1
|
Wang D, Yang S, Wang N, Guo H, Feng S, Luo Y, Zhao J. A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy. BIOSENSORS 2024; 14:174. [PMID: 38667167 PMCID: PMC11048442 DOI: 10.3390/bios14040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Exosomes, with diameters ranging from 30 to 150 nm, are saucer-shaped extracellular vesicles (EVs) secreted by various type of human cells. They are present in virtually all bodily fluids. Owing to their abundant nucleic acid and protein content, exosomes have emerged as promising biomarkers for noninvasive molecular diagnostics. However, the need for exosome separation purification presents tremendous technical challenges due to their minuscule size. In recent years, microfluidic technology has garnered substantial interest as a promising alternative capable of excellent separation performance, reduced reagent consumption, and lower overall device and operation costs. In this context, we hereby propose a novel microfluidic strategy based on thermally oxidized deterministic lateral displacement (DLD) arrays with tapered shapes to enhance separation performance. We have achieved more than 90% purity in both polystyrene nanoparticle and exosome experiments. The use of thermal oxidation also significantly reduces fabrication complexity by avoiding the use of high-precision lithography. Furthermore, in a simulation model, we attempt to integrate the use of dielectrophoresis (DEP) to overcome the size-based nature of DLD and distinguish particles that are close in size but differ in biochemical compositions (e.g., lipoproteins, exomeres, retroviruses). We believe the proposed strategy heralds a versatile and innovative platform poised to enhance exosome analysis across a spectrum of biochemical applications.
Collapse
Affiliation(s)
- Dayin Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shijia Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Han Guo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Bu Y, Wang J, Ni S, Guo Y, Yobas L. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device. LAB ON A CHIP 2023; 23:2421-2433. [PMID: 36951129 DOI: 10.1039/d2lc01193j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived bioparticles that play significant roles in various biological processes including cell-to-cell communication and intercellular delivery. Additionally, they hold great potential as liquid biopsy biomarkers for pre-diagnostic applications. However, the isolation of EV subpopulations, especially exosomes from a biological fluid remains a challenge due to their submicron range. Here, we demonstrate continuous-flow label-free size fractionation of EVs for the first time through a synergistic combination of electrothermal fluid rolls and dielectrophoresis in a microfluidic device. The device features three dimensional microelectrodes with unique sidewall contours that give rise to effective electrothermal fluid rolls in cooperation with dielectrophoretic forces for the electrokinetic manipulation and size separation of submicron particles. We first validate the device functionality by separating submicron polystyrene particles from binary mixtures with a cut-off size of ∼200 nm and then isolate intact exosomes from cell culture medium or blood serum with a high recovery rate and purity (∼80%). The device operation in a high-conductivity medium renders the method ideal for the purification of target bioparticles directly from physiological fluids, and may offer a robust and versatile platform for EV related diagnostic applications.
Collapse
Affiliation(s)
- Yang Bu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Jinhui Wang
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yusong Guo
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Levent Yobas
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| |
Collapse
|
3
|
Enhancement of Binding Kinetics on Affinity Substrates Using Asymmetric Electroosmotic Flow on a Sinusoidal Bipolar Electrode. MICROMACHINES 2022; 13:mi13020207. [PMID: 35208334 PMCID: PMC8878551 DOI: 10.3390/mi13020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023]
Abstract
In the context of the COVID-19 epidemic, enhancing the transport of analyte to a sensor surface is crucial for rapid detection of biomolecules since common conditions, including low diffusion coefficients, cause inordinately long detection times. Integrated microfluidic immunoassay chips are receiving increasing attention for their low sample volume and fast response time. We herein take advantage of asymmetric ICEO flow at a bipolar sinusoidal electrode to improve the rate of antibody binding to the reaction surface based on finite element modeling. Three different microfluidic cavities are proposed by changing the positions of the surface reaction area. We further investigate the relationship between binding enhancement and reaction surface positions, Damkohler number, and the voltage and frequency of the AC signal applied to the driving electrodes. Furthermore, the influence of the AC signal applied to the sinusoidal bipolar electrode on antigen–antibody-binding performance is studied in detail. Above all, the simulation results demonstrate that the microfluidic immune-sensor with a sinusoidal bipolar electrode could not only significantly improve the heterogeneous immunoassays but also enable efficient enhancement of assays in a selected reaction region within the micro-cavity, providing a promising approach to a variety of immunoassay applications, such as medical diagnostics and environmental and food monitoring.
Collapse
|
4
|
Zhang J, Song Z, Liu Q, Song Y. Recent advances in dielectrophoresis‐based cell viability assessment. Electrophoresis 2020; 41:917-932. [DOI: 10.1002/elps.201900340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Junyan Zhang
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| | - Zhenyu Song
- Department of RadiotherapyJiaozhou Central Hospital Qingdao P. R. China
| | - Qinxin Liu
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| | - Yongxin Song
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| |
Collapse
|
5
|
DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms. MICROMACHINES 2019; 10:mi10060423. [PMID: 31238556 PMCID: PMC6630590 DOI: 10.3390/mi10060423] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
Abstract
Dielectric particles in a non-uniform electric field are subject to a force caused by a phenomenon called dielectrophoresis (DEP). DEP is a commonly used technique in microfluidics for particle or cell separation. In comparison with other separation methods, DEP has the unique advantage of being label-free, fast, and accurate. It has been widely applied in microfluidics for bio-molecular diagnostics and medical and polymer research. This review introduces the basic theory of DEP, its advantages compared with other separation methods, and its applications in recent years, in particular, focusing on the different electrode types integrated into microfluidic chips, fabrication techniques, and operation principles.
Collapse
|
6
|
Liu Y, Chen X, Zhang Y, Liu J. Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst 2019; 144:846-858. [PMID: 30351310 DOI: 10.1039/c8an01503a] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in single-cell analysis have unraveled substantial heterogeneity among seemingly identical cells at genomic and transcriptomic levels. These discoveries have urged scientists to develop new tools that are capable of investigating single cells from a broader set of "omics". Proteomics and metabolomics, for instance, are of particular interest as they are closely correlated with a dynamic picture of cellular behaviors and phenotypic identities. The development of such tools requires highly efficient isolation and processing of a large number of individual cells, where techniques such as microfluidics are extremely useful. Here, we review the recent advances in single-cell proteomics and metabolomics, with a focus on microfluidics-based platforms. We highlight a vast array of emerging microfluidic formats for single-cell isolation and manipulation, and how the state-of-the-art analytical tools are coupled with such platforms for proteomic and metabolomic profiling.
Collapse
Affiliation(s)
- Yifan Liu
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.
| | | | | | | |
Collapse
|
7
|
Xing X, Ng CN, Chau ML, Yobas L. Railing cells along 3D microelectrode tracks for continuous-flow dielectrophoretic sorting. LAB ON A CHIP 2018; 18:3760-3769. [PMID: 30403217 DOI: 10.1039/c8lc00805a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate a unique microfluidic device for continuous-flow cell sorting by railing target cells along physical tracks (electrode sidewalls) based on the combined effect of dielectrophoresis and hydrodynamic drag. The tracks are the raised digits of comb-like structures made of conducting bulk silicon as the electrodes. Unlike other volumetric electrodes, the structures feature a segmented sidewall profile with linear and concave segments forming the tracks and supporting columns, respectively. The interdigitated bulk electrodes lead to a built-in flow chamber in which the digits (tracks) extend downstream at a characteristic angle with respect to the flow, which runs through the passages between the columns. Target cells leaving the passages are levitated and docked against the tracks under positive dielectrophoresis and railed under hydrodynamic drag. Railing efficiency, as high as >95%, is reported against the activation voltage and flow rate for the designs 7°, 16°, and 26° as the track angles. A collection efficiency of about 86% is noted for both target (HCT116) and non-target cells (K562) in the 16° design at a sample flow rate of 8.3 μL min-1 and an activation voltage of 12.5 Vp at 200 kHz. This performance is comparable if not better than those obtained with thin-film surface microelectrodes and yet achieved here at an order of magnitude higher sample flow rate. This enhancement mainly arises from a considerably low drag along the tracks in relation to the chamber top or bottom surface where the thin-film electrodes would be typically placed.
Collapse
Affiliation(s)
- Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | |
Collapse
|
8
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
9
|
Xing X, He M, Qiu H, Yobas L. Continuous-Flow Electrokinetic-Assisted Plasmapheresis by Using Three-Dimensional Microelectrodes Featuring Sidewall Undercuts. Anal Chem 2016; 88:5197-204. [DOI: 10.1021/acs.analchem.6b00215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaoxing Xing
- Department of Electronic and Computer
Engineering, ‡Department of Mechanical and Aerospace
Engineering, and §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Minghao He
- Department of Electronic and Computer
Engineering, ‡Department of Mechanical and Aerospace
Engineering, and §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Huihe Qiu
- Department of Electronic and Computer
Engineering, ‡Department of Mechanical and Aerospace
Engineering, and §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Levent Yobas
- Department of Electronic and Computer
Engineering, ‡Department of Mechanical and Aerospace
Engineering, and §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
10
|
Marchalot J, Chateaux JF, Faivre M, Mertani HC, Ferrigno R, Deman AL. Dielectrophoretic capture of low abundance cell population using thick electrodes. BIOMICROFLUIDICS 2015; 9:054104. [PMID: 26392836 PMCID: PMC4560720 DOI: 10.1063/1.4928703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/05/2015] [Indexed: 05/12/2023]
Abstract
Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).
Collapse
Affiliation(s)
- Julien Marchalot
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Jean-François Chateaux
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Magalie Faivre
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM U1052-CNRS UMR5286, Université de Lyon 1, Université de Lyon , Lyon 69008, France
| | - Rosaria Ferrigno
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Anne-Laure Deman
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| |
Collapse
|