1
|
Ren P, Li J, Xiong L. Biodistribution and Biotoxicity Assessment of Fluorescent Conjugated Polymer Dots. Adv Healthc Mater 2024; 13:e2401737. [PMID: 38979864 DOI: 10.1002/adhm.202401737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Conjugated polymer dots (Pdots) have shown potential in the biomedical fields due to their optical properties and customizable design. However, the limited research on the biotoxicity of Pdots hinders their further application and translation. Lipophilic Pdots are prone to adsorbing specific proteins, leading to targeted tissue accumulation. Therefore, lipophilic fluorescent Pdots (Bare-Pdots) are synthesized using the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) to systematically evaluate their biodistribution and biotoxicity in stem cells, zebrafish embryos, and mice. It is observed that Bare-Pdots are readily internalized by cells and adhered to the embryonic chorion. Additionally, Bare-Pdots exhibit a distinct distribution in brown adipose tissue and heart, closely associated with phagocytosis of capillary endothelial cells involved in lipid metabolism. Notably, injection of Bare-Pdots at 5 mg kg-1 results in dysfunction of brown adipose tissue and an increased risk of obesity 90 days post-injection. Furthermore, hydrophilic COOH-Pdots and NH2-Pdots with reduced lipophilicity are synthesized using amphiphilic ligands. NH2-Pdots show similar distribution but lower biotoxicity compared to Bare-Pdots. Nevertheless, injection of COOH-Pdots at 5 mg kg-1 causes a decrease in white blood cells and renal tubular damage. These findings provide valuable insights for optimizing dosage to ensure the safe use of Pdots in preclinical applications.
Collapse
Affiliation(s)
- Panting Ren
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
2
|
Wu J, Pu K. Leveraging Semiconducting Polymer Nanoparticles for Combination Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308924. [PMID: 37864513 DOI: 10.1002/adma.202308924] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Cancer immunotherapy has become a promising method for cancer treatment, bringing hope to advanced cancer patients. However, immune-related adverse events caused by immunotherapy also bring heavy burden to patients. Semiconducting polymer nanoparticles (SPNs) as an emerging nanomaterial with high biocompatibility, can eliminate tumors and induce tumor immunogenic cell death through different therapeutic modalities, including photothermal therapy, photodynamic therapy, and sonodynamic therapy. In addition, SPNs can work as a functional nanocarrier to synergize with a variety of immunomodulators to amplify anti-tumor immune responses. In this review, SPNs-based combination cancer immunotherapy is comprehensively summarized according to the SPNs' therapeutic modalities and the type of loaded immunomodulators. The in-depth understanding of existing SPNs-based therapeutic modalities will hopefully inspire the design of more novel nanomaterials with potent anti-tumor immune effects, and ultimately promote their clinical translation.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
3
|
Neumann PR, Erdmann F, Holthof J, Hädrich G, Green M, Rao J, Dailey LA. Different PEG-PLGA Matrices Influence In Vivo Optical/Photoacoustic Imaging Performance and Biodistribution of NIR-Emitting π-Conjugated Polymer Contrast Agents. Adv Healthc Mater 2021; 10:e2001089. [PMID: 32864903 PMCID: PMC11469236 DOI: 10.1002/adhm.202001089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Indexed: 12/15/2022]
Abstract
The π-conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) with deep-red/near-infrared (NIR) absorption and emission has been investigated as a contrast agent for in vivo optical and photoacoustic imaging. PCPDTBT is encapsulated within poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG2kDa -PLGA4kDa or PEG5kDa -PLGA55kDa ) micelles or enveloped by the phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEG2kDa -DPPE), to investigate the formulation effect on imaging performance, biodistribution, and biocompatibility. Nanoparticles that meet the quality requirements for parenteral administration are generated with similar physicochemical properties. Optical phantom imaging reveals that both PEG-PLGA systems exhibit a 30% higher signal-to-background ratio (SBR) than PEG2kDa -DPPE. This trend cannot be observed in a murine HeLa xenograft model following intravenous administration since dramatic differences in biodistribution are observed. PEG2kDa -PLGA4kDa systems accumulate more rapidly in the liver compared to other formulations and PEG2kDa -DPPE demonstrates a higher tumor localization. Protein content in the "hard" corona differs between formulations (PEG2kDa -DPPE < PEG2kDa -PLGA4kDa < PEG5kDa -PLGA55kDa ), although this observation alone does not explain biodistribution patterns. PEG2kDa -PLGA4kDa systems show the highest photoacoustic amplitude in a phantom, but also a lower signal in the tumor due to differences in biodistribution. This study demonstrates that formulations for conjugated polymer contrast agents can have significant impact on both imaging performance and biodistribution.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Frank Erdmann
- Institute of PharmacyDepartment of PharmacologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Joost Holthof
- FUJIFILM VisualsonicsJoop Geesinkweg 140Amsterdam1114 ABThe Netherlands
| | - Gabriela Hädrich
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Mark Green
- Department of PhysicsKing's College LondonLondonWC2R 2LSUK
| | - Jianghong Rao
- Department of Radiology and ChemistryStanford UniversityStanfordCA94305‐5484USA
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and BiopharmacyUniversity of ViennaVienna1090Austria
| |
Collapse
|
4
|
Sun T, Guo X, Zhong R, Wang C, Liu H, Li H, Ma L, Guan J, You C, Tian M. Interactions of Alginate-Deferoxamine Conjugates With Blood Components and Their Antioxidation in the Hemoglobin Oxidation Model. Front Bioeng Biotechnol 2020; 8:53. [PMID: 32117933 PMCID: PMC7026261 DOI: 10.3389/fbioe.2020.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
While deferoxamine (DFO) has long been used as an FDA-approved iron chelator, its proangiogenesis ability attracts increasing number of research interests. To address its drawbacks such as short plasma half-life and toxicity, polymeric conjugated strategy has been proposed and shown superiority. Owing to intravenous injection and application in blood-related conditions, however, the blood interactions and antioxidation of the DFO-conjugates and the mechanisms underlying these outcomes remain to be elucidated. In this regard, incubating with three different molecular-weight (MW) alginate-DFO conjugates (ADs) red blood cells (RBCs), coagulation system, complement and platelet were investigated. To prove the antioxidant activity of ADs, we used hemoglobin oxidation model in vitro. ADs did not cause RBCs hemolysis while reversible aggregation and normal deformability ability were observed. However, the coagulation time, particularly APTT and TT, were significantly prolonged in a dose-dependent manner, and fibrinogen was dramatically decreased, suggesting ADs could dominantly inhibit the intrinsic pathways in the process of coagulation. The dose-dependent anticoagulation might be related with the functional groups along the alginate chains. The complements, C3a and C5a, were activated by ADs in a dose-dependent manner through alternative pathway. For platelet, ADs slightly suppressed the activation and aggregation at low concentration. Based on above results, the cross-talking among coagulation, complement and platelet induced by ADs was proposed. The antioxidation of ADs through iron chelation was proved and the antioxidant activity was shown in a MW-dependent manner.
Collapse
Affiliation(s)
- Tong Sun
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Guo
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chengwei Wang
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Tian
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Abelha TF, Dreiss CA, Green MA, Dailey LA. Conjugated polymers as nanoparticle probes for fluorescence and photoacoustic imaging. J Mater Chem B 2020; 8:592-606. [DOI: 10.1039/c9tb02582k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, the role of conjugated polymer nanoparticles (CPNs) in emerging bioimaging techniques is described.
Collapse
Affiliation(s)
- Thais Fedatto Abelha
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
- School of Pharmacy
| | - Cécile A. Dreiss
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
| | | | | |
Collapse
|
6
|
Neumann PR, Crossley DL, Turner M, Ingleson M, Green M, Rao J, Dailey LA. In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46525-46535. [PMID: 31746180 DOI: 10.1021/acsami.9b17022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Borylated poly(fluorene-benzothiadiazoles) (PF8-BT) are π-conjugated polymers (CPs) with deep-red/near-infrared (NIR) absorption and emission profiles suitable for in vivo optical imaging. A fully borylated PF8-BT derivative (P4) was encapsulated in pegylated poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles and compared with a reference NIR-emitting CP (PCPDTBT) or indocyanine green (ICG). All formulations satisfied quality requirements for parenterally administered diagnostics. P4 nanoparticles had higher quantum yield (2.3%) than PCPCDTBT (0.01%) or ICG nanoparticles (1.1%). The signal/background ratios (SBRs) of CP systems P4 and PCPDTBT in a phantom mouse (λem = 820 nm) increased linearly with fluorophore mass (12.5-100 μg/mL), while the SBRs of ICG decreased above 25 μg/mL. P4 nanoparticles experienced <10% photobleaching over 10 irradiations (PCPDTBT: ∼25% and ICG: >44%). In a mouse tumor xenograft model, P4 nanoparticles showed a 5-fold higher SBR than PCPDTBT particles with fluorophore accumulation in the liver > spleen > tumor. Blood chemistry and tissue histology showed no abnormalities compared to untreated animals after a single administration.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| | - Daniel L Crossley
- Department of Chemical Sciences , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Michael Turner
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| | - Michael Ingleson
- School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , U.K
| | - Mark Green
- Department of Physics , King's College London , London WC2R 2LS , U.K
| | - Jianghong Rao
- Department of Radiology and Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| |
Collapse
|
7
|
Abelha TF, Neumann PR, Holthof J, Dreiss CA, Alexander C, Green M, Dailey LA. Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. J Mater Chem B 2019; 7:5115-5124. [PMID: 31363720 DOI: 10.1039/c9tb00937j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The near-infrared absorbing conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) has been investigated as a contrast agent for optical and photoacoustic imaging. Lipophilic π-conjugated polymers can be efficiently encapsulated within self-assembling diblock copolymer poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles, although the effect of variations in PEG and PLGA chain lengths on nanoparticle properties, performance and biocompatibility have not yet been investigated. In this study, PEG-PLGA with different block lengths (PEG2kDa-PLGA4kDa, PEG2kDa-PLGA15kDa and PEG5kDa-PLGA55kDa) were used to encapsulate PCPDTBT. Nanoparticle sizes were smallest (<100 nm) when using PEG2kDa-PLGA4kDa, with <5% PCPDTBT content and a reduction in the total solids concentration of the organic phase. All PEG-PLGA nanoparticles were colloidally stable in water and serum-supplemented cell culture medium over 24 h at 37 °C, with slight evidence of protein surface adsorption. PEG2kDa-PLGA4kDa systems showed a threefold lower cytotoxicity (IC50 value) than the other two systems. Haemolytic activity was <2.5% for all systems and no platelet aggregation or inhibition of ADP-induced platelet aggregation was observed. Encapsulation of PCPDTBT within a PEG-PLGA matrix shifted fluorescence emission towards red wavelengths (760 nm in THF vs. 840 nm in nanoparticles) and reduced the quantum yield by 30-70-fold compared to THF. Nonetheless, PCPDTBT:PEG2kDa-PLGA4kDa systems had a marginally higher quantum yield and signal-to-background ratio in a phantom mouse compared with PEG2kDa-PLGA15kDa and PEG5kDa-PLGA55kDa systems. As a photoacoustic imaging probe, PCPDTBT:PEG2kDa-PLGA4kDa systems also showed a higher photoacoustic amplitude compared to higher molecular weight PEG-PLGA systems. Overall, the low molecular weight PEG2kDa-PLGA4kDa nanoparticle systems conferred the benefits of smaller sizes, reduced cytotoxicity and enhanced imaging performance compared to higher molecular weight matrix polymers.
Collapse
Affiliation(s)
- Thais Fedatto Abelha
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paul Robert Neumann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
| | - Joost Holthof
- FUJIFILM Visualsonics, Joop Geesinkweg 140, 1114 AB, Amsterdam, The Netherlands
| | - Cécile A Dreiss
- King's College London, School of Cancer & Pharmaceutical Sciences, Waterloo Campus, SE1 9NH, London, UK
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Mark Green
- King's College London, Department of Physics, Strand Campus, WC2R 2LS, London, UK.
| | - Lea Ann Dailey
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
8
|
Sun T, Guo X, Zhong R, Ma L, Li H, Gu Z, Guan J, Tan H, You C, Tian M. Interactions of oligochitosan with blood components. Int J Biol Macromol 2018; 124:304-313. [PMID: 30445093 DOI: 10.1016/j.ijbiomac.2018.11.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/15/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Oligochitosan (OCHI) is known to have some specific biological activities. However, its interactions with blood components and related correlation with molecular structures remains to be clarified due to its growing use in biomedical areas. Herein, a series of OCHI were prepared by hydrogen peroxide induced degradation combined fractionation in ethanol solutions and their molecular structures were characterized by GPC, FTIR, 1H and 13C NMR, and then the interactions of the prepared OCHI with blood components, including red blood cells (hemolysis, deformability, and aggregation), coagulation system, complement (C3a, and C5a activation), and platelet (activation, and aggregation), were investigated. For red blood cells, OCHI has a quite low risk of hemolysis in a dose- and MW-dependent manner and the deformability and aggregation were observed in its high MW fraction. The coagulation tests revealed that OCHI is capable of a mild anticoagulation through blocking the intrinsic pathway and the anticoagulation corresponding MW was identified. In terms of complement, OCHI could inhibit C3a in a dose-dependent manner and activate C5a with its high MW fraction. In addition, there is no significant effect of OCHI on platelet activation and aggregation. Based on above results, the interactions related mechanism was discussed and proposed.
Collapse
Affiliation(s)
- Tong Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xi Guo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meng Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
9
|
Urbano L, Clifton L, Ku HK, Kendall-Troughton H, Vandera KKA, Matarese BFE, Abelha T, Li P, Desai T, Dreiss CA, Barker RD, Green MA, Dailey LA, Harvey RD. Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6125-6137. [PMID: 29726688 DOI: 10.1021/acs.langmuir.8b00561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.
Collapse
Affiliation(s)
- Laura Urbano
- School of Cancer & Pharmaceutical Sciences , King's College London , 150 Stamford Street , London SE1 9NH , U.K
| | - Luke Clifton
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0QX , U.K
| | - Hoi Ki Ku
- School of Cancer & Pharmaceutical Sciences , King's College London , 150 Stamford Street , London SE1 9NH , U.K
| | - Hannah Kendall-Troughton
- School of Cancer & Pharmaceutical Sciences , King's College London , 150 Stamford Street , London SE1 9NH , U.K
| | - Kalliopi-Kelli A Vandera
- School of Cancer & Pharmaceutical Sciences , King's College London , 150 Stamford Street , London SE1 9NH , U.K
| | - Bruno F E Matarese
- Department of Chemistry , Imperial College London , London SW7 2AZ , U.K
| | - Thais Abelha
- School of Cancer & Pharmaceutical Sciences , King's College London , 150 Stamford Street , London SE1 9NH , U.K
| | - Peixun Li
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0QX , U.K
| | - Tejal Desai
- Department of Bioengineering and Therapeutic Sciences , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Cécile A Dreiss
- School of Cancer & Pharmaceutical Sciences , King's College London , 150 Stamford Street , London SE1 9NH , U.K
| | - Robert D Barker
- School of Physical Sciences , University of Kent , Canterbury , Kent CT2 7NH , U.K
| | - Mark A Green
- Department of Physics , King's College London , Strand Campus , London WC2R 2LS , U.K
| | - Lea Ann Dailey
- Institut für Pharmazeutische Technologie und Biopharmazie , Martin-Luther-Universität Halle-Wittenberg , Halle 06120 , Germany
| | - Richard D Harvey
- Institut für Pharmazeutische Technologie und Biopharmazie , Martin-Luther-Universität Halle-Wittenberg , Halle 06120 , Germany
| |
Collapse
|
10
|
Matus MF, Vilos C, Cisterna BA, Fuentes E, Palomo I. Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses. Vascul Pharmacol 2018; 101:1-8. [DOI: 10.1016/j.vph.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/12/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
|
11
|
Kemal E, Peters R, Bourke S, Fairclough S, Bergstrom-Mann P, Owen DM, Sandiford L, Dailey LA, Green M. Magnetic conjugated polymer nanoparticles doped with a europium complex for biomedical imaging. Photochem Photobiol Sci 2018; 17:718-721. [DOI: 10.1039/c7pp00402h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembling conjugated polymer nanoparticles containing PVK and PLGA-PEG as a matrix polymer were doped with both a luminescent rare-earth complex and magnetic nanoparticles (SPIONs), giving rise to materials that are both luminescent and magnetic.
Collapse
Affiliation(s)
- E. Kemal
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - R. Peters
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - S. Bourke
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - S. Fairclough
- Department of Physics
- King's College London
- Strand
- London
- UK
| | | | - D. M. Owen
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - L. Sandiford
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - L. A. Dailey
- Department of Pharmacy
- Martin-Luther-Universität Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Green
- Department of Physics
- King's College London
- Strand
- London
- UK
| |
Collapse
|
12
|
Crossley DL, Urbano L, Neumann R, Bourke S, Jones J, Dailey LA, Green M, Humphries MJ, King SM, Turner ML, Ingleson MJ. Post-polymerization C-H Borylation of Donor-Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IR-OLEDs and Effective Biological Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28243-28249. [PMID: 28783304 DOI: 10.1021/acsami.7b08473] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-polymerization modification of the donor-acceptor polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole), PF8-BT, by electrophilic C-H borylation is a simple method to introduce controllable quantities of near-infrared (near-IR) emitting chromophore units into the backbone of a conjugated polymer. The highly stable borylated unit possesses a significantly lower LUMO energy than the pristine polymer resulting in a reduction in the band gap of the polymer by up to 0.63 eV and a red shift in emission of more than 150 nm. Extensively borylated polymers absorb strongly in the deep red/near-IR and are highly emissive in the near-IR region of the spectrum in solution and solid state. Photoluminescence quantum yield (PLQY) values are extremely high in the solid state for materials with emission maxima ≥ 700 nm with PLQY values of 44% at 700 nm and 11% at 757 nm for PF8-BT with different borylation levels. This high brightness enables efficient solution processed near-IR emitting OLEDs to be fabricated and highly emissive borylated polymer loaded conjugated polymer nanoparticles (CPNPs) to be prepared. The latter are bright, photostable, low toxicity bioimaging agents that in phantom mouse studies show higher signal to background ratios for emission at 820 nm than the ubiquitous near-IR emissive bioimaging agent indocyanine green. This methodology represents a general approach for the post-polymerization functionalization of donor-acceptor polymers to reduce the band gap as confirmed by the C-H borylation of poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2c,2cc-diyl) (PF8TBT) resulting in a red shift in emission of >150 nm, thereby shifting the emission maximum to 810 nm.
Collapse
Affiliation(s)
- Daniel L Crossley
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Laura Urbano
- Institute of Pharmaceutical Sciences, King's College London , Waterloo Campus, London SE1 9NH, United Kingdom
| | - Robert Neumann
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Struan Bourke
- Department of Physics, King's College London , Strand Campus, London WC2R 2LS, United Kingdom
| | - Jennifer Jones
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Lea Ann Dailey
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Mark Green
- Department of Physics, King's College London , Strand Campus, London WC2R 2LS, United Kingdom
| | - Martin J Humphries
- Cambridge Display Technology Ltd. (Company Number 02672530), Unit 12, Cardinal Park, Cardinal Way, Godmanchester PE29 2XG, United Kingdom
| | - Simon M King
- Cambridge Display Technology Ltd. (Company Number 02672530), Unit 12, Cardinal Park, Cardinal Way, Godmanchester PE29 2XG, United Kingdom
| | - Michael L Turner
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Michael J Ingleson
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Zhang Y, Xu Y, Xi X, Shrestha S, Jiang P, Zhang W, Gao C. Amino acid-modified chitosan nanoparticles for Cu 2+ chelation to suppress CuO nanoparticle cytotoxicity. J Mater Chem B 2017; 5:3521-3530. [PMID: 32264288 DOI: 10.1039/c7tb00344g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive development and application of engineered nanoparticles (NPs) in various fields worldwide have been subjected to increasing concern due to their potential hazards to human health and the environment. Therefore, a simple, economical, and effective method for suppressing the toxicity of metal-based nanomaterials is needed. In this study, glutaraldehyde-crosslinked chitosan nanoparticles (CS NPs) were prepared and further modified with lysine (Ly-CS), glutamic acid (Glu-CS), or sodium borohydride reduction (R-CS), and used to suppress cytotoxicity induced by copper oxide NPs (CuO NPs) through chelation with intracellularly released copper ions. All three kinds of CS NPs had similar sizes of ∼100 nm in a dry state and ∼200 nm in cell culture medium, as determined by scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. The chelating efficiency of different CS NPs followed the order Ly-CS > Glu-CS > R-CS. The CS NPs showed minimal or no toxicity to three different cell lines (HepG2, A549, and RAW264.7 cells) at 100 μg mL-1 with similar cell internalization and exocytosis processes. Comparatively, RAW264.7 cells exhibited higher endocytosis and exocytosis rates, as revealed by flow cytometry and confocal laser scanning microscopy. CS NPs were found as agglomerates inside A549 cells and RAW264.7 cells, with the amount of agglomerates inside RAW264.7 cells decreasing significantly with prolonged incubation. All three CS NPs, especially Ly-CS and Glu-CS NPs, efficiently suppressed the cytotoxicity induced by CuO NPs, and reduced the intracellular level of reactive oxygen species.
Collapse
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abelha TF, Phillips TW, Bannock JH, Nightingale AM, Dreiss CA, Kemal E, Urbano L, deMello JC, Green M, Dailey LA. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device. NANOSCALE 2017; 9:2009-2019. [PMID: 28106200 DOI: 10.1039/c6nr09162h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG5K-PLGA55K) matrix. The influence of PEG5K-PLGA55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG5K-PLGA55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.
Collapse
Affiliation(s)
- T F Abelha
- King's College London, Institute of Pharmaceutical Science, Waterloo Campus, SE1 9NH, London, UK
| | - T W Phillips
- Imperial College London, Department of Chemistry, South Kensington Campus, SW7 2AZ, London, UK
| | - J H Bannock
- Imperial College London, Department of Chemistry, South Kensington Campus, SW7 2AZ, London, UK
| | - A M Nightingale
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - C A Dreiss
- King's College London, Institute of Pharmaceutical Science, Waterloo Campus, SE1 9NH, London, UK
| | - E Kemal
- King's College London, Department of Physics, Strand Campus, WC2R 2LS, London, UK.
| | - L Urbano
- King's College London, Institute of Pharmaceutical Science, Waterloo Campus, SE1 9NH, London, UK
| | - J C deMello
- Imperial College London, Department of Chemistry, South Kensington Campus, SW7 2AZ, London, UK
| | - M Green
- King's College London, Department of Physics, Strand Campus, WC2R 2LS, London, UK.
| | - L A Dailey
- Institut für Pharmazeutische Technologie und Biopharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
15
|
Kemal E, Abelha TF, Urbano L, Peters R, Owen DM, Howes P, Green M, Dailey LA. Bright, near infrared emitting PLGA–PEG dye-doped CN-PPV nanoparticles for imaging applications. RSC Adv 2017. [DOI: 10.1039/c6ra25004a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this publication, we describe the synthesis of near-IR emitting conjugated polymer nanoparticles with an engineered surface, and their use in biological imaging.
Collapse
Affiliation(s)
- Evren Kemal
- King's College London
- Department of Physics
- London
- UK
| | | | - Laura Urbano
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
| | - Ruby Peters
- King's College London
- Department of Physics
- London
- UK
| | | | - P. Howes
- King's College London
- Department of Physics
- London
- UK
| | - Mark Green
- King's College London
- Department of Physics
- London
- UK
| | - Lea Ann Dailey
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
| |
Collapse
|
16
|
Pu K, Chattopadhyay N, Rao J. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J Control Release 2016; 240:312-322. [PMID: 26773769 PMCID: PMC4938792 DOI: 10.1016/j.jconrel.2016.01.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022]
Abstract
Semiconducting polymer nanoparticles (SPNs) emerge as attractive molecular imaging nanoagents in living animals because of their excellent optical properties including large absorption coefficients, tunable optical properties and controllable dimensions, high photostability, and the use of organic and biologically inert components without toxic metals. This review summarizes the recent advances of these new organic nanoparticles in in vivo molecular imaging. The in vivo biocompatibility of SPNs is discussed first in details, followed by examples of their applications ranging from sentinel lymph node mapping and tumor imaging to long-term cell tracking, to drug toxicity and bacterial infection imaging for fluorescence, bioluminescence, chemiluminescence and photoacoustic imaging in living animals. The utility of SPNs for designing smart activatable probes for real-time in vivo imaging is also discussed.
Collapse
Affiliation(s)
- Kanyi Pu
- Molecular Imaging Program at Stanford, Department of Radiology School of Medicine, Stanford University, USA; School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Niladri Chattopadhyay
- Molecular Imaging Program at Stanford, Department of Radiology School of Medicine, Stanford University, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology School of Medicine, Stanford University, USA.
| |
Collapse
|
17
|
Riaz U, Ashraf SM, Aleem S, Budhiraja V, Jadoun S. Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. NEW J CHEM 2016. [DOI: 10.1039/c5nj02513c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copolymer POPD-co-PNA quenches BSA fluorescence revealing many of its photophysical characteristics including a higher association constant and its scintillating presence on the latter.
Collapse
Affiliation(s)
- Ufana Riaz
- Materials Research Laboratory
- Department of Chemistry Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | - S. M. Ashraf
- Materials Research Laboratory
- Department of Chemistry Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | - Sadaf Aleem
- Materials Research Laboratory
- Department of Chemistry Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | - Vaibhav Budhiraja
- Materials Research Laboratory
- Department of Chemistry Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | - Sapana Jadoun
- Materials Research Laboratory
- Department of Chemistry Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| |
Collapse
|