascular endothelial growth factor recptor-2. Azide functionalized cell membrane acted as a platform for specific covalently coupling with alkynyl functionalized magnetic Fe3O4 nanoparticles to prepare IOCMMNPs. The inside-out orientation of cell membrane was successfully verified by immunogold staining and sialic acid quantification assay. Ultimately, two compounds, senkyunolide A and ligustilidel, were successfully captured, and their potential antiproliferative activities were further testified by pharmacological experiments. It is anticipated that the proposed inside-out cell membrane coating strategy endows tremendous versatility for engineering cell membrane camouflaged nanoparticles and promotes the development of drug leads discovery platforms.
Collapse
|
17
|
Wang N, Li J, Wang J, Nie D, Jiang X, Zhuo Y, Yu M. Shape-directed drug release and transport of erythrocyte-like nanodisks augment chemotherapy. J Control Release 2022; 350:886-897. [PMID: 36087799 DOI: 10.1016/j.jconrel.2022.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Nanoparticle shape has been recognized as a crucial parameter to affect the transport across various biological barriers, but its impact on drug release and the resulting therapeutic efficacy is less understood. Inspired by erythrocytes with shape-facilitated oxygen-carrying and penetrating abilities, we constructed artificial erythrocyte-like nanoparticles (RNDs) by wrapping discoidal mesoporous silica nanoparticles with red blood cell membrane. We observed that, compared with their spherical and rod-shaped counterparts with monotonic drug release profiles, RNDs displayed an on-demand drug release pattern mimicking natural erythrocytes, that is, they could rapidly release loaded oxygen and doxorubicin (DOX) in hypoxic condition but were relatively stable in high oxygen areas. Besides, the discoidal shape also endowed RNDs with facilitated transport capability in tumor extracellular matrix, contributing to increased tumor permeability. In tumor models, systemically administrated RNDs efficiently infiltrate throughout tumor tissue, successfully relieve tumor hypoxia, and further altered the cancer cell cycle status from G1 to G2 phase, enhancing cancer cell sensitivity to DOX correlated with improved chemotherapy efficacy. In contrast, nanospheres show hampered permeability, and nanorods suffer from insufficient intratumoral drug accumulation. These findings can offer guidelines for the use of particle shape as a design criterion to control drug release, transportation, and therapeutics delivery.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingyi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaohe Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yan Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
18
|
Wang S, Wang Y, Jin K, Zhang B, Peng S, Nayak AK, Pang Z. Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics. Expert Opin Drug Deliv 2022; 19:965-984. [PMID: 35917435 DOI: 10.1080/17425247.2022.2108786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Red blood cell (or erythrocyte) membrane-camouflaged nanoparticles (RBC-NPs) not only have a superior circulation life and do not induce accelerated blood clearance, but also possess special functions, which offers great potential in cancer therapy. AREAS COVERED This review focuses on the recent advances of RBC-NPs for delivering various agents to treat cancers in light of their vital role in improving drug delivery. Meanwhile, the construction and in vivo behavior of RBC-NPs are discussed to provide an in-depth understanding of the basis of RBC-NPs for improved cancer drug delivery. EXPERT OPINION Although RBC-NPs are quite prospective in delivering anti-cancer therapeutics, they are still in their infancy stage and many challenges need to be overcome for successful translation into the clinic. The preparation and modification of RBC membranes, the optimization of coating methods, the scale-up production and the quality control of RBC-NPs, and the drug loading and release should be carefully considered in the clinical translation of RBC-NPs for cancer therapy.
Collapse
Affiliation(s)
- Siyu Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yiwei Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Kai Jin
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, China
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj-757086, Odisha, India
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
19
|
Guo Y, Wang Z, Shi X, Shen M. Engineered cancer cell membranes: An emerging agent for efficient cancer theranostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210171. [PMID: 37324583 PMCID: PMC10190949 DOI: 10.1002/exp.20210171] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/24/2021] [Indexed: 06/15/2023]
Abstract
For efficient cancer theranostics, surface modification of nanomaterials plays an important role in improving targeting ability and reducing the non-specific interactions with normal tissues. Recently, the biomimetic technology represented by coating of cancer cell membranes (CCMs) has been regarded as a promising method to strengthen the biocompatibility and targeting specificity of nanomaterials. Furthermore, the engineered CCMs (ECCMs) integrated with the natural biological properties of CCMs and specific functions from other cells or proteins have offered more possibilities in the field of cancer theranostics. Herein, the recent progresses in the design and preparation of ECCMs are summarized, and the applications of ECCMs in targeting delivery, activation of immunity, and detection of circulating tumor cells are reviewed. Finally, the current challenges and future perspectives with regard to the development of ECCMs are briefly discussed.
Collapse
Affiliation(s)
- Yunqi Guo
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| | - Zhiqiang Wang
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| | - Mingwu Shen
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| |
Collapse
|
20
|
Guo K, Xiao N, Liu Y, Wang Z, Tóth J, Gyenis J, Thakur VK, Oyane A, Shubhra QT. Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
22
|
Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021; 175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The interactions between inorganic-based nanomaterials (NMs) and biological membranes are among the most important phenomena for developing NM-based therapeutics and resolving nanotoxicology. Herein, we introduce the structural and functional effects of inorganic-based NMs on biological membranes, mainly the plasma membrane and the endomembrane system, with an emphasis on the interface, which involves highly complex networks between NMs and biomolecules (such as membrane proteins and lipids). Significant efforts have been devoted to categorizing and analyzing the interaction mechanisms in terms of the physicochemical characteristics and biological effects of NMs, which can directly or indirectly influence the effects of NMs on membranes. Importantly, we summarize that the biological membranes act as platforms and thereby mediate NMs-immune system contacts. In this overview, the existing challenges and potential applications in the areas are addressed. A strong understanding of the discussed concepts will promote therapeutic NM designs for drug delivery systems by leveraging the NMs-membrane interactions and their functions.
Collapse
Affiliation(s)
- Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanping Jiang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Suhan Yin
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhendong Huang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
23
|
Liu X, Zhong X, Li C. Challenges in cell membrane-camouflaged drug delivery systems: Development strategies and future prospects. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Sun L, Xiong Z, Shen F, Wang Z, Liu Z. Biological membrane derived nanomedicines for cancer therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9943-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Ai X, Wang S, Duan Y, Zhang Q, Chen M, Gao W, Zhang L. Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry 2021; 60:941-955. [PMID: 32452667 PMCID: PMC8507422 DOI: 10.1021/acs.biochem.0c00343] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There has been significant interest in developing cell membrane-coated nanoparticles due to their unique abilities of biomimicry and biointerfacing. As the technology progresses, it becomes clear that the application of these nanoparticles can be drastically broadened if additional functions beyond those derived from the natural cell membranes can be integrated. Herein, we summarize the most recent advances in the functionalization of cell membrane-coated nanoparticles. In particular, we focus on emerging methods, including (1) lipid insertion, (2) membrane hybridization, (3) metabolic engineering, and (4) genetic modification. These approaches contribute diverse functions in a nondisruptive fashion while preserving the natural function of the cell membranes. They also improve on the multifunctional and multitasking ability of cell membrane-coated nanoparticles, making them more adaptive to the complexity of biological systems. We hope that these approaches will serve as inspiration for more strategies and innovations to advance cell membrane coating technology.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Shuyan Wang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Yaou Duan
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Qiangzhe Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Maggie Chen
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Weiwei Gao
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Liangfang Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
26
|
Shi M, Shen K, Yang B, Zhang P, Lv K, Qi H, Wang Y, Li M, Yuan Q, Zhang Y. An electroporation strategy to synthesize the membrane-coated nanoparticles for enhanced anti-inflammation therapy in bone infection. Theranostics 2021; 11:2349-2363. [PMID: 33500729 PMCID: PMC7797679 DOI: 10.7150/thno.48407] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The cell membrane-coated nanoparticles (MNPs) showed great potential in treating infectious disease due to their superior biofunctions in improving biocompatibility of nanoparticles and neutralization of pathogen or toxins. However, bone infection is accompanied with severe inflammation and bone loss, which also requires anti-inflammatory and osteoconductive treatment. The conventional membrane coating method has to undergo ultrasonication and extrusion procedures, which reduces the functionality of cell membrane and limits the choice of nanoparticles. In this study, we proposed an electroporation-based membrane coating strategy to facilitate the synthesis of MNPs to tackle those problems. Methods: Magnetic composite nanoparticles with osteoconductive Ca3(PO4)2 and bactericidal TiO2 were assembled into macrophages through phagocytosis and then collected to expose in electric field for obtaining macrophage membrane-coating nanoparticles. By using molecular dynamics simulation and materials characterizations, the cell membrane coating efficiency was confirmed. The in vitro anti-bacterial and anti-inflammatory abilities were tested by bacteria culturing and immune cells activation. Then drug-resistant bacteria induced bone infection model was established to verify its in vivo therapeutic effects. Results: The coated membrane prepared through electroporation reserved the integrality of membrane structure and right-sidedness, with more functional proteins. Those led to the superior properties of recognition and adsorption with bacteria, toxins and inflammatory cytokines. Owing to the benefits of electroporation, the MNPs exhibited significant better antibacterial and anti-inflammatory abilities for enhancing the tissue repair process. Conclusion: This study provides a novel self-assembly cell membrane coating strategy by electroporation to construct multifunctional membrane-coating nanoparticles for bone infection treatment. This strategy not only improves the functions of coated membrane, but is also proved to be universal for varies nanoparticles or cells, indicating a great potential for future applications in the bioengineering field.
Collapse
Affiliation(s)
- Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bin Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kangle Lv
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Haoning Qi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yunxiao Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Mei Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
27
|
Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, Zhang C, Tang W, Liu Z. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 2020; 9:1088-1103. [PMID: 33332490 DOI: 10.1039/d0bm01164a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies of nanomedicine have achieved dramatic progress in recent decades. However, the main challenges that traditional nanomedicine has to overcome include low accumulation at target sites and rapid clearance from the blood circulation. An interesting approach using cell membrane coating technology has emerged as a possible way to overcome these limitations, owing to the enhanced targeted delivery and reduced immunogenicity of cell membrane moieties. Mesenchymal stem cell (MSC) therapy has been investigated for treating various diseases, ranging from inflammatory diseases to tissue damage. Recent studies with engineered modified MSCs or MSC membranes have focused on enhancing cell therapeutic efficacy. Therefore, bioengineering strategies that couple synthetic nanoparticles with MSC membranes have recently received much attention due to their homing ability and tumor tropism. Given the various membrane receptors on their surfaces, MSC membrane-coated nanoparticles are an effective method with selective targeting properties, allowing entry into specific cells. Here, we review recent progress on the use of MSC membrane-coated nanoparticles for biomedical applications, particularly in the two main antitumor and anti-inflammatory fields. The combination of a bioengineered cell membrane and synthesized nanoparticles presents a wide range of possibilities for the further development of targeted drug delivery, showing the potential to enhance the therapeutic efficacy for treating various diseases.
Collapse
Affiliation(s)
- Mian Wang
- Department of Cardiology, Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Müller S, Gruhle K, Meister A, Hause G, Drescher S. Bolalipid-Doped Liposomes: Can Bolalipids Increase the Integrity of Liposomes Exposed to Gastrointestinal Fluids? Pharmaceutics 2019; 11:E646. [PMID: 31816937 PMCID: PMC6956191 DOI: 10.3390/pharmaceutics11120646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/10/2023] Open
Abstract
The use of archaeal lipids and their artificial analogues, also known as bolalipids, represents a promising approach for the stabilization of classical lipid vesicles for oral application. In a previous study, we investigated the mixing behavior of three single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidyl-cholines. We proved, that the bolalipids PC-C32(1,32C6)-PC and PC-C32(1,32C9)-PC show miscibility with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). In the present work, we extended our vesicle system to natural lipid mixtures using phosphatidylcholine from soy beans, and we investigated the effect of incorporated bolalipids on the integrity of these mixed liposomes (bolasomes) in different gastrointestinal fluids using a dithionite assay and a calcein release assay in combination with particle size measurements. Finally, we also studied the retention of calcein within the bolasomes during freeze-drying. As a main result, we could show that in particular PC-C32(1,32C6)-PC is able to increase the stability of bolasomes in simulated gastric fluid-a prerequisite for the further use of liposomes as oral drug delivery vehicles.
Collapse
Affiliation(s)
- Sindy Müller
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| | - Kai Gruhle
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, MLU Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| |
Collapse
|
29
|
Harris JC, Scully MA, Day ES. Cancer Cell Membrane-Coated Nanoparticles for Cancer Management. Cancers (Basel) 2019; 11:E1836. [PMID: 31766360 PMCID: PMC6966582 DOI: 10.3390/cancers11121836] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a global health problem in need of transformative treatment solutions for improved patient outcomes. Many conventional treatments prove ineffective and produce undesirable side effects because they are incapable of targeting only cancer cells within tumors and metastases post administration. There is a desperate need for targeted therapies that can maximize treatment success and minimize toxicity. Nanoparticles (NPs) with tunable physicochemical properties have potential to meet the need for high precision cancer therapies. At the forefront of nanomedicine is biomimetic nanotechnology, which hides NPs from the immune system and provides superior targeting capabilities by cloaking NPs in cell-derived membranes. Cancer cell membranes expressing "markers of self" and "self-recognition molecules" can be removed from cancer cells and wrapped around a variety of NPs, providing homotypic targeting and circumventing the challenge of synthetically replicating natural cell surfaces. Compared to unwrapped NPs, cancer cell membrane-wrapped NPs (CCNPs) provide reduced accumulation in healthy tissues and higher accumulation in tumors and metastases. The unique biointerfacing capabilities of CCNPs enable their use as targeted nanovehicles for enhanced drug delivery, localized phototherapy, intensified imaging, or more potent immunotherapy. This review summarizes the state-of-the-art in CCNP technology and provides insight to the path forward for clinical implementation.
Collapse
Affiliation(s)
- Jenna C. Harris
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
| | | | - Emily S. Day
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
- Biomedical Engineering, University of Delaware, Newark, DE 19716, USA;
- Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA
| |
Collapse
|
30
|
Han X, Shen S, Fan Q, Chen G, Archibong E, Dotti G, Liu Z, Gu Z, Wang C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. SCIENCE ADVANCES 2019; 5:eaaw6870. [PMID: 31681841 PMCID: PMC6810293 DOI: 10.1126/sciadv.aaw6870] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Erythrocytes or red blood cells (RBCs) represent a promising cell-mediated drug delivery platform due to their inherent biocompatibility. Here, we developed an antigen delivery system based on the nanoerythrosomes derived from RBCs, inspired by the splenic antigen-presenting cell targeting capacity of senescent RBCs. Tumor antigens were loaded onto the nanoerythrosomes by fusing tumor cell membrane-associated antigens with nanoerythrosomes. This tumor antigen-loaded nanoerythrosomes (nano-Ag@erythrosome) elicited antigen responses in vivo and, in combination with the anti-programmed death ligand 1 (PD-L1) blockade, inhibited the tumor growth in B16F10 and 4T1 tumor models. We also generated a tumor model showing that "personalized nano-Ag@erythrosomes" could be achieved by fusing RBCs and surgically removed tumors, which effectively reduced tumor recurrence and metastasis after surgery.
Collapse
Affiliation(s)
- Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shufang Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Edikan Archibong
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gianpietro Dotti
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
31
|
Ma X, Li H, Qiao S, Huang C, Liu Q, Shen X, Geng Y, Xu W, Sun C. A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol. Food Chem 2019; 302:125359. [PMID: 31442702 DOI: 10.1016/j.foodchem.2019.125359] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 01/06/2023]
Abstract
A simple and rapid sensing strategy was proposed for chloramphenicol (CAP) detection based on structure-switching signaling aptamers. In this protocol, the aptamer can bind to both the fluorophore (FAM)-labeled complementary strand and the quencher (BHQ1)-labeled complementary strand, thus leading to the effective quenching of FAM fluorescence by BHQ1. However, when CAP is present, the structure switch is reversed because the aptamer recognizes CAP, resulting in fluorescence recovery. Such a fluorescence-sensing platform can monitor CAP within a good linear range (1-100 ng/mL), with a detection limit of 0.70 ng/mL. Cross-reactivity with other common antibiotics is negligible, indicating the excellent selectivity of the strategy. Moreover, as the aptamers are not modified, this method is simple and low-cost. The present work reveals a new direction for detecting CAP or other target compounds without prior knowledge of the secondary or tertiary structures of the aptamer.
Collapse
Affiliation(s)
- Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Shangna Qiao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chujun Huang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qiuli Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xu Shen
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yongxing Geng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
32
|
Fan Z, Deng J, Li PY, Chery DR, Su Y, Zhu P, Kambayashi T, Blankenhorn EP, Han L, Cheng H. A new class of biological materials: Cell membrane-derived hydrogel scaffolds. Biomaterials 2019; 197:244-254. [PMID: 30669015 PMCID: PMC6369705 DOI: 10.1016/j.biomaterials.2019.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/18/2022]
Abstract
Biological materials are superior to synthetic biomaterials in biocompatibility and active interactions with cells. Here, a new class of biological materials, cell membrane-derived hydrogel scaffolds are reported for harnessing these advantages. To form macroporous scaffolds, vesicles derived from red blood cell membranes (RBCMs) are chemically crosslinked via cryogelation. The RBCM scaffolds with a pore size of around 70 μm are soft and injectable. Highly biocompatible scaffolds are typically made of superhydrophilic polymers and lack the ability to encapsulate and release hydrophobic drugs in a controlled manner. However, hydrophobic molecules can be efficiently encapsulated inside RBCM scaffolds and be sustainedly released. RBCM scaffolds show low neutrophil infiltration after subcutaneous injection in mice, and a significantly higher number of infiltrated macrophages than methacrylate alginate (MA-alginate) scaffolds. According to gene expression and surface markers, these macrophages have an M2-like phenotype, which is anti-inflammatory and immune suppressive. There are also higher percentages of macrophages presenting immunosuppressive PD-L1 in RBCM-scaffolds than in MA-alginate scaffolds. Interestingly, the concentrations of anti-inflammatory cytokine, IL-10 in both types of scaffolds are higher than those in normal organ tissues. This study sheds light on cell membrane-derived hydrogels, which can actively modulate cells in unique ways unavailable to existing hydrogel scaffolds.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Junjie Deng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA; School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325011, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Peter Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Yunfei Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325011, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Pu Zhu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, Liu Z. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS NANO 2018; 12:5121-5129. [PMID: 29771487 DOI: 10.1021/acsnano.7b09041] [Citation(s) in RCA: 470] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tumor vaccines for cancer prevention and treatment have attracted tremendous interests in the area of cancer immunotherapy in recent years. In this work, we present a strategy to construct cancer vaccines by encapsulating immune-adjuvant nanoparticles with cancer cell membranes modified by mannose. Poly(d,l-lactide- co-glycolide) nanoparticles are first loaded with toll-like receptor 7 agonist, imiquimod (R837). Those adjuvant nanoparticles (NP-R) are then coated with cancer cell membranes (NP-R@M), whose surface proteins could act as tumor-specific antigens. With further modification with mannose moiety (NP-R@M-M), the obtained nanovaccine shows enhanced uptake by antigen presenting cells such as dendritic cells, which would then be stimulated to the maturation status to trigger antitumor immune responses. With great efficacy to delay tumor development as a prevention vaccine, vaccination with such NP-R@M-M in combination with checkpoint-blockade therapy further demonstrates outstanding therapeutic efficacy to treat established tumors. Therefore, our work presents an innovative way to fabricate cancer nanovaccines, which in principle may be applied for a wide range of tumor types.
Collapse
Affiliation(s)
- Rong Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jun Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Ligeng Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiaoqi Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yuhuan Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Rui Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
34
|
Fang RH, Kroll AV, Gao W, Zhang L. Cell Membrane Coating Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706759. [PMID: 29582476 PMCID: PMC5984176 DOI: 10.1002/adma.201706759] [Citation(s) in RCA: 1079] [Impact Index Per Article: 154.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/12/2017] [Indexed: 05/03/2023]
Abstract
Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of nanomaterials available, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. Here, a comprehensive overview is provided on an emerging platform: cell-membrane-coating nanotechnology. As a fundamental unit of biology, cells carry out a wide range of functions, including the remarkable ability to interface and interact with their surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment existing nanocarriers. Further, the introduction of a natural membrane substrate onto nanoparticles surfaces has enabled additional applications beyond those traditionally associated with nanomedicine. Despite its relative youth, there exists an impressive body of literature on cell membrane coating, which is covered here in detail. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this developing technology.
Collapse
Affiliation(s)
- Ronnie H. Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ashley V. Kroll
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
35
|
Fan Z, Li PY, Deng J, Bady SC, Cheng H. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. NANO RESEARCH 2018; 11:5573-5583. [PMID: 31656553 PMCID: PMC6814018 DOI: 10.1007/s12274-018-2084-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 05/18/2023]
Abstract
The controlled release of therapeutics from micro or nanoparticles has been well-studied. Incorporation of these particles inside biomaterial scaffolds is promising for tissue regeneration and immune modulation. However, these particles may induce inflammatory and foreign body responses to scaffold constructs, limiting their applications. Here we show that widely used poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) formed by double emulsion dramatically increased neutrophil infiltration and pro-inflammatory cytokines in alginate scaffolds 1 day after the subcutaneous injection of the scaffolds into mice. The coating of red blood cell (RBC) membranes on PLGA NPs completely eliminated these short-term inflammatory responses. For a longer term of 10 days, neither PLGA NPs nor RBC membrane-coated nanoparticles exerted a significant effect on the infiltration of neutrophils or macrophages in alginate scaffolds possibly due to the degradation and/or clearance of nanoparticles by infiltrating cells by that time. Despite the extensive exploration of cell membrane-coated nanoparticles, our study is the first to investigate the effects of cell membrane coating on foreign body reaction to nanoparticles. Harnessing the natural biocompatibility of cell membranes, our strategy of anti-inflammatory protection for scaffolds may be pivotal for many applications, such as those relying on the recruitment of stem cells and/or progenitor cells to scaffolds.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Peter Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Junjie Deng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, CAS, Wenzhou 325011, China
| | - Stephen C Bady
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Abstract
Cell membrane engineering, including live cell membrane bioconjugation and cell membrane-derived nanomaterials is a highly promising strategy to modulate immune responses for treating diseases. Many cell membrane engineering methods have potential for translation for human clinical use in the near future. In this Topical Review, we summarize the cell membrane conjugation strategies that have been investigated for cancer immunotherapy, the prevention of immune rejection to donor cells and tissues, and the induction of antigen-specific tolerance in autoimmune diseases. Additionally, cell membrane-derived or membrane-coated nanomaterials are an emerging class of nanomaterials that is attracting significant attention in the field of nanomedicine. Some of these nanomaterials have been employed to elicit immune responses against cancer, toxins, and bacteria, although their application in establishing immune tolerance has not been explored. In addition to discussing potential problems, we provide our perspectives for promising future directions.
Collapse
Affiliation(s)
- Peter Y. Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials 2018; 154:24-33. [DOI: 10.1016/j.biomaterials.2017.10.048] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/19/2017] [Accepted: 10/29/2017] [Indexed: 01/18/2023]
|
38
|
Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, Liu Z. Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701429. [PMID: 28722140 DOI: 10.1002/adma.201701429] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/07/2017] [Indexed: 05/19/2023]
Abstract
Hypoxia, a common feature within many types of solid tumors, is known to be closely associated with limited efficacy for cancer therapies, including radiotherapy (RT) in which oxygen is essential to promote radiation-induced cell damage. Here, an artificial nanoscale red-blood-cell system is designed by encapsulating perfluorocarbon (PFC), a commonly used artificial blood substitute, within biocompatible poly(d,l-lactide-co-glycolide) (PLGA), obtaining PFC@PLGA nanoparticles, which are further coated with a red-blood-cell membrane (RBCM). The developed PFC@PLGA-RBCM nanoparticles with the PFC core show rather efficient loading of oxygen, as well as greatly prolonged blood circulation time owing to the coating of RBCM. With significantly improved extravascular diffusion within the tumor mass, owing to their much smaller nanoscale sizes compared to native RBCs with micrometer sizes, PFC@PLGA-RBCM nanoparticles are able to effectively deliver oxygen into tumors after intravenous injection, leading to greatly relieved tumor hypoxia and thus remarkably enhanced treatment efficacy during RT. This work thus presents a unique type of nanoscale RBC mimic for efficient oxygen delivery into solid tumors, favorable for cancer treatment by RT, and potentially other types of therapy as well.
Collapse
Affiliation(s)
- Min Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
39
|
Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017; 128:69-83. [PMID: 28292726 PMCID: PMC5417338 DOI: 10.1016/j.biomaterials.2017.02.041] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The continued evolution of biomedical nanotechnology has enabled clinicians to better detect, prevent, manage, and treat human disease. In order to further push the limits of nanoparticle performance and functionality, there has recently been a paradigm shift towards biomimetic design strategies. By taking inspiration from nature, the goal is to create next-generation nanoparticle platforms that can more effectively navigate and interact with the incredibly complex biological systems that exist within the body. Of great interest are cellular membranes, which play essential roles in biointerfacing, self-identification, signal transduction, and compartmentalization. In this review, we explore the major ways in which researchers have directly leveraged cell membrane-derived biomaterials for the fabrication of novel nanotherapeutics and nanodiagnostics. Such emerging technologies have the potential to significantly advance the field of nanomedicine, helping to improve upon traditional modalities while also enabling novel applications.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Jiang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
|
41
|
Huang P, Zhao J, Wei C, Hou X, Chen P, Tan Y, He CY, Wang Z, Chen ZY. Erythrocyte membrane based cationic polymer-mcDNA complexes as an efficient gene delivery system. Biomater Sci 2017; 5:120-127. [DOI: 10.1039/c6bm00638h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An erythrocyte membrane based gene delivery system presents high transfection efficiency and negligible cytotoxicity.
Collapse
Affiliation(s)
- Ping Huang
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Jing Zhao
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Chiju Wei
- Multidisciplinary Research Center
- Shantou 515063
- P. R. China
| | - Xiaohu Hou
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Pingzhang Chen
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging
- Shenzhen Key Laboratory for MRI
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Cheng-Yi He
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Zhiyong Wang
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| |
Collapse
|
42
|
Abstract
Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.
Collapse
Affiliation(s)
- Weiwei Gao
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| | - Liangfang Zhang
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| |
Collapse
|
43
|
Affiliation(s)
- Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolin 27599, United States
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolin 27599, United States
| |
Collapse
|
44
|
Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 2015; 220:600-7. [PMID: 26210440 PMCID: PMC4688192 DOI: 10.1016/j.jconrel.2015.07.019] [Citation(s) in RCA: 395] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 12/15/2022]
Abstract
Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Brian T Luk
- Department of NanoEngineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
45
|
Zhang J, Gao W, Fang RH, Dong A, Zhang L. Synthesis of Nanogels via Cell Membrane-Templated Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4309-13. [PMID: 26044721 PMCID: PMC4562875 DOI: 10.1002/smll.201500987] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/13/2015] [Indexed: 05/19/2023]
Abstract
The synthesis of biomimetic hydrogel nanoparticles coated with a natural cell membrane is described. Compared to the existing strategy of wrapping cell membranes onto pre-formed nanoparticle substrates, this new approach forms the cell membrane-derived vesicles first, followed by growing nanoparticle cores in situ. It adds significant controllability over the nanoparticle properties and opens unique opportunities for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA. Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Gao
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liangfang Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Gao W, Zhang L. Engineering red-blood-cell-membrane-coated nanoparticles for broad biomedical applications. AIChE J 2015. [DOI: 10.1002/aic.14735] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weiwei Gao
- Dept. of Nanoengineering and Moores Cancer Center; University of California; San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of Nanoengineering and Moores Cancer Center; University of California; San Diego, La Jolla CA 92093
| |
Collapse
|