1
|
Huang J, Guo J, Zhou L, Zheng G, Cao J, Li Z, Zhou Z, Lei Q, Brinker CJ, Zhu W. Advanced Nanomaterials-Assisted Cell Cryopreservation: A Mini Review. ACS APPLIED BIO MATERIALS 2021; 4:2996-3014. [PMID: 35014388 DOI: 10.1021/acsabm.1c00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell cryopreservation is of vital significance both for transporting and storing cells before experimental/clinical use. Cryoprotectants (CPAs) are necessary additives in the preserving medium in cryopreservation, preventing cells from freeze-thaw injuries. Traditional organic solvents have been widely used in cell cryopreservation for decades. Given the obvious damage to cells due to their undesirable cytotoxicity and the burdensome post-thaw washing cycles before use, traditional CPAs are more and more likely to be replaced by modern ones with lower toxicity, less processing, and higher efficiency. As materials science thrives, nanomaterials are emerging to serve as potent vehicles for delivering nontoxic CPAs or inherent CPAs comparable to or even superior to conventional ones. This review will introduce some advanced nanomaterials (e.g., organic/inorganic nanoCPAs, nanodelivery systems) utilized for cell cryopreservation, providing broader insights into this developing field.
Collapse
Affiliation(s)
- Junda Huang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhuang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Chen R, Xiang Z, Xia Y, Ma Z, Shi Q, Wong S, Yin J. Thermal and Reactive Oxygen Species Dual‐Responsive OEGylated Polysulfides with Oxidation‐Tunable Lower Critical Solution Temperatures. Macromol Rapid Commun 2020; 41:e2000206. [DOI: 10.1002/marc.202000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Runhai Chen
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230027 P. R. China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230027 P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shing‐Chung Wong
- Department of Mechanical EngineeringUniversity of Akron Akron OH 44325‐3903 USA
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
3
|
Luan X, Wang H, Xiang Z, Zhao J, Feng Y, Shi Q, Baijun Liu, Gong Y, Wong SC, Yin J. Construction of K + responsive surface on SEBS to reduce the hemolysis of preserved erythrocytes. RSC Adv 2019; 9:5251-5258. [PMID: 35515950 PMCID: PMC9060672 DOI: 10.1039/c8ra08215d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/05/2019] [Indexed: 02/04/2023] Open
Abstract
Hemolysis of stored erythrocytes is a big obstacle for the development of new plasticizer-free polymer containers. Hemolysis is mainly caused by cell membrane oxidation and cation leaks from the intracellular fluid during storage. To construct an anti-hemolytic surface for a plasticizer-free polymer, we fabricated 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G)-loaded polycaprolactone (PCL)-crown ether micro/nanofibers on the surface of styrene-b-(ethylene-co-butylene)-b-styrene (SEBS). Our strategy is based on the sensitive response of the crown ether to leaked potassium, causing the release of AA-2G, the AA-2G can then remove the excess ROS, maintaining the Na/K-pump activity and the cell integrity. We demonstrated that the PCL-crown ether micro/nanofibers have been well prepared on the surface of SEBS; the micro/nanofibers provide a sensitive response to excess K+ and trigger the rapid release of AA-2G. AA-2G then acts as an antioxidant to reduce the excess ROS and maintain the Na/K-pump activity to mitigate cation leaks, resulting in the reduced hemolysis of the preserved erythrocytes. Our work thus provides a novel method for the development of plasticizer-free polymers for the storage of erythrocytes, and has the potential to be used to fabricate long-term anti-hemolytic biomaterials for in vivo use.
Collapse
Affiliation(s)
- Xingkun Luan
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (QUST), Ministry of Education/Shandong, Qindao University of Science and Technology Qingdao 266042 P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Haozheng Wang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (QUST), Ministry of Education/Shandong, Qindao University of Science and Technology Qingdao 266042 P. R. China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jiruo Zhao
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (QUST), Ministry of Education/Shandong, Qindao University of Science and Technology Qingdao 266042 P. R. China
| | - Ying Feng
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (QUST), Ministry of Education/Shandong, Qindao University of Science and Technology Qingdao 266042 P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Baijun Liu
- Alan G. MacDiarmid Institute, Jilin University Changchun 130026 China
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University Dalian 116034 P. R. China
| | - Shing-Chung Wong
- Department of Mechanical Engineering, University of Akron Akron Ohio 44325-3903 USA
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
4
|
Lu XW, Liu W, Wu ZQ, Xiong XH, Liu Q, Zhan WJ, Chen H. Substrate-independent, Schiff base interactions to fabricate lysine-functionalized surfaces with fibrinolytic activity. J Mater Chem B 2016; 4:1458-1465. [DOI: 10.1039/c5tb02605a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We demonstrated a simple, substrate-independent approach for the fabrication of lysine-ligand functionalized surfaces with fibrinolytic activity under physiological conditions.
Collapse
Affiliation(s)
- Xiao-Wen Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhao-Qiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xin-Hong Xiong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Wen-Jun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
5
|
Wu Z, Zheng K, Zhang J, Tang T, Guo H, Boccaccini AR, Wei J. Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair. J Mater Chem B 2016; 4:7974-7988. [DOI: 10.1039/c6tb02429g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The m-MS/PBSu scaffolds, with a hierarchical porous structure, could promote cell proliferation in vitro and bone regeneration in vivo.
Collapse
Affiliation(s)
- Zhaoying Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Kai Zheng
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Jue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiaotong University
- School of Medicine
| | - Han Guo
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- P. R. China
| | - Aldo. R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
6
|
Liu Q, Li D, Zhan W, Luan Y, Du H, Liu X, Brash JL, Chen H. Surfaces having dual affinity for plasminogen and tissue plasminogen activator: in situ plasmin generation and clot lysis. J Mater Chem B 2015; 3:6939-6944. [DOI: 10.1039/c5tb01308a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In situ activation of a surface-integrated zymogen was achieved by introducing affinity ligands for both the zymogen and its activator.
Collapse
Affiliation(s)
- Qi Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Dan Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Wenjun Zhan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Yafei Luan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Hui Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Xiaoli Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - John L. Brash
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Hong Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
7
|
Li C, Cai B, Jin J, Liu J, Xu X, Yin J, Yin L. Hemocompatible, antioxidative and antibacterial polypropylene prepared by attaching silver nanoparticles capped with TPGS. J Mater Chem B 2015; 3:8410-8420. [DOI: 10.1039/c5tb01554e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of Ag NPs by TPGS and the excellent hemocompatibility, anti-oxidative and antibacterial properties of the deposition of Ag NPs onto PP grafted with NIPAAm and APMA.
Collapse
Affiliation(s)
- Chunming Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Bing Cai
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaodong Xu
- Polymer Materials Research Center
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Ligang Yin
- Wego Holding Company Limited
- Weihai 264200
- P. R. China
| |
Collapse
|
8
|
Jiang S, Kai D, Dou QQ, Loh XJ. Multi-arm carriers composed of an antioxidant lignin core and poly(glycidyl methacrylate-co-poly(ethylene glycol)methacrylate) derivative arms for highly efficient gene delivery. J Mater Chem B 2015; 3:6897-6904. [DOI: 10.1039/c5tb01202c] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A lignin-based copolymer with good biocompability was successfully prepared via atom transfer radical polymerization (ATRP) for efficient gene delivery.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- College of Chemistry
- Jilin University
| | - Dan Kai
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
| | - Qing Qing Dou
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
| | - Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|