1
|
Fu S, Younis MR, Cai Z, Liu L, Gu H, Ni G, Lui S, Ai H, Song B, Wu M. One-Pot Fabrication of Kinetically Inert Ultrasmall Manganese(II) Chelate-Backboned Polymer Contrast Agents for High-Performance Magnetic Resonance Imaging. NANO LETTERS 2024. [PMID: 39400054 DOI: 10.1021/acs.nanolett.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Traditional macromolecules or nanoscale Mn2+ chelate-based magnetic resonance imaging (MRI) contrast agents (CAs) suffer from complicated and laborious synthesis processes, relatively low kinetic stability and T1 relaxivity, limiting their clinical applications. Herein, we fabricated a series of kinetically inert Mn2+ chelate-backboned polymers, P(MnL-PEG), through a facile and one-pot polymerization process. Particularly, P(MnL-PEG)-3 demonstrates a significantly higher T1 relaxivity of 23.9 Mn mM-1 s-1 at 1.5 T than that of previously reported small molecules and macromolecules or nanoscale Mn2+ chelate-based CAs. Due to its high T1 relaxivity, extended blood circulation, hepatocyte-specific uptake, and kidneys metabolism, P(MnL-PEG)-3 presents significantly enhanced contrast in blood vessel, liver, and kidneys imaging compared to clinical Gd3+-based CAs (Gd-EOB-DTPA and Gd-DOTA) at a dosage of 0.05 mmol Mn/Gd kg-1 BW, and can accurately diagnose orthotopic H22 liver tumors in vivo in animal models. We anticipate that this work will promote the development of clinically relevant MRI CAs.
Collapse
Affiliation(s)
- Shengxiang Fu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guohua Ni
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Song
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan 572022, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Jiang L, Cai Z, Cao Y, Fu S, Gu H, Zhu J, Cao W, Zhong L, Zhong J, Wu C, Wang K, Xia C, Lui S, Song B, Gong Q, Ai H. Facile Synthesis of Rigid Binuclear Manganese Complexes for Magnetic Resonance Angiography and SLC39A14-Mediated Hepatic Imaging. Bioconjug Chem 2024; 35:703-714. [PMID: 38708860 DOI: 10.1021/acs.bioconjchem.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.
Collapse
Affiliation(s)
- Lingling Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingzi Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengxiang Fu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Weidong Cao
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Lei Zhong
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Jie Zhong
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Jiang Y, Cai Z, Fu S, Gu H, Fu X, Zhu J, Ke Y, Jiang H, Cao W, Wu C, Xia C, Lui S, Song B, Gong Q, Ai H. Relaxivity Enhancement of Hybrid Micelles via Modulation of Water Coordination Numbers for Magnetic Resonance Lymphography. NANO LETTERS 2023; 23:8505-8514. [PMID: 37695636 DOI: 10.1021/acs.nanolett.3c02214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Considerable efforts have been made to develop nanoparticle-based magnetic resonance contrast agents (CAs) with high relaxivity. The prolonged rotational correlation time (τR) induced relaxivity enhancement is commonly recognized, while the effect of the water coordination numbers (q) on the relaxivity of nanoparticle-based CAs gets less attention. Herein, we first investigated the relationship between T1 relaxivity (r1) and q in manganese-based hybrid micellar CAs and proposed a strategy to enhance the relaxivity by increasing q. Hybrid micelles with different ratios of amphiphilic manganese complex (MnL) and DSPE-PEG2000 were prepared, whose q values were evaluated by Oxygen-17-NMR spectroscopy. Micelles with lower manganese doping density exhibit increased q and enhanced relaxivity, corroborating the conception. In vivo sentinel lymph node (SLN) imaging demonstrates that DSPE-PEG/MnL micelles could differentiate metastatic SLN from inflammatory LN. Our strategy makes it feasible for relaxivity enhancement by modulating q, providing new approaches for the structural design of high-performance hybrid micellar CAs.
Collapse
Affiliation(s)
- Yuting Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Weidong Cao
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Jiang Y, Gu H, Cai Z, Fu S, Cao Y, Jiang L, Wu C, Chen W, Xia C, Lui S, Song B, Gong Q, Ai H. Ultra-small manganese dioxide nanoparticles with high T1 relaxivity for magnetic resonance angiography. Biomater Sci 2023. [PMID: 37144293 DOI: 10.1039/d3bm00443k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gadolinium (Gd)-based contrast agents (CAs) for clinical magnetic resonance imaging are facing the problems of low longitudinal relaxivity (r1) and toxicity caused by gadolinium deposition. Manganese-based small molecule complexes and manganese oxide nanoparticles (MONs) are considered as potential alternatives to Gd-based CAs due to their better biocompatibility, but their relatively low r1 values and complicated synthesis routes slow down their clinical translation. Herein, we presented a facile one-step co-precipitation method to prepare MONs using poly(acrylic acid) (PAA) as a coating agent (MnO2/PAA NPs), which exhibited good biocompatibility and high r1 values. A series of MnO2/PAA NPs with different particle sizes were prepared and the relationship between the particle size and r1 was studied, revealing that the MnO2/PAA NPs with a particle size of 4.9 nm exhibited higher r1. The finally obtained MnO2/PAA NPs had a high r1 value (29.0 Mn mM-1 s-1) and a low r2/r1 ratio (1.8) at 1.5 T, resulting in a strong T1 contrast enhancement. In vivo magnetic resonance angiography with Sprague-Dawley (SD) rats further proved that the MnO2/PAA NPs showed better angiographic performance at low-dosage administration than commercial Gadovist® (Gd-DO3A-Butrol). Moreover, the MnO2/PAA NPs could be rapidly cleared out after imaging, which effectively minimized the toxic side effects. The MnO2/PAA NPs are promising candidates for MR imaging of vascular diseases.
Collapse
Affiliation(s)
- Yuting Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Shengxiang Fu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingzi Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Lingling Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Wei Chen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Ji C, Li J, Mei J, Su W, Dai H, Li F, Liu P. Advanced Nanomaterials for the Diagnosis and Treatment of Renal Cell Carcinoma. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Ji
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyang Mei
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Weiran Su
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huili Dai
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
6
|
Akib AA, Shakil R, Rumon MMH, Roy CK, Chowdhury EH, Chowdhury AN. Natural and Synthetic Micelles for Delivery of Small Molecule Drugs, Imaging Agents and Nucleic Acids. Curr Pharm Des 2022; 28:1389-1405. [PMID: 35524674 DOI: 10.2174/1381612828666220506135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
The poor solubility, lack of targetability, quick renal clearance, and degradability of many therapeutic and imaging agents strongly limit their applications inside the human body. Amphiphilic copolymers having self-assembling properties can form core-shell structures called micelles, a promising nanocarrier for hydrophobic drugs, plasmid DNA, oligonucleotides, small interfering RNAs (siRNAs) and imaging agents. Fabrication of micelles loaded with different pharmaceutical agents provides numerous advantages including therapeutic efficacy, diagnostic sensitivity, and controlled release to the desired tissues. Moreover, due to their smaller particle size (10-100 nm) and modified surfaces with different functional groups (such as ligands) help them to accumulate easily in the target location, enhancing cellular uptake and reducing unwanted side effects. Furthermore, the release of the encapsulated agents may also be triggered from stimuli-sensitive micelles at different physiological conditions or by an external stimulus. In this review article, we discuss the recent advancement in formulating and targeting different natural and synthetic micelles including block copolymer micelles, cationic micelles, and dendrimers-, polysaccharide- and protein-based micelles for the delivery of different therapeutic and diagnostic agents. Finally, their applications, outcomes, and future perspectives have been summarized.
Collapse
Affiliation(s)
- Anwarul Azim Akib
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ragib Shakil
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Chanchal Kumar Roy
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Al-Nakib Chowdhury
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| |
Collapse
|
7
|
Liu X, Fu S, Xia C, Li M, Cai Z, Wu C, Lu F, Zhu J, Song B, Gong Q, Ai H. PEGylated amphiphilic polymeric manganese(II) complex as magnetic resonance angiographic agent. J Mater Chem B 2022; 10:2204-2214. [PMID: 35284914 DOI: 10.1039/d2tb00089j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, the most commonly used clinical magnetic resonance imaging (MRI) contrast agents, Gd(III) chelates, have been found in association with nephrogenic systemic fibrosis (NSF) in renally compromised patients. Toxicity concerns...
Collapse
Affiliation(s)
- Xiaoqin Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China.
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China.
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Mengye Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China.
| | - Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging, School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fulin Lu
- Sichuan Key Laboratory of Medical Imaging, School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China.
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Mallik R, Saha M, Mukherjee C. Porous Silica Nanospheres with a Confined Mono(aquated) Mn(II)-Complex: A Potential T1- T2 Dual Contrast Agent for Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2021; 4:8356-8367. [PMID: 35005912 DOI: 10.1021/acsabm.1c00937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging has emerged as an indispensable imaging modality for the early-stage diagnosis of many diseases. The imaging in the presence of a contrast agent is always advantageous, as it mitigates the low-sensitivity issue of the measurements and provides excellent contrast in the acquired images even in a short acquisition time. However, the stability and high relaxivity of the contrast agents remained a challenge. Here, molecules of a mononuclear, mono(aquated), thermodynamically stable [log KMnL = 14.80(7) and pMn = 8.97] Mn(II)-complex (1), based on a hexadentate pyridine-picolinate unit-containing ligand (H2PyDPA), were confined within a porous silica nanosphere in a noncovalent fashion to render a stable nanosystem, complex 1@SiO2NP. The entrapped complex 1 (complex 1@SiO2) exhibited r1 = 8.46 mM-1 s-1 and r2 = 33.15 mM-1 s-1 at pH = 7.4, 25 °C, and 1.41 T in N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The values were about 2.9 times higher compared to the free (unentrapped)-complex 1 molecules. The synthesized complex 1@SiO2NP interacted significantly with albumin protein and consequently boosted both the relaxivity values to r1 = 24.76 mM-1 s-1 and r2 = 63.96 mM-1 s-1 at pH = 7.4, 37 °C, and 1.41 T. The kinetic inertness of the entrapped molecules was established by recognizing no appreciable change in the r1 value upon challenging complex 1@SiO2NP with 30 and 40 times excess of Zn(II) ions at pH 6 and 25 °C. The water molecule coordinated to the Mn(II) ion in complex 1@SiO2 was also impervious to the physiologically relevant anions (bicarbonate, biphosphate, and citrate) and pH of the medium. Thus, it ensured the availability of the inner-coordination site of complex 1 for the coordination of water molecules in the biological media. The concentration-dependent changes in image intensities in T1- and T2-weighted phantom images and uptake of the nanoparticles by the HeLa cell put forward the biocompatible complex 1@SiO2NP as a potential dual-mode MRI contrast agent, an alternative to Gd(III)-containing contrast agents.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
9
|
Yang L, Fu S, Cai Z, Liu L, Xia C, Gong Q, Song B, Ai H. Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as T 1- T 2 dual-mode magnetic resonance imaging probes. Regen Biomater 2021; 8:rbab064. [PMID: 34881046 PMCID: PMC8648151 DOI: 10.1093/rb/rbab064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 02/05/2023] Open
Abstract
The T 1-T 2 dual-mode probes for magnetic resonance imaging (MRI) can non-invasively acquire comprehensive information of different tissues or generate self-complementary information of the same tissue at the same time, making MRI a more flexible imaging modality for complicated applications. In this work, three Gadolinium-diethylene-triaminepentaaceticacid (Gd-DTPA) complex conjugated superparamagnetic iron oxide (SPIO) nanoparticles with different Gd/Fe molar ratio (0.94, 1.28 and 1.67) were prepared as T 1-T 2 dual-mode MRI probes, named as SPIO@PEG-GdDTPA0.94, SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67, respectively. All SPIO@PEG-GdDTPA nanocomposites with 8 nm spherical SPIO nanocrystals showed good Gd3+ chelate stability. SPIO@PEG-GdDTPA0.94 nanocomposites with lowest Gd/Fe molar ratio show no cytotoxicity to Raw 264.7 cells as compared to SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67. SPIO@PEG-GdDTPA0.94 nanocomposites with r 1 (8.4 mM-1s-1), r 2 (83.2 mM-1s-1) and relatively ideal r 2/r 1 ratio (9.9) were selected for T 1-T 2 dual-mode MRI of blood vessels and liver tissue in vivo. Good contrast images were obtained for both cardiovascular system and liver in animal studies under a clinical 3 T scanner. Importantly, one can get high-quality contrast-enhanced blood vessel images within the first 2 h after contrast agent administration and acquire liver tissue anatomy information up to 24 h. Overall, the strategy of one shot of the dual mode MRI agent could bring numerous benefits not only for patients but also to the radiologists and clinicians, e.g. saving time, lowering side effects and collecting data of different organs sequentially.
Collapse
Affiliation(s)
- Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Li Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China and
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
10
|
Liu P, Huang P, Kang ET. pH-Sensitive Dextran-Based Micelles from Copper-Free Click Reaction for Antitumor Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12990-12999. [PMID: 34714094 DOI: 10.1021/acs.langmuir.1c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There remains a need to develop new strategies to fabricate dextran-based biocompatible drug delivery systems for safe and effective chemotherapy. Herein, a copper-free azide-propiolate ester click reaction was introduced for dextran modification to fabricate a pH-sensitive dextran-based drug delivery system. A pH-sensitive dextran-based micelle system, self-assembled from amphiphilic dextran-graft-poly(2-(diisopropylamino)ethyl methacrylate-co-2-(2',3',5'-triiodobenzoyl)ethyl methacrylate) or dextran-g-P(DPA-co-TIBMA), is reported for effective chemotherapy. The amphiphilic dextran-g-P(DPA-co-TIBMA) was prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerization and copper-free azide-propiolate ester click reaction. Doxorubicin (DOX)-loaded dextran-g-P(DPA-co-TIBMA) micelles were prepared through self-assembly of DOX and dextran-g-P(DPA-co-TIBMA) in aqueous solution, and had a mean diameter of 154 nm and a drug loading content of 9.7 wt %. The release of DOX from DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles was slow at pH 7.4, but was greatly accelerated under acidic conditions (pH 6 and 5). Confocal laser scanning microscopy and flow cytometry experiments showed that the dextran-g-P(DPA-co-TIBMA) micelles could effectively deliver and release DOX in human breast cancer cell line (MCF-7 cells). MTT assay showed that dextran-g-P(DPA-co-TIBMA) exhibited excellent biocompatibility while DOX-loaded dextran-g-P(DPA-co-TIBMA) micelles have good antitumor efficacy in vitro. The in vivo therapeutic studies indicated that the DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles could effectively reduce the growth of tumor with little body weight reduction.
Collapse
Affiliation(s)
- Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Ping Huang
- Division of Ultrasound, Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518058, China
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| |
Collapse
|
11
|
|
12
|
Fu S, Cai Z, Ai H. Stimulus-Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Adv Healthc Mater 2021; 10:e2001091. [PMID: 32875751 DOI: 10.1002/adhm.202001091] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) has been widely used for disease diagnosis because it can noninvasively obtain anatomical details of various diseases through accurate contrast between soft tissues. Over one-third of MRI examinations are performed with the assistance of contrast agents. Traditional contrast agents typically display an unchanging signal, thus exhibiting relatively low sensitivity and poor specificity. Currently, advances in stimulus-responsive contrast agents which can alter the relaxation signal in response to a specific change in their surrounding environment provide new opportunities to overcome such limitation. The signal changes based on stimulus also reflects the physiological and pathological conditions of the site of interests. In this review, how to design stimulus-responsive nanoparticle MRI contrast agents from the perspective of theory and surface design is comprehensively discussed. Key structural features including size, clusters, shell features, and surface properties are used for tuning the T1 and T2 relaxation properties. The reversible or non-reversible signal changes highlight the contrast agents have undergone structural changes based on certain stimulus, as an indication for disease diagnosis or therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
13
|
Deng LH, Jiang H, Lu FL, Wang HW, Pu Y, Wu CQ, Tang HJ, Xu Y, Chen TW, Zhu J, Shen CY, Zhang XM. Size and PEG Length-Controlled PEGylated Monocrystalline Superparamagnetic Iron Oxide Nanocomposite for MRI Contrast Agent. Int J Nanomedicine 2021; 16:201-211. [PMID: 33447035 PMCID: PMC7802780 DOI: 10.2147/ijn.s271461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE PEGylated superparamagnetic iron oxide (SPIO) is the most promising alternatives to gadolinium-based contrast agents (GBCAs) in MRI. This paper is to explore the imaging effects of PEGylated SPIO, which is influenced by particle sizes and surface polyethylene glycol (PEG) coating, using as MRI contrast agents at different magnetic field intensities. METHODS Firstly, nine PEGylated monocrystalline SPIO nanoparticles with different nanocrystal sizes and different molecular weights PEG coating were prepared, and then physical and biological properties were analyzed. Finally, MRI imaging in vivo was performed to observe the imaging performance. RESULTS Nine PEGylated monocrystalline SPIO nanoparticles have good relaxivities, serum stability, and biosecurity. At the same time, they show different imaging characteristics at different magnetic field intensities. Eight-nanometer SPIO@PEG5k is an effective T 2 contrast agent at 3.0 T (r 2/r 1 = 14.0), is an ideal T 1-T 2 dual-mode contrast agent at 1.5 T (r 2/r 1 = 6.52), and is also an effective T 1 contrast agent at 0.5 T (r 2/r 1 = 2.49), while 4-nm SPIO@PEG5k is a T 1-T 2 dual-mode contrast agent at 3.0 T (r 2/r 1 = 5.24), and is a useful T 1 contrast agent at 0.5 T (r 2/r 1 = 1.74) and 1.5 T (r 2/r 1 = 2.85). MRI studies in vivo at 3.0 T further confirm that 4-nm SPIO@PEG5k displays excellent T 1-T 2 dual-mode contrast enhancement, whereas 8-nm SPIO@PEG5k only displays T 2 contrast enhancement. CONCLUSION PEGylated SPIOs with different nanocrystal sizes and PEG coating can be used as T 1, T 2, or T 1-T 2 dual-mode contrast agents to meet the clinical demands of MRI at specific magnetic fields.
Collapse
Affiliation(s)
- Li-Hua Deng
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Radiology, First People’s Hospital of Neijiang, Neijiang641000, People’s Republic of China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Fu-Lin Lu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Han-Wei Wang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Chang-Qiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Hong-Jie Tang
- Department of Radiology, Nanchong Hospital of Traditional Chinese Medicine, Nanchong637000, People’s Republic of China
| | - Ye Xu
- Department of Radiology, Children’s Hospital of Chongqing Medical University, Chongqing401122, People’s Republic of China
| | - Tian-Wu Chen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Cheng-Yi Shen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| |
Collapse
|
14
|
Fallon BP, Gadepalli SK, Hirschl RB. Pediatric and neonatal extracorporeal life support: current state and continuing evolution. Pediatr Surg Int 2021; 37:17-35. [PMID: 33386443 PMCID: PMC7775668 DOI: 10.1007/s00383-020-04800-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The use of extracorporeal life support (ECLS) for the pediatric and neonatal population continues to grow. At the same time, there have been dramatic improvements in the technology and safety of ECLS that have broadened the scope of its application. This article will review the evolving landscape of ECLS, including its expanding indications and shrinking contraindications. It will also describe traditional and hybrid cannulation strategies as well as changes in circuit components such as servo regulation, non-thrombogenic surfaces, and paracorporeal lung-assist devices. Finally, it will outline the modern approach to managing a patient on ECLS, including anticoagulation, sedation, rehabilitation, nutrition, and staffing.
Collapse
Affiliation(s)
- Brian P Fallon
- Department of Surgery, ECLS Laboratory, B560 MSRB II/SPC 5686, Michigan Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Samir K Gadepalli
- Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ronald B Hirschl
- Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Wu C, Chen T, Deng L, Xia Q, Chen C, Lan M, Pu Y, Tang H, Xu Y, Zhu J, Xu C, Shen C, Zhang X. Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents. NANOSCALE ADVANCES 2020; 2:2752-2757. [PMID: 36132378 PMCID: PMC9416939 DOI: 10.1039/d0na00117a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/15/2020] [Indexed: 06/15/2023]
Abstract
In this communication, a paramagnetic bifunctional manganese(ii) chelate ([Mn(Dopa-EDTA)]2-) containing a catechol group is designed and synthesized. The catechol can bind iron ions on the surface of superparamagnetic iron oxide (SPIO) nanocrystals to form core-shell nanoparticles. Both 4 and 7 nm SPIO@[Mn(Dopa-EDTA)]2- show good water solubility, single-crystal dispersion, and low cytotoxicity. The study of the interplay between the longitudinal and transverse relaxation revealed that 4 nm SPIO@[Mn(Dopa-EDTA)]2- with lower r 2/r 1 = 1.75 at 0.5 T tends to be a perfect T 1 contrast agent while 7 nm SPIO@[Mn(Dopa-EDTA)]2- with a higher r 2/r 1 = 15.0 at 3.0 T tends to be a T 2 contrast agent. Interestingly, 4 nm SPIO@[Mn(Dopa-EDTA)]2- with an intermediate value of r 2/r 1 = 5.26 at 3.0 T could act as T 1-T 2 dual-modal contrast agent. In vivo imaging with the 4 nm SPIO@[Mn(Dopa-EDTA)]2- nanoparticle shows unique imaging features: (1) long-acting vascular imaging and different signal intensity changes between the liver parenchyma and blood vessels with the CEMRA sequence; (2) the synergistic contrast enhancement of hepatic imaging with the T 1WI and T 2WI sequence. In summary, these Fe/Mn hybrid core-shell nanoparticles, with their ease of synthesis, good biocompatibility, and synergistic contrast enhancement ability, may provide a useful method for tissue and vascular MR imaging.
Collapse
Affiliation(s)
- Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Tianwu Chen
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Lihua Deng
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
- Department of Radiology, First People's Hospital of Neijiang Neijiang 641000 China
| | - Qian Xia
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Chuan Chen
- School of Pharmacy, North Sichuan Medical College Nanchong 637000 China
| | - Mu Lan
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Hongjie Tang
- Department of Radiology, Nanchong Hospital of Traditional Chinese Medicine Nanchong 637000 China
| | - Ye Xu
- Department of Radiology, Children's Hospital of Chongqing Medical University Chongqing 401122 China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
- School of Pharmacy, North Sichuan Medical College Nanchong 637000 China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| |
Collapse
|
16
|
Rezvova MA, Ovcharenko EA, Klyshnikov KY, Kudryavtseva YA. Promising polymeric compounds for coronary stent graft membrane. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The literature review discusses the studies on developing the polymer membrane of a coronary stent graft. The new generation of coronary stent grafts is designed to increase the hemocompatibility and ensure its delivery to poorly accessible artery regions. Based on the clinical use results, three groups of promising polymers were identified: biostable polyurethanes, polyvinyl alcohol-based cryogels, bioresorbable compositions based on polylactide-caprolactone and lactic acid-glycolic acid copolymer. However, the possibility of their clinical application requires further experimental studying.
Collapse
Affiliation(s)
- M. A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - E. A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases
| | | | | |
Collapse
|
17
|
Glutathione-magnetite nanoparticles: synthesis and physical characterization for application as MRI contrast agent. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3010-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Perez-Lloret M, Fraix A, Petralia S, Conoci S, Tafani V, Cutrone G, Vargas-Berenguel A, Gref R, Sortino S. One-Step Photochemical Green Synthesis of Water-Dispersible Ag, Au, and Au@Ag Core-Shell Nanoparticles. Chemistry 2019; 25:14638-14643. [PMID: 31512779 DOI: 10.1002/chem.201903076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/07/2019] [Indexed: 01/04/2023]
Abstract
A simple and green synthetic protocol for the rapid and effective preparation of Ag, Au and Au@Ag core-shell nanoparticles (NPs) is reported based on the light irradiation of a biocompatible, water-soluble dextran functionalized with benzophenone (BP) in the presence of AgNO3 , HAuCl4 , or both. Photoactivation of the BP moiety produces the highly reducing ketyl radicals through fast (<50 ns) intramolecular H-abstraction from the dextran scaffold, which, in turn, ensures excellent dispersibility of the obtained metal NPs in water. The antibacterial activity of the AgNPs and the photothermal action of the Au@Ag core-shell are also shown.
Collapse
Affiliation(s)
- Marta Perez-Lloret
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | - Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | | | - Sabrina Conoci
- STMicroelectronics, Stradale Primosole, 50, 95121, Catania, Italy
| | - Virginie Tafani
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Hospices Civils de Lyon, Centre de Biologie Nord Laboratoire de Bactériologie Hôpital, de la Croix-Rousse, 10, Grande Rue de la Croix Rousse, 69004, Lyon, France
| | - Giovanna Cutrone
- Department of Chemistry and Physics, University of Almería, Crta. de Sacramento s/n, 04120, Almería, Spain
| | - Antonio Vargas-Berenguel
- Department of Chemistry and Physics, University of Almería, Crta. de Sacramento s/n, 04120, Almería, Spain
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay, Bureau 210, Bâtiment 520, Rue A. Rivière, 91400, Orsay, France
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| |
Collapse
|
19
|
Garda Z, Molnár E, Kálmán FK, Botár R, Nagy V, Baranyai Z, Brücher E, Kovács Z, Tóth I, Tircsó G. Effect of the Nature of Donor Atoms on the Thermodynamic, Kinetic and Relaxation Properties of Mn(II) Complexes Formed With Some Trisubstituted 12-Membered Macrocyclic Ligands. Front Chem 2018; 6:232. [PMID: 30151358 PMCID: PMC6099102 DOI: 10.3389/fchem.2018.00232] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022] Open
Abstract
During the past few years increasing attention has been devoted to Mn(II) complexes as possible substitutes for Gd(III) complexes as contrast agents in MRI. Equilibrium (log KMnL or pMn value), kinetic parameters (rates and half-lives of dissociation) and relaxivity of the Mn(II) complexes formed with 12-membered macrocyclic ligands were studied. The ligands were selected in a way to gain information on how the ligand rigidity, the nature of the donor atoms in the macrocycle (pyridine N, amine N, and etheric O atom), the nature of the pendant arms (carboxylates, phosphonates, primary, secondary and tertiary amides) affect the physicochemical parameters of the Mn(II) complexes. As expected, decreasing the denticity of DOTA (to afford DO3A) resulted in a drop in the stability and inertness of [Mn(DO3A)]- compared to [Mn(DOTA)]2-. This decrease can be compensated partially by incorporating the fourth nitrogen atom into a pyridine ring (e.g., PCTA) or by replacement with an etheric oxygen atom (ODO3A). Moreover, the substitution of primary amides for acetates resulted in a noticeable drop in the stability constant (PC3AMH), but it increased as the primary amides (PC3AMH) were replaced by secondary (PC3AMGly) or tertiary amide (PC3AMPip) pendants. The inertness of the Mn(II) complexes behaved alike as the rates of acid catalyzed dissociation increased going from DOTA (k1 = 0.040 M-1s-1) to DO3A (k1 = 0.45 M-1s-1). However, the rates of acid catalyzed dissociation decreased from 0.112 M-1s-1 observed for the anionic Mn(II) complex of PCTA to 0.0107 M-1s-1 and 0.00458 M-1s-1 for the cationic Mn(II) complexes of PC3AMH and PC3AMPip ligands, respectively. In spite of its lower denticity (as compared to DOTA) the sterically more hindered amide complex ([Mn(PC3AMPip)]2+) displays surprisingly high conditional stability (pMn = 8.86 vs. pMn = 9.74 for [Mn(PCTA)]-) and excellent kinetic inertness. The substitution of phosphonates for the acetate pendant arms (DOTP and DO3P), however, resulted in a noticeable drop in the conditional stability as well as dissociation kinetic parameters of the corresponding Mn(II) complexes ([Mn(DOTP)]6- and [Mn(DO3P)]4-) underlining that the phosphonate pedant should not be considered as a suitable building block for further ligand design while the tertiary amide moiety will likely have some implications in this respect in the future.
Collapse
Affiliation(s)
- Zoltán Garda
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Enikő Molnár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ferenc K. Kálmán
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Richárd Botár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Viktória Nagy
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zsolt Baranyai
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ernő Brücher
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kovács
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Laine S, Bonnet CS, Kálmán FK, Garda Z, Pallier A, Caillé F, Suzenet F, Tircsó G, Tóth É. Mn2+ complexes of open-chain ligands with a pyridine backbone: less donor atoms lead to higher kinetic inertness. NEW J CHEM 2018. [DOI: 10.1039/c8nj00648b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The loss of a coordinating donor atom in the ligand leads to lower thermodynamic stability, but higher kinetic inertness of Mn2+ complexes.
Collapse
Affiliation(s)
- Sophie Laine
- Centre de Biophysique Moléculaire
- CNRS
- Université d’Orléans
- rue Charles Sadron
- 45071 Orléans
| | - Célia S. Bonnet
- Centre de Biophysique Moléculaire
- CNRS
- Université d’Orléans
- rue Charles Sadron
- 45071 Orléans
| | - Ferenc K. Kálmán
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- Debrecen
- Hungary
| | - Zoltán Garda
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- Debrecen
- Hungary
| | - Agnès Pallier
- Centre de Biophysique Moléculaire
- CNRS
- Université d’Orléans
- rue Charles Sadron
- 45071 Orléans
| | - Fabien Caillé
- Centre de Biophysique Moléculaire
- CNRS
- Université d’Orléans
- rue Charles Sadron
- 45071 Orléans
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique
- UMR 7311 CNRS
- Université d’Orléans
- rue de Chartres
- 45067 Orléans
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- Debrecen
- Hungary
| | - Éva Tóth
- Centre de Biophysique Moléculaire
- CNRS
- Université d’Orléans
- rue Charles Sadron
- 45071 Orléans
| |
Collapse
|
21
|
Vanasschen C, Molnár E, Tircsó G, Kálmán FK, Tóth É, Brandt M, Coenen HH, Neumaier B. Novel CDTA-based, Bifunctional Chelators for Stable and Inert MnII Complexation: Synthesis and Physicochemical Characterization. Inorg Chem 2017. [DOI: 10.1021/acs.inorgchem.7b00460] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Vanasschen
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Enikő Molnár
- Department of Inorganic and Analytical Chemistry, Faculty
of Science and Technology, University of Debrecen, Debrecen, Egyetem tér 1, H-4010, Hungary
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty
of Science and Technology, University of Debrecen, Debrecen, Egyetem tér 1, H-4010, Hungary
| | - Ferenc K. Kálmán
- Department of Inorganic and Analytical Chemistry, Faculty
of Science and Technology, University of Debrecen, Debrecen, Egyetem tér 1, H-4010, Hungary
- Centre de Biophysique Moléculaire,
CNRS, Université d’Orléans, rue Charles Sadron, 45071 Orléans, Cedex 2, France
- Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue
Dupanloup, 45000 Orléans, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire,
CNRS, Université d’Orléans, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Marie Brandt
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Heinz H. Coenen
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bernd Neumaier
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
22
|
Wu C, Yang L, Chen Z, Zhang H, Li D, Lin B, Zhu J, Ai H, Zhang X. Poly(ethylene glycol) modified Mn2+ complexes as contrast agents with a prolonged observation window in rat MRA. RSC Adv 2017. [DOI: 10.1039/c7ra09975d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PEGylated Mn2+ complexes show higher relaxivity and longer blood circulation time than free Mn2+ complexes.
Collapse
Affiliation(s)
- Changqiang Wu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- Sichuan Key Laboratory of Medical Imaging
| | - Li Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhuzhong Chen
- PET/CT of Imaging Department
- Sichuan Cancer Hospital
- Chengdu 610064
- P. R. China
| | - Houbing Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Danyang Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bingbing Lin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging
- Department of Chemistry
- North Sichuan Medical College
- Nanchong 637000
- P. R. China
| | - Hua Ai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- Department of Radiology
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging
- School of Medical Imaging
- North Sichuan Medical College
- Nanchong 637000
- P. R. China
| |
Collapse
|
23
|
Hapuarachchige S, Artemov D. Click Chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging. Top Magn Reson Imaging 2016; 25:205-213. [PMID: 27748712 PMCID: PMC5082715 DOI: 10.1097/rmr.0000000000000099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|