1
|
Ma K, Chen KZ, Qiao SL. Advances of Layered Double Hydroxide-Based Materials for Tumor Imaging and Therapy. CHEM REC 2024; 24:e202400010. [PMID: 38501833 DOI: 10.1002/tcr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| |
Collapse
|
2
|
Kumari S, Sharma V, Soni S, Sharma A, Thakur A, Kumar S, Dhama K, Sharma AK, Bhatia SK. Layered double hydroxides and their tailored hybrids/composites: Progressive trends for delivery of natural/synthetic-drug/cosmetic biomolecules. ENVIRONMENTAL RESEARCH 2023; 238:117171. [PMID: 37734578 DOI: 10.1016/j.envres.2023.117171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Layered double hydroxides (LDHs) are well-known and important class of hydrotalcite-type anionic clays (HTs) materials that are cost-effective with additional advantages of facile synthesis, composition, tenability, and reusability. These convincing characteristics are liable for their applications in various fields related to energy, environment, catalysis, biomedical, and biotechnology. HTs/LDHs are generally synthesized from low cost abundantly available chemical precursors through the aqueous synthetic pathways under mild reaction conditions. These materials can be termed green materials based on their non-toxic nature, availability of precursors, facile and low-cost production using aqueous medium conditions with less hazardous effluents. Diverse and fascinating characteristics have been attributed to HTs/LDHs like anion exchange ability, surface basicity, biocompatibility, controlled release of the anion specific area, porosity, easy surface modification, and pH dependent biodegradability. Hence, HTs/LDHs and their modified and/or functionalized nanohybrids/nanocomposites are reported as the potential drug delivery carriers with a capability to stabilize the susceptible bioactive molecules, may enhance the solubility of poorly soluble drugs along with controlled drug/bioactive molecule release and delivery. These clay and bioactive hybrid materials have good biocompatibility, less cytotoxicity, and better site-targeting with improved cellular uptake than that of free parent biomolecules. These lamellar solids of micro/nanostructure are compatible, host-guest materials and able to fabricate with drugs/cosmeceutical/bio- or synthetic polymers without any change in their molecular structure and reactivity along with improvement in their stabilities. Other important features are facile synthesis, basicity, high stability with easy storage, and efficient administration with low bio-toxicity. This study enlightens the applications of HTs/LDHs along with their hybrids/composites in the field of drug/cosmeceutical/gene delivery systems of natural/synthetic biomolecules.
Collapse
Affiliation(s)
- Sonika Kumari
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh, 160019, India
| | - Savita Soni
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India.
| | - Abhinay Thakur
- Department of Zoology, DAV College, Jalandhar, Punjab, 144008, India
| | - Satish Kumar
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Amity University, Sector 82 A, IT City Rd, Block D, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Shashi Kant Bhatia
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Hwayang-dong Gwangjin-gu, Seoul, 05029, South Korea; Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
3
|
State-of-the-art advancement of surface functionalized layered double hydroxides for cell-specific targeting of therapeutics. Adv Colloid Interface Sci 2023; 314:102869. [PMID: 36933542 DOI: 10.1016/j.cis.2023.102869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Over the years, layered double hydroxides (LDHs) hold a specific position in biomedicine due to their tunable chemical composition and appropriate structural properties. However, LDHs lack adequate sensitivity for active targeting because of less active surface area and low mechanical strength in physiological conditions. The exploitation of eco-friendly materials, such as chitosan (CS), for surface engineering of LDHs, whose payloads are transferred only under certain conditions, can help develop stimuli-responsive materials owing to high biosafety and unique mechanical strength. We aim to render a well-oriented scenario toward the latest achievements of a bottom-up technology relying on the surface functionalization of LDHs to fabricate functional formulations with promoted bio-functionality and high encapsulation efficiency for various bioactives. Many efforts have been devoted to critical aspects of LDHs, including systemic biosafety and the suitability for developing multicomponent systems via integration with therapeutic modalities, which are thoroughly discussed herein. In addition, a comprehensive discussion was provided for the recent progress in the emergence of CS-coated LDHs. Finally, the challenges and future perspectives in the fabrication of efficient CS-LDHs in biomedicine are considered, with a special focus on cancer treatment.
Collapse
|
4
|
Insight the Mechanism of MgAl/Layered Double Hydroxide Supported on Rubber Seed Shell Biochar for Remazol Brilliant Violet 5R Removal. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
5
|
Surface modification of two-dimensional layered double hydroxide nanoparticles with biopolymers for biomedical applications. Adv Drug Deliv Rev 2022; 191:114590. [PMID: 36341860 DOI: 10.1016/j.addr.2022.114590] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023]
Abstract
Layered double hydroxides (LDHs) are appealing nanomaterials for (bio)medical applications and their potential is threefold. One can gain advantage of the structure of LDH frame (i.e., layered morphology), anion exchanging property towards drugs with acidic character and tendency for facile surface modification with biopolymers. This review focuses on the third aspect, as it is necessary to evaluate the advantages of polymer adsorption on LDH surfaces. Beside the short discussion on fundamental and structural features of LDHs, LDH-biopolymer interactions will be classified in terms of the effect on the colloidal stability of the dispersions. Thereafter, an overview on the biocompatibility and biomedical applications of LDH-biopolymer composite materials will be given. Finally, the advances made in the field will be summarized and future research directions will be suggested.
Collapse
|
6
|
Busa P, Kankala RK, Deng JP, Liu CL, Lee CH. Conquering Cancer Multi-Drug Resistance Using Curcumin and Cisplatin Prodrug-Encapsulated Mesoporous Silica Nanoparticles for Synergistic Chemo- and Photodynamic Therapies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3693. [PMID: 36296885 PMCID: PMC9609490 DOI: 10.3390/nano12203693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Recently, the development of anti-cancer approaches using different physical or chemical pathways has shifted from monotherapy to synergistic therapy, which can enhance therapeutic effects. As a result, enormous efforts have been devoted to developing various delivery systems encapsulated with dual agents for synergistic effects and to combat cancer cells acquired drug resistance. In this study, we show how to make Institute of Bioengineering and Nanotechnology (IBN)-1-based mesoporous silica nanoparticles (MSNs) for multifunctional drug delivery to overcome drug resistance cancer therapy. Initially, curcumin (Cur)-embedded IBN-1 nanocomposites (IBN-1-Cur) are synthesized in a simple one-pot co-condensation and then immobilized with the prodrug of Cisplatin (CP) on the carboxylate-modified surface (IBN-1-Cur-CP) to achieve photodynamic therapy (PDT) and chemotherapy in one platform, respectively, in the fight against multidrug resistance (MDR) of MES-SA/DX5 cancer cells. The Pluronic F127 triblock copolymer, as the structure-directing agent, in nanoparticles acts as a p-glycoprotein (p-gp) inhibitor. These designed hybrid nanocomposites with excellent structural properties are efficiently internalized by the endocytosis and successfully deliver Cur and CP molecules into the cytosol. Furthermore, the presence of Cur photosensitizer in the nanochannels of MSNs resulted in increased levels of cellular reactive oxygen species (ROS) under light irradiation. Thus, IBN-1-Cur-CP showed excellent anti-cancer therapy in the face of MES-SA/DX5 resistance cancer cells, owing to the synergistic effects of chemo- and photodynamic treatment.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jin-Pei Deng
- Department of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| | - Chen-Lun Liu
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| |
Collapse
|
7
|
Kanubaddi KR, Yang CL, Huang PY, Lin CY, Tai DF, Lee CH. Peptide conformational imprints enhanced the catalytic activity of papain for esterification. Front Bioeng Biotechnol 2022; 10:943751. [PMID: 36051592 PMCID: PMC9424681 DOI: 10.3389/fbioe.2022.943751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Peptide conformational imprints (PCIs) offer a promising perspective to directly generate binding sites for preserving enzymes with high catalytic activity and stability. In this study, we synthesized a new chiral cross-linker cost-effectively for controlling the matrix morphology of PCIs on magnetic particles (PCIMPs) to stabilize their recognition capability. Meanwhile, based on the flank part of the sequences on papain (PAP), three epitope peptides were selected and synthesized. Molecularly imprinted polymers (MIPs) were then fabricated in the presence of the epitope peptide using our new cross-linker on magnetic particles (MPs) to generate PCIMPs. PCIMPs were formed with helical cavities that complement the PAP structure to adsorb specifically at the targeted position of PAP. PCIMPs65–79 were found to have the best binding parameters to the PAP with Kd = 0.087 μM and Bmax = 4.56 μM. Upon esterification of N-Boc-His-OH, proton nuclear magnetic resonance (1H-NMR) was used to monitor the yield of the reaction and evaluate the activity of PAP/PCIMPs. The kinetic parameters of PAP/PCIMPs65–79 were calculated as Vmax = 3.0 μM s−1, Km = 5 × 10−2 M, kcat = 1.1 × 10–1 s−1, and kcat/Km = 2.2 M−1 s−1. In addition, PAP is bound tightly to PCIMPs to sustain its activity after four consecutive cycles.
Collapse
Affiliation(s)
- Kiran Reddy Kanubaddi
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ching-Lun Yang
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Pei-Yu Huang
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chung-Yin Lin, ; Dar-Fu Tai,
| | - Dar-Fu Tai
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
- *Correspondence: Chung-Yin Lin, ; Dar-Fu Tai,
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
8
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
9
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
10
|
Kim JY, Shin HI, Lee SE, Piao H, Rejinold SN, Choi G, Choy JH. Artesunate Drug-loaded 2D Nano-shuttle Landing on RBCs Infected with Malaria Parasites. Biomater Sci 2022; 10:5980-5988. [DOI: 10.1039/d2bm00879c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artesunic acid (AS0), a derivative of artemisinin, is recommended for the treatment of severe and complicated malaria, but its use is limited because of limitations such as short half-life, non-specific...
Collapse
|
11
|
Tokudome Y, Poologasundarampillai G, Tachibana K, Murata H, Naylor AJ, Yoneyama A, Nakahira A. Curable Layered Double Hydroxide Nanoparticles‐Based Perfusion Contrast Agents for X‐Ray Computed Tomography Imaging of Vascular Structures. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yasuaki Tokudome
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | | | - Koki Tachibana
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Hidenobu Murata
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Amy J. Naylor
- Institute of Inflammation and Ageing University of Birmingham Birmingham B15 2TT UK
| | - Akio Yoneyama
- SAGA Light Source 8-7 Yayoigaoka Tosu Saga 841-0005 Japan
| | - Atsushi Nakahira
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| |
Collapse
|
12
|
Rajalingam K, Krishnaswami V, Alagarsamy S, Kandasamy R. Solubility Enhancement of Methotrexate by Solid Nanodispersion Approach for the Improved Treatment of Small Cell Lung Carcinoma. Curr Top Med Chem 2021; 21:140-150. [PMID: 32888268 DOI: 10.2174/1568026620999200904120241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
AIMS The present work aimed to develop MT loaded solid Nano dispersion by improving its solubility, half-life and bioavailability in biological system thereby this formulation may be afforded economically. BACKGROUND Small cell lung carcinoma is a type of malignant tumor characterized by uncontrolled cell growth at lung tissues. The potent anti-cancer drug methotrexate (MT) chosen for the present work is poorly soluble in water (BCS type IV class) with short half-life and hepatotoxic effect. OBJECTIVE With the concept of polymeric surfactant to improve the solubility along with wettability of drugs, the present work has been hypothesized to improve its solubility using polyvinyl pyrollidone (PVP K30) polymer and α- tocopheryl polyethylene glycol 1000 succinate (TPGS) surfactant, thereby the bioavailability is expected to get enhanced. By varying the PVP K30 and TPGS ratios different formulations were developed using emulsification process. METHODS The developed MT loaded solid nanodispersion was further characterized for its particle size, charge, morphology, encapsulation efficiency and in-vitro release behavior etc. Results: The results of FT-IR spectrometric analysis indicated the compatibility nature of MTX, PVPK30 and TPGS. The developed formulations showed spherical morphology, particle size ranging from 59.28±24.2 nm to 169.33±10.85 nm with a surface charge ranging from -10.33 ± 2.81mV to -9.57 ± 1.2 mV. The in vitro release studies as performed by dialysis bag method showed a sustained release pattern as checked by UV Spectrophotometer. Residual solvent analysis for MTXNDs performed by HPLC indicates there is no residual DMSO in the formulation. Transmission electron microscopic image of MTXNDs revealed that the particles are spherical shaped with a solid core structure. Haemolytic assay indicates that the developed formulation is safe for intravenous administration. Cell culture studies in A549 cells indicates the enhanced cytotoxic effect for the developed formulation. CONCLUSION This proof of study indicates that the developed formulation may have anticancer potential for SCLC treatment.
Collapse
Affiliation(s)
- Karthikeyan Rajalingam
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| |
Collapse
|
13
|
Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod K. Advanced drug delivery applications of layered double hydroxide. J Control Release 2020; 330:398-426. [PMID: 33383094 DOI: 10.1016/j.jconrel.2020.12.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-like compounds, are a class of nanomaterials that attained great attention as a carrier for drug delivery applications. The lamellar structure of this compound exhibits a high surface-to-volume ratio which enables the intercalation of therapeutic agents and releases them at the target site, thereby reducing the adverse effect. Moreover, the intercalated drug can be released in a sustained manner, and hence the frequency of drug administration can be decreased. The co-precipitation, ion exchange, manual grinding, and sol-gel methods are the most employed for their synthesis. The unique properties like the ease of synthesis, low cost, high biocompatibility, and low toxicity render them suitable for biomedical applications. This review presents the advances in the structure, properties, method of preparation, types, functionalization, and drug delivery applications of LDH. Also, this review provides various new conceptual insights that can form the basis for new research questions related to the drug delivery applications of LDH.
Collapse
Affiliation(s)
- V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
14
|
Lin CW, Lin SX, Kankala RK, Busa P, Deng JP, Lue SI, Liu CL, Weng CF, Lee CH. Surface-functionalized layered double hydroxide nanocontainers as bile acid sequestrants for lowering hyperlipidemia. Int J Pharm 2020; 590:119921. [PMID: 33027632 DOI: 10.1016/j.ijpharm.2020.119921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
The surface modification of two-dimensional (2D) nanocontainers with versatile chemical functionalities offers enormous advantages in medicine owing to their altered physicochemical properties. In this study, we demonstrate the fabrication of surface-functionalized layered double hydroxides (LDHs) towards their use as effective intestinal bile acid sequestrants. To demonstrate these aspects, the LDHs are initially modified with an amino silane, N1-(3-trimethoxysilylpropyl) diethylenetriamine (LDHs-N3),which, on the one hand, subsequently used for the fabrication of the dendrimer by repetitive immobilization of ethylene diamine using methyl acrylate as a spacer. On the other hand, these surface-functionalized LDHs are wrapped with an anionic enteric co-polymer to not only prevent the degradation but also increase the stability of these 2D nanoplates in an acidic environment of the stomach to explore the in vivo efficacy. In vitro cholic acid adsorption results showed that these surface-functionalized LDHs displayed tremendous adsorption ability of bile salt. Consequently, the bile salt adsorption results in vivo in mice confirmed that the enteric polymer-coated diethylenetriamine silane-modified LDHs, resulting in the reduced cholesterol by 8.2% in the high fat diet-fed mice compared to that of the oil treatment group with augmented 28% of cholesterol, which gained weight by 6.7% in 4 weeks. Notably, the relative organ (liver and kidney) weight analysis and the tissue section of histology results indicated that the modified LDHs showed high biocompatibility in vivo. Together, our findings validate that these surface-functionalized 2D nanoplates have great potential as effective intestinal bile acid sequestrants.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Shi-Xiang Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Prabhakar Busa
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Jin-Pei Deng
- Department of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| | - Sheng-I Lue
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chen-Lun Liu
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ching-Feng Weng
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
15
|
Ashkan Z, Hemmati R, Homaei A, Dinari A, Jamlidoost M, Tashakor A. Immobilization of enzymes on nanoinorganic support materials: An update. Int J Biol Macromol 2020; 168:708-721. [PMID: 33232698 DOI: 10.1016/j.ijbiomac.2020.11.127] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Despite the widespread use in various industries, enzyme's instability and non-reusability limit their applications which can be overcome by immobilization. The nature of the enzyme's support material and method of immobilization affect activity, stability, and kinetics properties of enzymes. Here, we report a comparative study of the effects of inorganic support materials on immobilized enzymes. Accordingly, immobilization of enzymes on nanoinorganic support materials significantly improved thermal and pH stability. Furthermore, immobilizations of enzymes on the materials mainly increased Km values while decreased the Vmax values of enzymes. Immobilized enzymes on nanoinorganic support materials showed the increase in ΔG value, and decrease in both ΔH and ΔS values. In contrast to weak physical adsorption immobilization, covalently-bound and multipoint-attached immobilized enzymes do not release from the support surface to contaminate the product and thus the cost is decreased while the product quality is increased. Nevertheless, nanomaterials can enter the environment and increase health and environmental risks and should be used cautiously. Altogether, it can be predicated that hybrid support materials, directed immobilization methods, site-directed mutagenesis, recombinant fusion protein technology, green nanomaterials and trailor-made supports will be used increasingly to produce more efficient immobilized industrial enzymes in near future.
Collapse
Affiliation(s)
- Zahra Ashkan
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ali Dinari
- Department of Polymer Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Iran
| | - Marzieh Jamlidoost
- Department of Virology, Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Iran
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland; School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
16
|
Yan L, Gonca S, Zhu G, Zhang W, Chen X. Layered double hydroxide nanostructures and nanocomposites for biomedical applications. J Mater Chem B 2020; 7:5583-5601. [PMID: 31508652 DOI: 10.1039/c9tb01312a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Layered double hydroxide (LDH) nanostructures and related nanocomposites have attracted significant interest in biomedical applications including cancer therapy, bioimaging and antibacterial treatment. These materials hold great advantages including low cost and facile preparation, convenient drug loading, high drug incorporation capacity, good biocompatibility, efficient intracellular uptake and endosome/lysosome escape, and natural biodegradability in an acidic environment. In this review, we summarize the development of three types of LDH nanostructures including pristine LDH, surface modified LDH, and LDH nanocomposites for a range of biomedical applications. The advantages and disadvantages of LDH nanostructures and insights into the future development are also discussed.
Collapse
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
17
|
Design of 3D multi-layered electrospun membranes embedding iron-based layered double hydroxide for drug storage and control of sustained release. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Sharifi M, Sohrabi MJ, Hosseinali SH, Hasan A, Kani PH, Talaei AJ, Karim AY, Nanakali NMQ, Salihi A, Aziz FM, Yan B, Khan RH, Saboury AA, Falahati M. Enzyme immobilization onto the nanomaterials: Application in enzyme stability and prodrug-activated cancer therapy. Int J Biol Macromol 2020; 143:665-676. [DOI: 10.1016/j.ijbiomac.2019.12.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 01/04/2023]
|
19
|
Superhydrophilic and oleophobic membrane functionalized with heterogeneously tailored two-dimensional layered double hydroxide nanosheets for antifouling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy. Acta Biomater 2019; 83:359-371. [PMID: 30414486 DOI: 10.1016/j.actbio.2018.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
A novel biodegradable versatile nanocarrier (FA-CM) was fabricated based on the self-assembly of delaminated CoAl-layered double hydroxides (LDHs) and manganese dioxide (MnO2) for optional combination cancer therapy. Biodegradation, versatility, targeting, bioimaging, in vitro cytotoxicity and in vivo antitumor efficacy were evaluated. The results showed that FA-CM could not only be effectively degraded into Co2+, Al3+ and Mn2+ to overcome the long-term toxic side effects, but also successfully load any positive-charged, negative-charged, hydrophilic, and hydrophobic drug, meeting the critical requirement of versatile nanocarrier. Meanwhile, the presence of FA led to the higher uptake efficiency, cytotoxicity, and excellent fluorescence imaging of FA-CM toward cancerous cells. In particular, FA-CM exhibited glutathione and pH dual-response drug release, avoiding any premature leakage and side effects. The applicability of the FA-CM was determined by co-loading hydrophilic (doxorubicin (DOX)) and hydrophobic drug (paclitaxel (PTX)) for synergistic combination chemotherapy. In vitro cytotoxicity evaluation and a xenograft tumor model of hepatoma showed that this combination exhibited more efficient anticancer effects compared with either free drug alone or the corresponding cocktail solutions. Especially, the ratios of DOX and PTX loaded on FA-CM could be tuned as needed. A powerful approach is provided for the design and preparation of a biodegradable versatile nanocarrier with targeted ability and excellent biocompatibility, which can be potentially applied in clinical practice and medical imaging. STATEMENT OF SIGNIFICANCE: Drug delivery nanocarriers that can transport an effective dosage of drug molecules to targeted cells and tissues have been extensively designed to overcome the adverse side effects and low effectiveness of conventional chemotherapy. However, lack of biodegradability and versatility existing in majority of nanocarriers limit their further clinical applications. Thus, constructing a novel biodegradable versatile nanocarrier that can carry various types of drugs, is in urgent need and more suitable for commercial production and clinical use. In this study, we developed a novel biodegradable versatile nanocarrier (FA-CM) based on the self-assembly of delaminated CoAl-layered double hydroxides (LDHs) and manganese dioxide (MnO2) for optional combination cancer therapy. This work provides a new strategy for constructing versatile biodegradable platform for targeted drug delivery, which would have broad applications in cancer theranostics.
Collapse
|
21
|
Yan L, Zhou M, Zhang X, Huang L, Chen W, Roy VAL, Zhang W, Chen X. A Novel Type of Aqueous Dispersible Ultrathin-Layered Double Hydroxide Nanosheets for in Vivo Bioimaging and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34185-34193. [PMID: 28915005 DOI: 10.1021/acsami.7b05294] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Layered double hydroxide (LDH) nanoparticles have been widely used for various biomedical applications. However, because of the difficulty of surface functionalization of LDH nanoparticles, the systemic administration of these nanomaterials for in vivo therapy remains a bottleneck. In this work, we develop a novel type of aqueous dispersible two-dimensional ultrathin LDH nanosheets with a size of about 50 nm and a thickness of about 1.4 to 4 nm. We are able to covalently attach positively charged rhodamine B fluorescent molecules to the nanosheets, and the nanohybrid retains strong fluorescence in liquid and even dry powder form. Therefore, it is available for bioimaging. Beyond this, it is convenient to modify the nanosheets with neutral poly(ethylene glycol) (PEG), so the nanohybrid is suitable for drug delivery through systemic administration. Indeed, in the test of using these nanostructures for delivery of a negatively charged anticancer drug, methotrexate (MTX), in a mouse model, dramatically improved therapeutic efficacy is achieved, indicated by the effective inhibition of tumor growth. Furthermore, our systematic in vivo safety investigation including measuring body weight, determining biodistribution in major organs, hematology analysis, blood biochemical assay, and hematoxylin and eosin stain demonstrates that the new material is biocompatible. Overall, this work represents a major development in the path of modifying functional LDH nanomaterials for clinical applications.
Collapse
Affiliation(s)
- Li Yan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics (SIIA), Chengdu University , Chengdu, Sichuan, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong , Hong Kong SAR, P.R. China
| | - Mengjiao Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu, P.R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu, P.R. China
| | - Longbiao Huang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong , Hong Kong SAR, P.R. China
| | - Wei Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong , Hong Kong SAR, P.R. China
| | - Vellaisamy A L Roy
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong , Hong Kong SAR, P.R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong , Hong Kong SAR, P.R. China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, School of Engineering, The University of Edinburgh , King's Buildings, Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| |
Collapse
|
22
|
Zuo H, Chen W, Cooper HM, Xu ZP. A Facile Way of Modifying Layered Double Hydroxide Nanoparticles with Targeting Ligand-Conjugated Albumin for Enhanced Delivery to Brain Tumour Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20444-20453. [PMID: 28574700 DOI: 10.1021/acsami.7b06421] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Active targeting of nanoparticles (NPs) for cancer treatment has attracted increasing interest in the past decades. Various ligand modification strategies have been used to enhance the targeting of NPs to the tumor site. However, how to reproducibly fabricate diverse targeting NPs with narrowly changeable biophysiochemical properties remains as a major challenge. In this study, layered double hydroxide (LDH) NPs were modified as a target delivery system. Two brain tumor targeting ligands, i.e., angiopep-2 and rabies virus glycoprotein, were conjugated to the LDH NPs via an intermatrix protein moiety, bovine serum albumin (BSA), simultaneously endowing the LDHs with excellent colloidal stability and targeting capability. The ligands were first covalently linked with BSA through the heterobifunctional cross-linker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate. Then, the ligand-linked BSA and pristine BSA were together coated onto the surface of LDHs through electrostatic interaction, followed by cross-linking with the cross-linker glutaraldehyde to immobilize these BSAs on the LDH surface. In this way, we are able to readily prepare colloidally stabilized tumor-targeted LDH NPs. The targeting efficacy of the ligand-conjugated LDH delivery system has been evidenced in the uptake by two neutral cells (U87 and N2a) compared to unmodified LDHs. This new approach provides a promising strategy for rational design and preparation of target nanoparticles as a selective and effective therapeutic treatment for brain tumors.
Collapse
Affiliation(s)
- Huali Zuo
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weiyu Chen
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Helen M Cooper
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Allou NB, Saikia P, Borah A, Goswamee RL. Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4047-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Kankala RK, Tsai PY, Kuthati Y, Wei PR, Liu CL, Lee CH. Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics. J Mater Chem B 2017; 5:1507-1517. [PMID: 32264641 DOI: 10.1039/c6tb03146c] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The use of nanotechnology to overcome multidrug resistance (MDR) in cancer cells has been predominant. Herein, we report the conjugation of copper(ii)-doxorubicin complexes on the surfaces of layered double hydroxide nanoparticles (LDHs) along with ascorbic acid intercalation in the gallery space to demonstrate synergistic effects to conquer MDR. The pH-sensitive release of doxorubicin (Dox) and the sustained release of ascorbic acid (AA) generate high amounts of hydrogen peroxide intracellularly that concomitantly results in conversion to cytotoxic free radicals through a copper(ii)-catalyzed Fenton-like reaction. Therefore, the combination of the chemotherapeutic agent (Dox) and free radical attack can devastate the MDR for effective cancer treatment through the co-delivery system.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan.
| | | | | | | | | | | |
Collapse
|
25
|
Yan L, Wang Z, Chen X, Gou XJ, Zhang Z, Zhu X, Lan M, Chen W, Zhu G, Zhang W. Firmly anchored photosensitizer Chlorin e6 to layered double hydroxide nanoflakes for highly efficient photodynamic therapy in vivo. Chem Commun (Camb) 2017; 53:2339-2342. [DOI: 10.1039/c6cc09510k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We covalently conjugate photosensitizer Chlorin e6 (Ce6) to polyethylene glycol modified layered double hydroxides and produce hybrid nanoflakes with excellentin vivophotodynamic therapeutic efficiency and safety profiles.
Collapse
Affiliation(s)
- Li Yan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics (SIIA)
- Chengdu University
- Chengdu
- P. R. China
| | - Zhigang Wang
- Department of Biology and Chemistry
- City University of Hong Kong
- P. R. China
| | - Xianfeng Chen
- Institute for Bioengineering, School of Engineering
- The University of Edinburgh
- Edinburgh EH9 3JL
- UK
| | - Xiao-Jun Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics (SIIA)
- Chengdu University
- Chengdu
- P. R. China
| | - Zhenyu Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- P. R. China
| | - Xiaoyue Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- P. R. China
| | - Minhuan Lan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- P. R. China
| | - Wei Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- P. R. China
| | - Guangyu Zhu
- Department of Biology and Chemistry
- City University of Hong Kong
- P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- P. R. China
| |
Collapse
|
26
|
Saha S, Ray S, Acharya R, Chatterjee TK, Chakraborty J. Magnesium, zinc and calcium aluminium layered double hydroxide-drug nanohybrids: A comprehensive study. APPLIED CLAY SCIENCE 2017; 135:493-509. [DOI: 10.1016/j.clay.2016.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
Kurapati R, Kostarelos K, Prato M, Bianco A. Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6052-74. [PMID: 27105929 DOI: 10.1002/adma.201506306] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 05/25/2023]
Abstract
Currently, a broad interdisciplinary research effort is pursued on biomedical applications of 2D materials (2DMs) beyond graphene, due to their unique physicochemical and electronic properties. The discovery of new 2DMs is driven by the diverse chemical compositions and tuneable characteristics offered. Researchers are increasingly attracted to exploit those as drug delivery systems, highly efficient photothermal modalities, multimodal therapeutics with non-invasive diagnostic capabilities, biosensing, and tissue engineering. A crucial limitation of some of the 2DMs is their moderate colloidal stability in aqueous media. In addition, the lack of suitable functionalisation strategies should encourage the exploration of novel chemical methodologies with that purpose. Moreover, the clinical translation of these emerging materials will require undertaking of fundamental research on biocompatibility, toxicology and biopersistence in the living body as well as in the environment. Here, a thorough account of the biomedical applications using 2DMs explored today is given.
Collapse
Affiliation(s)
- Rajendra Kurapati
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| | - Kostas Kostarelos
- Nanomedicine Laboratory, School of Medicine and National Graphene Institute, University of Manchester, AV Hill Building, Manchester, M13 9PT, United Kingdom
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, 34127, Trieste, Italy
- Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, Donostia-San Sebastian, Paseo de Miramón 182, 20009, Spain
- Basque Foundation for Science (IKERBASQUE), Bilbao, 48013, Spain
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| |
Collapse
|
28
|
Yan M, Zhang Z, Cui S, Zhang X, Chu W, Lei M, Zeng K, Liao Y, Deng Y, Zhao C. Preparation and evaluation of PEGylated phospholipid membrane coated layered double hydroxide nanoparticles. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Shi J, Sun X, Zhu J, Li J, Zhang H. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging. NANOSCALE 2016; 8:9798-804. [PMID: 27120221 DOI: 10.1039/c6nr00590j] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Near infrared (NIR)-emitting persistent luminescent nanoparticles (NPLNPs) have attracted much attention in bioimaging because they can provide long-term in vivo imaging with a high signal-to-noise ratio (SNR). However, conventional NPLNPs with large particle sizes that lack modifiable surface groups suffer from many serious limitations in bioimaging. Herein, we report a one-step synthesis of amino-functionalized ZnGa2O4:Cr,Eu nanoparticles (ZGO) that have an ultrasmall size, where ethylenediamine served as the reactant to fabricate the ZGO as well as the surfactant ligand to control the nanocrystal size and form surface amino groups. The ZGO exhibited a narrow particle size distribution, a bright NIR emission and a long afterglow luminescence. In addition, due to the excellent conjugation ability of the surface amino groups, the ZGO can be easily conjugated with many bio-functional molecules, which has been successfully utilized to realize in vitro and in vivo imaging. More importantly, the ZGO achieved re-excitation imaging using 650 nm and 808 nm NIR light in situ, which is advantageous for long-term and higher SNR bioimaging.
Collapse
Affiliation(s)
- Junpeng Shi
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | | | | | | | | |
Collapse
|
30
|
Hung BY, Kuthati Y, Kankala RK, Kankala S, Deng JP, Liu CL, Lee CH. Utilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4) in Prodrug-Activated Cancer Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2169-2191. [PMID: 28347114 PMCID: PMC5304787 DOI: 10.3390/nano5042169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP) was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology), where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through the formation of covalent imine bonds. This strategy was used to protect HRP from immune exclusion, degradation and denaturation under biological conditions. Furthermore, immobilization of HRP in the nanochannels of IBN-4 nanomaterials exhibited good functional stability upon repetitive use and long-term storage (60 days) at 4 °C. The generation of functionalized and HRP-immobilized nanomaterials was further verified using various characterization techniques. The possibility of using HRP-encapsulated IBN-4 materials in prodrug cancer therapy was also demonstrated by evaluating their ability to convert a prodrug (indole-3- acetic acid (IAA)) into cytotoxic radicals, which triggered tumor cell apoptosis in human colon carcinoma (HT-29 cell line) cells. A lactate dehydrogenase (LDH) assay revealed that cells could be exposed to the IBN-4 nanocomposites without damaging their membranes, confirming apoptotic cell death. In summary, we demonstrated the potential of utilizing large porous mesoporous silica nanomaterials (IBN-4) as enzyme carriers for prodrug therapy.
Collapse
Affiliation(s)
- Bau-Yen Hung
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien-974, Taiwan.
| | - Yaswanth Kuthati
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien-974, Taiwan.
| | - Ranjith Kumar Kankala
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien-974, Taiwan.
| | | | - Jin-Pei Deng
- Department of Chemistry, Tamkang University, New Taipei City 251, Taiwan.
| | - Chen-Lun Liu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien-974, Taiwan.
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien-974, Taiwan.
| |
Collapse
|
31
|
Jin M, Spillane DEM, Geraldes CFGC, Williams GR, Bligh SWA. Gd(III) complexes intercalated into hydroxy double salts as potential MRI contrast agents. Dalton Trans 2015; 44:20728-34. [PMID: 26568157 DOI: 10.1039/c5dt03433g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ion exchange intercalation of two Gd-based magnetic resonance imaging contrast agents into hydroxy double salts (HDSs) is reported. The presence of Gd(3+) diethylenetriaminepentaacetate and Gd(3+) diethylenetriaminepenta(methylenephosphonate) complexes in the HDS lattice after intercalation was confirmed by microwave plasma-atomic emission spectroscopy. The structural aspects of the HDS-Gd composites were studied by X-ray diffraction, with the intercalates having an interlayer spacing of 14.5-18.6 Å. Infrared spectroscopy confirmed the presence of characteristic vibration peaks associated with the Gd(3+) complexes in the intercalation compounds. The proton relaxivities of the Gd(3+) complex-loaded composites were 2 to 5-fold higher in longitudinal relaxivity, and up to 10-fold higher in transverse relaxivity, compared to solutions of the pure complexes. These data demonstrate that the new composites reported here are potentially potent MRI contrast agents.
Collapse
Affiliation(s)
- Miao Jin
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | | | | | | | | |
Collapse
|
32
|
Chen ZA, Kuthati Y, Kankala RK, Chang YC, Liu CL, Weng CF, Mou CY, Lee CH. Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:054205. [PMID: 27877834 PMCID: PMC5070020 DOI: 10.1088/1468-6996/16/5/054205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 05/31/2023]
Abstract
We designed a biodegradable nanocarrier of layered double hydroxide (LDH) for photodynamic therapy (PDT) based on the intercalation of a palladium porphyrin photosensitizer (PdTCPP) in the gallery of LDH for melanoma theragnosis. Physical and chemical characterizations have demonstrated the photosensitizer was stable in the layered structures. In addition, the synthesized nanocomposites rendered extremely efficacious therapy in the B16F10 melanoma cell line by improving the solubility of the hydrophobic PdTCPP photosensitizer. The detection of singlet oxygen generation under irradiation at the excitation wavelength of a 532 nm laser was indeed impressive. Furthermore, the in vivo results using a tumour xenograft model in mice indicated the apparent absence of body weight loss and relative organ weight variation to the liver and kidney demonstrated that the nanocomposites were biosafe with a significant reduction in tumour volume for the anti-cancer efficacy of PDT. This drug delivery system using the nanoparticle-photosensitizer hybrid has great potential in melanoma theragnosis.
Collapse
Affiliation(s)
- Zih-An Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Yaswanth Kuthati
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Ranjith Kumar Kankala
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Yu-Chuan Chang
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Chen-Lun Liu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| |
Collapse
|
33
|
Wei PR, Kuthati Y, Kankala RK, Lee CH. Synthesis and Characterization of Chitosan-Coated Near-Infrared (NIR) Layered Double Hydroxide-Indocyanine Green Nanocomposites for Potential Applications in Photodynamic Therapy. Int J Mol Sci 2015; 16:20943-68. [PMID: 26340627 PMCID: PMC4611849 DOI: 10.3390/ijms160920943] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
We designed a study for photodynamic therapy (PDT) using chitosan coated Mg-Al layered double hydroxide (LDH) nanoparticles as the delivery system. A Food and Drug Administration (FDA) approved near-infrared (NIR) fluorescent dye, indocyanine green (ICG) with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS)) coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH-NH₂-ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH-NH₂-ICG and single layer chitosan-coated LDH-NH₂-ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pei-Ru Wei
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | - Yaswanth Kuthati
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | - Ranjith Kumar Kankala
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| |
Collapse
|