1
|
Fan X, Zhao X, Xu J, Wang J, Wang Q, Tang X. Triton modified polyethyleneimine conjugates assembled with growth arrest-specific protein 6 for androgenetic alopecia transdermal gene therapy. Mater Today Bio 2023; 19:100575. [PMID: 36815198 PMCID: PMC9939716 DOI: 10.1016/j.mtbio.2023.100575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Androgenetic alopecia is an androgen-dependent skin disorder that commonly affects hair follicle growth and hair loss. Gene therapy that can promote the proliferation and survival of hair follicle cells can be a potential choice for its cure. While transdermal application of therapeutic functional nucleic acids across the stratum corneum is quite difficult. Here, we first develop a transdermal agent for functional nucleic acid delivery using Triton X-100-modified low molecular weight polyethyleneimine (PEI-Triton-N, N = 6 or 8). In vitro cell experiments demonstrate that the PEI-Triton-N conjugates can stably encapsulate and efficiently deliver plasmid DNA to hard-to-transfect keratinocyte HaCaT cells. Further mouse model studies show that PEI-Triton-6 can encapsulate and deliver growth arrest-specific protein 6 (Gas6) plasmid through transdermal administration. The transfected Gas6 prolongs the anagen status, inhibits the apoptosis of hair follicle cells, and further promotes the proliferation and differentiation of hair follicle cells. The PEI-Triton-6/pDNAGas6 complexes can obviously alleviate hair loss in androgenetic alopecia mice and provides a promising strategy for gene therapy via transdermal administration.
Collapse
Affiliation(s)
- Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Jianfei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China,Corresponding author. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
2
|
Yang C, Jiang Y, Cheng N, Zhao J, Chen F. Hyperbranched Polymer Network Based on Electrostatic Interaction for Anodes in Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7921. [PMID: 36431406 PMCID: PMC9695604 DOI: 10.3390/ma15227921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Silicon is considered as one of the ideal anode materials for the new generation of lithium-ion batteries due to its extremely high theoretical specific capacity. Nevertheless, in the actual charging and discharging process, the Si electrode will lose its electrochemical performance due to the huge volume change of Si nanoparticles resulting in detachment from the surface of the fluid collector. The polymer binder can bond the Si nanoparticles together in a three-dimensional cross-linking network, which can thus effectively prevent the Si nanoparticles from falling off the surface of the fluid collector due to the drastic change of volume during the charging and discharging process. Therefore, this study developed a new polymer binder based on electrostatic interaction with hyperbranched polyethylenimine (HPEI) as the main body and water-soluble carboxylated polyethylene glycol (CPEG) as the cross-linker, where the degree of cross-linking can be easily optimized by adjusting the pH value. The results demonstrate that, when the density of positive and negative charges in the binder is relatively balanced at pH 7, the stability of the battery's charge-discharge cycle is significantly improved. After 200 cycles of constant current charge-discharge test, the specific capacity retention rate is 63.3%.
Collapse
Affiliation(s)
- Chenchen Yang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Jiang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Na Cheng
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314041, China
| | - Jianwei Zhao
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314041, China
| | - Feng Chen
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314041, China
| |
Collapse
|
3
|
He X, Luo Q, Zhang J, Chen P, Wang HJ, Luo K, Yu XQ. Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. NANOSCALE 2019; 11:12973-12982. [PMID: 31263818 DOI: 10.1039/c9nr03988k] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multi-functional carbon dots with MR/FL dual-imaging and gene delivery abilities were constructed for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ping Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hai-Jiao Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
4
|
Xiao YP, Zhang J, Liu YH, Zhang JH, Yu QY, Huang Z, Yu XQ. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery. Eur J Med Chem 2018; 162:602-611. [PMID: 30472606 DOI: 10.1016/j.ejmech.2018.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 02/02/2023]
Abstract
Fluorinated biomaterials have been reported to have promising features as non-viral gene carriers. In this study, a series of fluorinated polymeric gene carriers were synthesized via Michael addition from low molecular weight polyethyleneimine (PEI) and fluorobenzoic acids (FBAs)-based linking compounds with different numbers of fluorine atoms. The structure-activity relationship (SAR) of these materials was systematically investigated. SAR studies showed that fluorine could screen the positive charge of these polymers. However, this shielding effect of fluorine would endow fluorinated polymers with good balance between DNA condensation and release. In vitro transfection results suggested that these fluorinated polymers could mediate efficient gene delivery. Flow cytometry and confocal microscopy studies demonstrated that more efficient cell uptake could be achieved by fluorinated materials with more fluorine atoms. Cytotoxicity assays showed that these fluorinated materials exhibited very low cytotoxicity even at high mass ratios. This study demonstrates that FBA-based fluorinated biopolymers have the potential for practical application.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
5
|
Yue Y, Yadav SK, Wang C, Zhao Y, Zhang X, Wu Z. Nonabsorbable polysaccharide-functionalized polyethylenimine for inhibiting lipid absorption. Carbohydr Polym 2018; 197:57-65. [DOI: 10.1016/j.carbpol.2018.05.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022]
|
6
|
Lin GQ, Yi WJ, Liu Q, Yang XJ, Zhao ZG. Aromatic Thioacetal-Bridged ROS-Responsive Nanoparticles as Novel Gene Delivery Vehicles. Molecules 2018; 23:E2061. [PMID: 30126108 PMCID: PMC6225261 DOI: 10.3390/molecules23082061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023] Open
Abstract
In this report, a series of polycations are designed and synthesized by conjugating reactive oxygen species (ROS)-responsive thioacetal-linkers to low molecular weight (LMW) polyethylenimine (PEI) via ring-opening polymerization. Their structure⁻activity relationships (SARs) as gene delivery vectors are systematically studied. Although the MWs of the target polymers are only ~9 KDa, they show good DNA binding ability. The formed polyplexes, which are stable toward serum but decomposed under ROS-conditions, have appropriate sizes (180~300 nm) and positive zeta-potentials (+35~50 mV). In vitro experiments reveal that these materials have low cytotoxicity, and higher transfection efficiency (TE) than controls. Furthermore, the title polymers exhibit excellent serum tolerance. With the present of 10% serum, the TE of the polymers even increases up to 10 times higher than 25 KDa PEI and 9 times higher than Lipofectamine 2000. The SAR studies also reveal that electron-withdrawing groups on the aromatic ring in 4a may benefit to balance between the DNA condensation and release for efficient gene transfection.
Collapse
Affiliation(s)
- Guo-Qing Lin
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Wen-Jing Yi
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Xue-Jun Yang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
7
|
Xu FJ. Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Huang Z, Zhao DM, Deng X, Zhang J, Zhang YM, Yu XQ. Functionalized Asymmetric Bola-Type Amphiphiles for Efficient Gene and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E115. [PMID: 29462991 PMCID: PMC5853746 DOI: 10.3390/nano8020115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/05/2023]
Abstract
The studies of bolaamphiphile-based nanoparticles as delivery vectors are still rudimentary and under development. In this study, several asymmetric bolaamphiphiles containing lysine and another moiety with special functions, such as pH-sensitive or cell-targeting property, were designed and synthesized. The potentials of these bolaamphiphile-based nanoparticles as versatile vectors for both nucleic acids and chemical drugs were studied. With the presence of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), these amphiphiles could be prepared into bolasomes, which showed good DNA binding ability and could condense plasmid DNA into nanoparticles with appropriate size and surface potential. Lys-His, which has a pH-sensitive histidine on one head, exhibited higher transfection efficiency than the symmetric counterpart and comparable efficiency to commercially available transfection reagent. Mechanism studies confirmed that the bolaplexes formed from Lys-His might induce the highest cellular uptake and the best endosomal escape ability. On the other hand, these bolaamphiphiles also exhibited good drug loading ability. The self-assembly vesicles could efficiently encapsulate the hydrophobic anti-cancer drug doxorubicin (DOX) in aqueous solution with high drug loading content and encapsulation efficiency. Confocal laser scanning microscopy (CLSM) experiment and cell viability assay exhibited a controlled release of the drug with the assistance of bolasomes. It was shown that such bolaamphiphiles have great potential as nano-vectors for both drug and gene or their co-delivery.
Collapse
Affiliation(s)
- Zheng Huang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Dong-Mei Zhao
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuan Deng
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
9
|
Xiao YP, Zhang J, Liu YH, Chen XC, Yu QY, Luan CR, Zhang JH, Wei X, Yu XQ. Ring-opening polymerization of diepoxides as an alternative method to overcome PEG dilemma in gene delivery. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Stefaniak M, Romański J. Application of HPLC for the screening of separation of new macrocyclic systems. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2016.1255622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Monika Stefaniak
- Department of Organic and Applied Chemistry, University of Łódź, Łódź, Poland
| | - Jarosław Romański
- Department of Organic and Applied Chemistry, University of Łódź, Łódź, Poland
| |
Collapse
|
11
|
Xiao YP, Zhang J, Liu YH, Huang Z, Wang B, Zhang YM, Yu XQ. Cross-linked polymers with fluorinated bridges for efficient gene delivery. J Mater Chem B 2017; 5:8542-8553. [DOI: 10.1039/c7tb02158e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new strategy for the construction of fluorinated cationic polymers for gene delivery was introduced.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
12
|
Zhang YM, Huang Z, Zhang J, Wu WX, Liu YH, Yu XQ. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery. Biomater Sci 2017; 5:718-729. [DOI: 10.1039/c6bm00859c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ring-opening polymerization was found to be a promising strategy to improve the transfection efficiency and serum tolerance of cationic lipids.
Collapse
Affiliation(s)
- Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Wan-Xia Wu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
13
|
Wang HJ, Zhang J, Liu YH, Luo TY, He X, Yu XQ. Hyaluronic acid-based carbon dots for efficient gene delivery and cell imaging. RSC Adv 2017. [DOI: 10.1039/c7ra01417a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two polymers were used with no additives to directly construct multifunctional carbon dots by a microwave-assisted method for simultaneous gene delivery and cell imaging.
Collapse
Affiliation(s)
- Hai-Jiao Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Tian-Ying Luo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
14
|
Wang B, Chen P, Zhang J, Chen XC, Liu YH, Huang Z, Yu QY, Zhang JH, Zhang W, Wei X, Yu XQ. Self-assembled core–shell-corona multifunctional non-viral vector with AIE property for efficient hepatocyte-targeting gene delivery. Polym Chem 2017. [DOI: 10.1039/c7py01520h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Core–shell-corona multifunctional nanoparticles were prepared and used for cell imaging and cell-targeting delivery of genes toward hepatocytes.
Collapse
|
15
|
Duan S, Yu B, Gao C, Yuan W, Ma J, Xu FJ. A Facile Strategy to Prepare Hyperbranched Hydroxyl-Rich Polycations for Effective Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29334-29342. [PMID: 27726331 DOI: 10.1021/acsami.6b11029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For effective gene therapy, nonviral gene carriers with low toxicity and high transfection efficiency are of much importance. In this work, we developed a facile strategy to prepare hyperbranched hydroxyl-rich polycations (denoted by TE) by the one-pot method involving ring-opening reactions between two commonly used reagents, ethylenediamine (ED) with two amino groups and 1,3,5-triglycidyl isocyanurate (TGIC) with three epoxy groups. The hyperbranched TEs with different molecular weights were investigated on their DNA condensation ability, protein absorption property, biocompatibility, transfection efficiency, and in vivo cancer therapy and toxicity. TE exhibited low cytotoxicity and protein absorption property due to the plentiful hydroxyl groups. The optimal transfection efficiency of TE was significantly higher than that of the gold standard polycationic gene carrier branched polyethylenimine (PEI, 25 kDa). Furthermore, TE was applied for in vivo tumor inhibition by the delivery of antioncogene p53, which showed good antitumor efficiency with low adverse effects. The present work provides a new concept for the facile preparation of hyperbranched hydroxyl-rich polycationic carriers with good transfection performances.
Collapse
Affiliation(s)
| | | | - Chunxiao Gao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences , Beijing 100021, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences , Beijing 100021, China
| | - Jie Ma
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences , Beijing 100021, China
| | | |
Collapse
|
16
|
Tang S, Huang L, Daniels-Mulholland RJ, Dlugosz E, Morin EA, Lenaghan S, He W. Compositional tuning of epoxide-polyetheramine "click" reaction toward cytocompatible, cationic hydrogel particles with antimicrobial and DNA binding activities. Acta Biomater 2016; 43:292-302. [PMID: 27403884 DOI: 10.1016/j.actbio.2016.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/03/2016] [Accepted: 07/09/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED The "click" characteristics of nucleophilic opening of epoxide have recently been exploited for the development of a functional hydrogel particle system based on commercially available bisepoxide and triamine polyetheramine monomers. Key features of these particles include high cationic charges and responsiveness to temperature, pH, and oxidation. Despite these advantages, the cytocompatibility of these particles must be considered prior to use in biomedical applications. Here we demonstrate that, by introducing a diamine polyetheramine as a comonomer in the "click" reaction, and tuning its molar ratio with the triamine monomer, cationic nanoparticles with improved cytocompatibility can be prepared. The reduced cytotoxicity is primarily due to the hydrophilic backbone of the diamine comonomer, which has polyethylene glycol as a primary component. The resulting nanoparticles formed from the diamine comonomer exhibited a lower surface charge, while maintaining a comparable size. In addition, the responsiveness of the nanoparticles to temperature, pH, and oxidation was conserved, while achieving greater colloidal stability at basic pH. Results from this study further demonstrated that the nanoparticles were able to encapsulate Nile red, a model for hydrophobic drug molecules, were effective against the bacteria Staphylococcus aureus, and were capable of binding DNA through ionic complexation. Based on the results from this work, the use of diamine comonomers significantly reduces the cytotoxicity of similarly developed hydrogel nanoparticles, allowing for numerous biomedical applications, including nanocarriers for therapeutic agents with poor water solubility, treatment of bacterial infection, and non-viral vectors for gene therapy. STATEMENT OF SIGNIFICANCE In recent years significant attention has been placed on the development of nanocarriers for numerous biomedical applications. Of particular interest are cationic polymers, which contain high positive surface charges that allow binding of numerous therapeutic agents. Unfortunately, the advantages of cationic polymers for binding, are often negated by the tendency of these polymers to be cytotoxic. Previous studies have developed highly responsive cationic hydrogel nanoparticles, which meet several of the criteria for biomedical applications, but were acutely cytotoxic. In this work, cationic hydrogel nanoparticles, with significantly improved cytocompatibility, were synthesized using simple, green epoxy chemistry. In addition, the ability of these nanoparticles to maintain a small size (<500nm), bind DNA, encapsulate hydrophobic drugs, and kill bacteria was maintained.
Collapse
|
17
|
Deng X, Yin Z, Zhou Z, Wang Y, Zhang F, Hu Q, Yang Y, Lu J, Wu Y, Sheng W, Zeng Y. Carboxymethyl Dextran-Stabilized Polyethylenimine-Poly(epsilon-caprolactone) Nanoparticles-Mediated Modulation of MicroRNA-34a Expression via Small-Molecule Modulator for Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17068-17079. [PMID: 27300477 DOI: 10.1021/acsami.6b03122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNA-34a (miR-34a) modulation therapy has shown great promise to treat hepatocellular carcinoma (HCC). 2'-Hydroxy-2,4,4',5,6'-pentamethoxychalcone, termed Rubone, has been shown to specifically upregulate miR-34a expression in HCC cells and considered as novel anticancer agent. However, the extremely low aqueous solubility of Rubone hampers its use in cancer treatment. In the present study, surface-stabilized nanoparticles-based delivery strategy was engaged to overcome this impediment. In our preparation, Rubone was encapsulated in the micelles composed of polyethylenimine-poly(epsilon-caprolactone) (PEI-PCL) through hydrophobic interactions, which were subsequently stabilized with anionic carboxymethyl dextran CMD via electronic interaction. We found that Rubone-encapsulating nanoparticles are dispersed well in aqueous solution. The results further demonstrated that Rubone could be efficiently delivered in HCC cells by nanoparticles and upregulate miR-34a expression, which in turn led to inhibition of proliferation, migration, and increased apoptosis of HCC cells. In vivo experiments showed that Rubone can be preferentially delivered into tumor tissues by CMD-stabilized PEI-PCL nanoparticles after intravenous administration and significantly inhibited tumor growth. Furthermore, low cytotoxicity of the nanoparticles was observed in vitro and in vivo analyses, indicating a good compatibility of generated nanoparticles. The obtained results suggest that CMD-stabilized PEI-PCL nanoparticles may serve as a novel approach for small-molecule-modulator-mediated miR-34a restoration for HCC therapy.
Collapse
Affiliation(s)
- Xiongwei Deng
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Zhaoxia Yin
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Zhixiang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Yihui Wang
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Fang Zhang
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Qin Hu
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Wang Sheng
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Yi Zeng
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| |
Collapse
|
18
|
Yu M, Zhang L, Wang J, Tang R, Yan G, Cao Z, Wang X. Acid-labile poly(ortho ester amino alcohols) by ring-opening polymerization for controlled DNA release and improved serum tolerance. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Luan CR, Liu YH, Zhang J, Yu QY, Huang Z, Wang B, Yu XQ. Low Molecular Weight Oligomers with Aromatic Backbone as Efficient Nonviral Gene Vectors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10743-10751. [PMID: 27077449 DOI: 10.1021/acsami.6b01561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of oligomers were synthesized via ring-opening polymerization. Although the molecular weights of these oligomers are only ∼2.5 kDa, they could efficiently bind and condense DNA into nanoparticles. These oligomers gave comparable transfection efficiency (TE) to PEI 25 kDa, while their TE could even increase with the presence of serum, and up to 65 times higher TE than PEI was obtained. The excellent serum tolerance was also confirmed by TEM, flow cytometry, and BSA adsorption assay. Moreover, structure-activity relationship studies revealed some interesting factors. First, oligomers containing aromatic rings in the backbone showed better DNA binding ability. These materials could bring more DNA cargo into the cells, leading to much better TE. Second, the isomerism of the disubstituted phenyl group on the oligomer backbone has large effect on the transfection. The ortho-disubstituted ones gave at least 1 order of magnitude higher TE than meta- or para-disubstituted oligomers. Gel electrophoresis involving DNase and heparin indicated that the difficulty to release DNA might contribute to the lower TE of the latter. Such clues may help us to design novel nonviral gene vectors with high efficiency and biocompatibility.
Collapse
Affiliation(s)
- Chao-Ran Luan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
20
|
Yu QY, Liu YH, Huang Z, Zhang J, Luan CR, Zhang QF, Yu XQ. Bio-reducible polycations from ring-opening polymerization as potential gene delivery vehicles. Org Biomol Chem 2016; 14:6470-8. [DOI: 10.1039/c6ob00859c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bio-reducible polycations were prepared via ring-opening polymerization. These materials have relatively low molecular weights and cytotoxicity but have good DNA condensation ability, transfection efficiency and excellent serum tolerance.
Collapse
Affiliation(s)
- Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Chao-Ran Luan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Qin-Fang Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|