1
|
Bennett AA, Steininger-Mairinger T, Eroğlu ÇG, Gfeller A, Wirth J, Puschenreiter M, Hann S. Dual column chromatography combined with high-resolution mass spectrometry improves coverage of non-targeted analysis of plant root exudates. Anal Chim Acta 2024; 1327:343126. [PMID: 39266059 DOI: 10.1016/j.aca.2024.343126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Within the plant kingdom, there is an exceptional amount of chemical diversity that has yet to be annotated. It is for this reason that non-targeted analysis is of interest for those working in novel natural products. To increase the number and diversity of compounds observable in root exudate extracts, several workflows which differ at three key stages were compared: 1) sample extraction, 2) chromatography, and 3) data preprocessing. RESULTS Plants were grown in Hoagland's solution for two weeks, and exudates were initially extracted with water, followed by a 24-h regeneration period with subsequent extraction using methanol. Utilizing the second extraction showed improved results with less ion suppression and reduced retention time shifting compared to the first extraction. A single column method, utilizing a pentafluorophenyl column, paired with high-resolution mass spectrometry ionized and correctly identified 34 mock root exudate compounds, while the dual column method, incorporating a pentafluorophenyl column and a porous graphitic carbon column, retained and identified 43 compounds. In a pooled quality control sample of exudate extracts, the single column method detected 1,444 compounds. While the dual method detected fewer compounds overall (1,050), it revealed a larger number of small polar compounds. Three preprocessing methods (targeted, proprietary, and open source) successfully identified 43, 31, and 38 mock root exudate compounds to confidence level 1, respectively. SIGNIFICANCE Enhancing signal strength and analytical method stability involves removing the high ionic strength nutrient solution before sampling root exudate extracts. Despite signal intensity loss, a dual column method enhances compound coverage, particularly for small polar metabolites. Open-source software proves a viable alternative for non-targeted analysis, even surpassing proprietary software in peak picking.
Collapse
Affiliation(s)
- Alexandra A Bennett
- BOKU University, Department of Chemistry, Institute of Analytical Chemistry, 1190, Vienna, Austria
| | | | - Çağla Görkem Eroğlu
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Aurélie Gfeller
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Judith Wirth
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Markus Puschenreiter
- BOKU University, Department of Forest and Soil Sciences, Institute of Soil Research, 3430, Tulln, Austria
| | - Stephan Hann
- BOKU University, Department of Chemistry, Institute of Analytical Chemistry, 1190, Vienna, Austria
| |
Collapse
|
2
|
Day F, O'Sullivan J, Ramzan F, Pook C. Polar metabolomics using trichloroacetic acid extraction and porous graphitic carbon stationary phase. Metabolomics 2024; 20:77. [PMID: 39014104 PMCID: PMC11252196 DOI: 10.1007/s11306-024-02146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Accurately identifying and quantifying polar metabolites using untargeted metabolomics has proven challenging in comparison to mid to non-polar metabolites. Hydrophilic interaction chromatography and gas chromatography-mass spectrometry are predominantly used to target polar metabolites. OBJECTIVES This study aims to demonstrate a simple one-step extraction combined with liquid chromatography-mass spectrometry (LC-MS) that reliably retains polar metabolites. METHODS The method involves a MilliQ + 10% trichloroacetic acid extraction from 6 healthy individuals serum, combined with porous graphitic carbon liquid chromatography-mass spectrometry (LC-MS). The coefficient of variation (CV) assessed retention reliability of polar metabolites with logP as low as - 9. QreSS (Quantification, Retention, and System Suitability) internal standards determined the method's consistency and recovery efficiency. RESULTS The method demonstrated reliable retention (CV < 0.30) of polar metabolites within a logP range of - 9.1 to 5.6. QreSS internal standards confirmed consistent performance (CV < 0.16) and effective recovery (70-130%) of polar to mid-polar metabolites. Quality control dilution series demonstrated that ~ 80% of annotated metabolites could be accurately quantified (Pearson's correlation coefficient > 0.80) within their concentration range. Repeatability was demonstrated through clustering of repeated extractions from a single sample. CONCLUSION This LC-MS method is better suited to covering the polar segment of the metabolome than current methods, offering a reliable and efficient approach for accurate quantification of polar metabolites in untargeted metabolomics.
Collapse
Affiliation(s)
- Francesca Day
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Justin O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Australian Parkinson's Mission, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Darlinghurst, NSW, 2010, Australia
- A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Farha Ramzan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Chris Pook
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland, 1010, New Zealand.
| |
Collapse
|
3
|
Stepwise solid phase extraction integrated with chemical derivatization for all-in-one injection LC-MS/MS analysis of metabolome and lipidome. Anal Chim Acta 2023; 1241:340807. [PMID: 36657877 DOI: 10.1016/j.aca.2023.340807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The metabolome and lipidome are critical components in illustrating biological processes and pathological mechanisms. Generally, two or more independent methods are required to analyze the two compound panels due to their distinct chemical properties and polarity differences. Here, a novel strategy integrating stepwise solid-phase extraction (SPE) and dansyl chemical derivatization was proposed for all-in-one injection LC-MS/MS analysis of serum metabolome and lipidome. In this workflow, a stepwise elution procedure was firstly optimized to separate the metabolome and lipidome fractions using an Ostro plate. Dansyl chemical derivatization was then applied to label amine/phenol, carboxyl, and carbonyl-containing sub-metabolomes. Our results demonstrated that the dansyl labeling could significantly improve chromatographic separation, enhance the MS response, and overcome the matrix effect of co-eluting lipids. Ultimately, an all-in-one injection LC-MS/MS method measuring 256 lipids (covering 20 subclasses) and 212 metabolites (including amino acids, bile acids, fatty acids, acylcarnitines, indole derivatives, ketones and aldehydes, nucleic acid metabolism, polyamines, etc.) was established. This method was applied to investigate the metabolic changes in cisplatin-induced nephrotoxicity in rats and the results were compared with previous untargeted metabolomics. The presented strategy could predominantly improve the analytical coverage and throughput and can be of great use in discovering reliable potential biomarkers in various applications.
Collapse
|
4
|
Foster SW, Parker D, Kurre S, Boughton J, Stoll DR, Grinias JP. A review of two-dimensional liquid chromatography approaches using parallel column arrays in the second dimension. Anal Chim Acta 2022; 1228:340300. [DOI: 10.1016/j.aca.2022.340300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
5
|
A rapid and robust method for amino acid quantification using a simple N-hydroxysuccinimide ester derivatization and liquid chromatography-ion mobility-mass spectrometry. Anal Bioanal Chem 2022; 414:5549-5559. [PMID: 35338375 DOI: 10.1007/s00216-022-03993-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/01/2022]
Abstract
The vast majority of mass spectrometry (MS)-based metabolomics studies employ reversed-phase liquid chromatography (RPLC) to separate analytes prior to MS detection. Highly polar metabolites, such as amino acids (AAs), are poorly retained by RPLC, making quantitation of these key species challenging across the broad concentration ranges typically observed in biological specimens, such as cell extracts. To improve the detection and quantitation of AAs in microglial cell extracts, the implementation of a 4-dimethylaminobenzoylamido acetic acid N-hydroxysuccinimide ester (DBAA-NHS) derivatization agent was explored for its ability to improve both analyte retention and detection limits in RPLC-MS. In addition to the introduction of the DBAA-NHS labeling reagent, a uniformly (U) 13C-labeled yeast extract was also introduced during the sample preparation workflow as an internal standard (IS) to eliminate artifacts and to enable targeted quantitation of AAs, as well as untargeted amine submetabolome profiling. To improve method sensitivity and selectivity, multiplexed drift-tube ion mobility (IM) was integrated into the LC-MS workflow, facilitating the separation of isomeric metabolites, and improving the structural identification of unknown metabolites. Implementation of the U-13C-labeled yeast extract during the multiplexed LC-IM-MS analysis enabled the quantitation of 19 of the 20 common AAs, supporting a linear dynamic range spanning up to three orders of magnitude in concentration for microglial cell extracts, in addition to reducing the required cell count for reliable quantitation from 10 to 5 million cells per sample.
Collapse
|
6
|
Progress in the pretreatment and analysis of carbohydrates in food: An update since 2013. J Chromatogr A 2021; 1655:462496. [PMID: 34492577 DOI: 10.1016/j.chroma.2021.462496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
Carbohydrates in foods and other matrices plays vital roles in their diverse biological functions. Carbohydrates serve not only as functional substances but also as structural materials, such as components of membranes, and participate in cellular recognition. The fact that carbohydrates are indispensable has contributed to the need for pretreatment and analytical methods to be developed for their characterization. The aim of this review is to provide a comprehensive overview of carbohydrate pretreatment and determination methods in various matrices. The pretreatment methods include simple and more developed approaches (e.g., solid phase extraction, supercritical fluid extraction, and different microextraction methods, among others). The analytical methods include those by liquid chromatography (including high-performance anion-exchange chromatography), capillary electrophoresis, gas chromatography and supercritical fluid chromatography, and others. Different pretreatment methods and determination approaches are updated, compared, and discussed. Moreover, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospects.
Collapse
|
7
|
Automated Sequential Analysis of Hydrophilic and Lipophilic Fractions of Biological Samples: Increasing Single-Injection Chemical Coverage in Untargeted Metabolomics. Metabolites 2021; 11:metabo11050295. [PMID: 34063084 PMCID: PMC8147996 DOI: 10.3390/metabo11050295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
In order to increase metabolite coverage in LC–MS-based untargeted metabolomics, HILIC- and RPLC-mode separations are often combined. Unfortunately, these two techniques pose opposite requirements on sample composition, necessitating either dual sample preparations, increasing needed sample volume, or manipulation of the samples after the first analysis, potentially leading to loss of analytes. When sample material is precious, the number of analyses that can be performed is limited. To that end, an automated single-injection LC–MS method for sequential analysis of both the hydrophilic and lipophilic fractions of biological samples is described. Early eluting compounds in a HILIC separation are collected on a trap column and subsequently analyzed in the RPLC mode. The instrument configuration, composed of commercially available components, allows easy modulation of the dilution ratio of the collected effluent, with sufficient dilution to obtain peak compression in the RPLC column. Furthermore, the method is validated and shown to be fit for purpose for application in untargeted metabolomics. Repeatability in both retention times and peak areas was excellent across over 140 injections of protein-precipitated blood plasma. Finally, the method has been applied to the analysis of real perilymph samples collected in a guinea pig model. The QC sample injections clustered tightly in the PCA scores plot and showed a high repeatability in both retention times and peak areas for selected compounds.
Collapse
|
8
|
Rampler E, Abiead YE, Schoeny H, Rusz M, Hildebrand F, Fitz V, Koellensperger G. Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics-Standardization, Coverage, and Throughput. Anal Chem 2021; 93:519-545. [PMID: 33249827 PMCID: PMC7807424 DOI: 10.1021/acs.analchem.0c04698] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Evelyn Rampler
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Yasin El Abiead
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Harald Schoeny
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Mate Rusz
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Institute of Inorganic
Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Felina Hildebrand
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Veronika Fitz
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
9
|
Galvez L, Rusz M, Schwaiger-Haber M, El Abiead Y, Hermann G, Jungwirth U, Berger W, Keppler BK, Jakupec MA, Koellensperger G. Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics 2020; 11:1716-1728. [PMID: 31497817 DOI: 10.1039/c9mt00141g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resistance development is a major obstacle for platinum-based chemotherapy, with the anticancer drug oxaliplatin being no exception. Acquired resistance is often associated with altered drug accumulation. In this work we introduce a novel -omics workflow enabling the parallel study of platinum drug uptake and its distribution between nucleus/protein and small molecule fraction along with metabolic changes after different treatment time points. This integrated metallomics/metabolomics approach is facilitated by a tailored sample preparation workflow suitable for preclinical studies on adherent cancer cell models. Inductively coupled plasma mass spectrometry monitors the platinum drug, while the metabolomics tool-set is provided by hydrophilic interaction liquid chromatography combined with high-resolution Orbitrap mass spectrometry. The implemented method covers biochemical key pathways of cancer cell metabolism as shown by a panel of >130 metabolite standards. Furthermore, the addition of yeast-based 13C-enriched internal standards upon extraction enabled a novel targeted/untargeted analysis strategy. In this study we used our method to compare an oxaliplatin sensitive human colon cancer cell line (HCT116) and its corresponding resistant model. In the acquired oxaliplatin resistant cells distinct differences in oxaliplatin accumulation correlated with differences in metabolomic rearrangements. Using this multi-omics approach for platinum-treated samples facilitates the generation of novel hypotheses regarding the susceptibility and resistance towards oxaliplatin.
Collapse
Affiliation(s)
- Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Using Multiple Analytical Platforms to Investigate the Androgen Depletion Effects on Fecal Metabolites in a Mouse Model of Systemic Lupus Erythematosus. J Proteome Res 2019; 19:667-676. [PMID: 31820642 DOI: 10.1021/acs.jproteome.9b00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by circulating autoantibodies that deposit in target organs (e.g., kidneys), resulting in chronic inflammation and eventual destruction of the organ. SLE is much more prevalent in females than males in both humans and spontaneous mouse models of lupus, such as NZBxNZW F1 (BWF1) mice. Depleting androgens by castration dramatically increases the susceptibility of BWF1 male to lupus. We compared fecal metabolite profiles of castrated BWF1 (androgen-depleted) male, intact (androgen-replete) male, and female mice. Four analytical platforms were employed to study the profiles of polar metabolites in mouse feces collected from adult BWF1 mice, and a total of 435 metabolites was identified. Of these, the abundance levels of 72 metabolites were significantly different between castrated and intact male groups, and 63 metabolites were different between female and male groups. Pathway analysis indicated that the pathway differences between castrated and intact male mice closely resembled the pathway differences between female and intact male mice, suggesting that low levels of androgens, whether due to depletion (castrated male) or endogenous (female), are associated with multiple fecal metabolomic alterations, which could potentially affect SLE progression. Our findings demonstrate that analyzing fecal metabolites using multiple analytical platforms holds great promise for detecting metabolomic alterations in complex disease model systems.
Collapse
|
11
|
Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Anal Bioanal Chem 2019; 411:6265-6274. [DOI: 10.1007/s00216-019-02021-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
12
|
Schwaiger-Haber M, Hermann G, El Abiead Y, Rampler E, Wernisch S, Sas K, Pennathur S, Koellensperger G. Proposing a validation scheme for 13C metabolite tracer studies in high-resolution mass spectrometry. Anal Bioanal Chem 2019; 411:3103-3113. [PMID: 30972471 PMCID: PMC6526147 DOI: 10.1007/s00216-019-01773-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
13C metabolite tracer and metabolic flux analyses require upfront experimental planning and validation tools. Here, we present a validation scheme including a comparison of different LC methods that allow for customization of analytical strategies for tracer studies with regard to the targeted metabolites. As the measurement of significant changes in labeling patterns depends on the spectral accuracy, we investigate this aspect comprehensively for high-resolution orbitrap mass spectrometry combined with reversed-phase chromatography, hydrophilic interaction liquid chromatography, or anion-exchange chromatography. Moreover, we propose a quality control protocol based on (1) a metabolite containing selenium to assess the instrument performance and on (2) in vivo synthesized isotopically enriched Pichia pastoris to validate the accuracy of carbon isotopologue distributions (CIDs), in this case considering each isotopologue of a targeted metabolite panel. Finally, validation involved a thorough assessment of procedural blanks and matrix interferences. We compared the analytical figures of merit regarding CID determination for over 40 metabolites between the three methods. Excellent precisions of less than 1% and trueness bias as small as 0.01-1% were found for the majority of compounds, whereas the CID determination of a small fraction was affected by contaminants. For most compounds, changes of labeling pattern as low as 1% could be measured. Graphical abstract.
Collapse
Affiliation(s)
- Michaela Schwaiger-Haber
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria.,Division of Nephrology, Department of Internal Medicine, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria.,ISOtopic solutions, Waehringer Str. 38, 1090, Vienna, Austria
| | - Yasin El Abiead
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria.,Chemistry Meets Microbiology, Althanstraße 14, 1090, Vienna, Austria
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria.,Chemistry Meets Microbiology, Althanstraße 14, 1090, Vienna, Austria
| | - Stefanie Wernisch
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Kelli Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA.,Department of Molecular and Integrative Physiology, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria. .,Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria. .,Chemistry Meets Microbiology, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Schwaiger M, Schoeny H, El Abiead Y, Hermann G, Rampler E, Koellensperger G. Merging metabolomics and lipidomics into one analytical run. Analyst 2019; 144:220-229. [PMID: 30411762 DOI: 10.1039/c8an01219a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel integrated metabolomics/lipidomics workflow is introduced enabling high coverage of polar metabolites and non-polar lipids within one analytical run. Dual HILIC and RP chromatography were combined to high-resolution mass spectrometry. As a major advantage, only one data file per sample was obtained by fully automated simultaneous analysis of two extracts per sample. Hence, the unprecedented high coverage without compromise on analytical throughput was not only obtained by the orthogonality of the chromatographic separations, but also by the implementation of dedicated sample preparation procedures resulting in optimum extraction efficiency for both sub-omes. Thus, the method addressed completely hydrophilic sugars and organic acids next to water-insoluble triglycerides. As for the timing of the dual chromatography setup, HILIC and RP separation were performed consecutively. However, re-equilibration of the HILIC column during elution of RP compounds and vice versa reduced the overall analysis time by one third to 32 min. Application to the Standard Reference Material SRM 1950 - Metabolites in Frozen Human Plasma resulted in >100 metabolite and >380 lipid identifications based on accurate mass implementing fast polarity switching and acquiring data dependent MS2 spectra with the use of automated exclusion lists. Targeted quantification based on external calibrations and 13C labeled yeast internal standards was successfully accomplished for 59 metabolites. Moreover, the potential for lipid quantification was shown integrating non-endogenous lipids as internal standards. In human plasma, concentrations ranging over 4 orders of magnitude (low nM to high μM) were assessed.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiology, Althanstraße 14, 1090 Vienna, Austria
| | - Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiology, Althanstraße 14, 1090 Vienna, Austria
| | - Yasin El Abiead
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiology, Althanstraße 14, 1090 Vienna, Austria
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria. and ISOtopic solutions, Waehringerstr. 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiology, Althanstraße 14, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiology, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
14
|
Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. MASS SPECTROMETRY REVIEWS 2018; 37:772-792. [PMID: 29486047 DOI: 10.1002/mas.21562] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 02/02/2018] [Indexed: 05/03/2023]
Abstract
In the past decade, advances in liquid chromatography-mass spectrometry (LC-MS) have revolutionized untargeted metabolomics analyses. By mining metabolomes more deeply, researchers are now primed to uncover key metabolites and their associations with diseases. The employment of untargeted metabolomics has led to new biomarker discoveries and a better mechanistic understanding of diseases with applications in precision medicine. However, many major pertinent challenges remain. First, compound identification has been poor, and left an overwhelming number of unidentified peaks. Second, partial, incomplete metabolomes persist due to factors such as limitations in mass spectrometry data acquisition speeds, wide-range of metabolites concentrations, and cellular/tissue/temporal-specific expression changes that confound our understanding of metabolite perturbations. Third, to contextualize metabolites in pathways and biology is difficult because many metabolites partake in multiple pathways, have yet to be described species specificity, or possess unannotated or more-complex functions that are not easily characterized through metabolomics analyses. From a translational perspective, information related to novel metabolite biomarkers, metabolic pathways, and drug targets might be sparser than they should be. Thankfully, significant progress has been made and novel solutions are emerging, achieved through sustained academic and industrial community efforts in terms of hardware, computational, and experimental approaches. Given the rapidly growing utility of metabolomics, this review will offer new perspectives, increase awareness of the major challenges in LC-MS metabolomics that will significantly benefit the metabolomics community and also the broader the biomedical community metabolomics aspire to serve.
Collapse
Affiliation(s)
- Liang Cui
- Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Infectious Diseases-Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Haitao Lu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yie Hou Lee
- Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
- OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
15
|
Melo CFOR, Delafiori J, Dabaja MZ, de Oliveira DN, Guerreiro TM, Colombo TE, Nogueira ML, Proenca-Modena JL, Catharino RR. The role of lipids in the inception, maintenance and complications of dengue virus infection. Sci Rep 2018; 8:11826. [PMID: 30087415 PMCID: PMC6081433 DOI: 10.1038/s41598-018-30385-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Dengue fever is a viral condition that has become a recurrent issue for public health in tropical countries, common endemic areas. Although viral structure and composition have been widely studied, the infection phenotype in terms of small molecules remains poorly established. This contribution providing a comprehensive overview of the metabolic implications of the virus-host interaction using a lipidomic-based approach through direct-infusion high-resolution mass spectrometry. Our results provide further evidence that lipids are part of both the immune response upon Dengue virus infection and viral infection maintenance mechanism in the organism. Furthermore, the species described herein provide evidence that such lipids may be part of the mechanism that leads to blood-related complications such as hemorrhagic fever, the severe form of the disease.
Collapse
Affiliation(s)
| | - Jeany Delafiori
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Mohamad Ziad Dabaja
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Diogo Noin de Oliveira
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Tatiane Melina Guerreiro
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Tatiana Elias Colombo
- School of Medicine from São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | | | - Jose Luiz Proenca-Modena
- Laboratory of Study of Emerging Viruses (LEVE), Department of Genetic, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rodrigo Ramos Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.
| |
Collapse
|
16
|
Rampler E, Schoeny H, Mitic BM, El Abiead Y, Schwaiger M, Koellensperger G. Simultaneous non-polar and polar lipid analysis by on-line combination of HILIC, RP and high resolution MS. Analyst 2018; 143:1250-1258. [PMID: 29431763 DOI: 10.1039/c7an01984j] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Given the chemical diversity of lipids and their biological relevance, suitable methods for lipid profiling and quantification are demanded to reduce sample complexity and analysis times. In this work, we present a novel on-line chromatographic method coupling hydrophilic interaction liquid chromatography (HILIC) dedicated to class-specific separation of polar lipid to reversed-phase chromatography (RP) for non-polar lipid analysis. More specifically, the void volume of the HILIC separation-consisting of non-polar lipids- is transferred to the orthogonal RP column enabling the on-line combination of HILIC with RP without any dilution in the second dimension. In this setup the orthogonal HILIC and RP separations were performed in parallel and the effluents of both columns were combined prior to high-resolution MS detection, offering the full separation space in one analytical run. Rapid separation for both polar and non-polar lipids within only 15 min (including reequilibration time) was enabled using sub-2 μm particles and UHPLC. The method proved to be robust with excellent retention time stability (RSDs < 1%) and LODs in the fmol to pmol (absolute on column) range even in the presence of complex biological matrix such as human plasma. The presented high-resolution LC-MS/MS method leads to class-specific separation of polar lipids and separation of non-polar lipids which is lost in conventional HILIC separations. HILIC-RP-MS is a promising tool for targeted and untargeted lipidomics workflows as three interesting features are combined namely (1) the decreased run time of state of the art shotgun MS methods, (2) the elevated linear dynamic range inherent to chromatographic separation and (3) increased level of identification by separation of polar and non-polar lipid classes.
Collapse
Affiliation(s)
- Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
17
|
Vuckovic D. Improving metabolome coverage and data quality: advancing metabolomics and lipidomics for biomarker discovery. Chem Commun (Camb) 2018; 54:6728-6749. [PMID: 29888773 DOI: 10.1039/c8cc02592d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This Feature Article highlights some of the key challenges within the field of metabolomics and examines what role separation and analytical sciences can play to improve the use of metabolomics in biomarker discovery and personalized medicine. Recent progress in four key areas is highlighted: (i) improving metabolite coverage, (ii) developing accurate methods for unstable metabolites including in vivo global metabolomics methods, (iii) advancing inter-laboratory studies and reference materials and (iv) improving data quality, standardization and quality control of metabolomics studies.
Collapse
Affiliation(s)
- Dajana Vuckovic
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
18
|
Simultaneous liquid chromatography/mass spectrometry determination of both polar and “multiresidue” pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach. J Chromatogr A 2017; 1517:108-116. [DOI: 10.1016/j.chroma.2017.08.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023]
|
19
|
Schwaiger M, Rampler E, Hermann G, Miklos W, Berger W, Koellensperger G. Anion-Exchange Chromatography Coupled to High-Resolution Mass Spectrometry: A Powerful Tool for Merging Targeted and Non-targeted Metabolomics. Anal Chem 2017; 89:7667-7674. [PMID: 28581703 DOI: 10.1021/acs.analchem.7b01624] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, simultaneous targeted metabolic profiling by isotope dilution and non-targeted fingerprinting is proposed for cancer cell studies. The novel streamlined metabolomics workflow was established using anion-exchange chromatography (IC) coupled to high-resolution mass spectrometry (MS). The separation time of strong anion-exchange (2 mm column, flow rate 380 μL min-1, injection volume 5 μL) could be decreased to 25 min for a target list comprising organic acids, sugars, sugar phosphates, and nucleotides. Internal standardization by fully 13C labeled Pichia pastoris extracts enabled absolute quantification of the primary metabolites in adherent cancer cell models. Limits of detection (LODs) in the low nanomolar range and excellent intermediate precisions of the isotopologue ratios (on average <5%, N = 5, over 40 h) were observed. As a result of internal standardization, linear dynamic ranges over 4 orders of magnitude (5 nM-50 μM, R2 > 0.99) were obtained. Experiments on drug-sensitive versus resistant SW480 cancer cells showed the feasibility of merging analytical tasks into one analytical run. Comparing fingerprinting with and without internal standard proved that the presence of the 13C labeled yeast extract required for absolute quantification was not detrimental to non-targeted data evaluation. Several interesting metabolites were discovered by accurate mass and comparing MS2 spectra (acquired in ddMS2 mode) with spectral libraries. Significant differences revealed distinct metabolic phenotypes of drug-sensitive and resistant SW480 cells.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria.,ISOtopic Solutions , Waehringerstrasse 38, 1090 Vienna, Austria
| | - Walter Miklos
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna , Borschkegasse 8a, 1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna , Borschkegasse 8a, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
20
|
Lam SM, Tian H, Shui G. Lipidomics, en route to accurate quantitation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:752-761. [PMID: 28216054 DOI: 10.1016/j.bbalip.2017.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 01/17/2023]
Abstract
Accurate quantitation is prerequisite for the sustainable development of lipidomics via enabling its applications in various biological and biomedical settings. In this review, the technical considerations and limitations of existent lipidomics technologies, particularly in terms of accurate quantitation; as well as the potential sources of errors along a typical lipidomic workflow that could ultimately give rise to quantitative inaccuracies will be addressed. Furthermore, the pressing need to exercise stricter definitions of terms and protocol standardization pertaining to quantitative lipidomics will be critically discussed, as quantitative accuracy may substantially impact upon the persevering development of lipidomics in the long run. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - He Tian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Guanghou Shui
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Lipidall Technologies Company Limited, Changzhou 213000, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Ortmayr K, Charwat V, Kasper C, Hann S, Koellensperger G. Uncertainty budgeting in fold change determination and implications for non-targeted metabolomics studies in model systems. Analyst 2017; 142:80-90. [DOI: 10.1039/c6an01342b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncertainty budgeting provides error intervals for fold change values and complements significance testing in non-targeted metabolomics.
Collapse
Affiliation(s)
- Karin Ortmayr
- Institute of Analytical Chemistry
- University of Vienna
- Faculty of Chemistry
- 1090 Vienna
- Austria
| | - Verena Charwat
- Department of Biotechnology
- University of Natural Resources and Life Sciences (BOKU) Vienna
- 1190 Vienna
- Austria
| | - Cornelia Kasper
- Department of Biotechnology
- University of Natural Resources and Life Sciences (BOKU) Vienna
- 1190 Vienna
- Austria
| | - Stephan Hann
- Department of Chemistry
- University of Natural Resources and Life Sciences (BOKU) Vienna
- 1190 Vienna
- Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry
- University of Vienna
- Faculty of Chemistry
- 1090 Vienna
- Austria
| |
Collapse
|
22
|
Kohler I, Giera M. Recent advances in liquid-phase separations for clinical metabolomics. J Sep Sci 2016; 40:93-108. [DOI: 10.1002/jssc.201600981] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Isabelle Kohler
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
23
|
Ortmayr K, Causon TJ, Hann S, Koellensperger G. Increasing selectivity and coverage in LC-MS based metabolome analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Haeri SA, Abbasi S. Biocoacervation extraction combined with dispersive solid phase extraction using a reversed-phase core–shell magnetic molecularly imprinted sorbent for 2,4-dichlorophenoxyacetic acid prior to its determination by HPLC. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0916-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Iverson CD, Zhang Y, Lucy CA. Diazonium modification of porous graphitic carbon with catechol and amide groups for hydrophilic interaction and attenuated reversed phase liquid chromatography. J Chromatogr A 2015; 1422:186-193. [PMID: 26506445 DOI: 10.1016/j.chroma.2015.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022]
Abstract
Porous graphitic carbon (PGC) is an increasingly popular and attractive phase for HPLC on account of its chemical and thermal stability, and its unique separation mechanism. However, native PGC is strongly hydrophobic and in some instances excessively retentive. As part of our effort to build a library of hydrophilic covalently modified PGC phases, we functionalized PGC with catechol and amide groups by means of aryl diazonium chemistry to produce two new phases. Successful grafting was confirmed by X-ray photoelectron spectroscopy (XPS). Under HILIC conditions, the Catechol-PGC showed up to 5-fold increased retention relative to unmodified PGC and selectivity that differed from four other HILIC phases. Under reversed phase conditions, the Amide-PGC reduced the retentivity of PGC by almost 90%. The chromatographic performance of Catechol-PGC and Amide-PGC is demonstrated by separations of nucleobases, nucleosides, phenols, alkaline pharmaceuticals, and performance enhancing stimulants. These compounds had retention factors (k) ranging from 0.5 to 13.
Collapse
Affiliation(s)
- Chad D Iverson
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Ya Zhang
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Charles A Lucy
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
26
|
Megson ZA, Pittenauer E, Duda KA, Engel R, Ortmayr K, Koellensperger G, Mach L, Allmaier G, Holst O, Messner P, Schäffer C. Inositol-phosphodihydroceramides in the periodontal pathogen Tannerella forsythia: Structural analysis and incorporation of exogenous myo-inositol. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1417-27. [PMID: 26277409 PMCID: PMC4587543 DOI: 10.1016/j.bbalip.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Unique phosphodihydroceramides containing phosphoethanolamine and glycerol have been previously described in Porphyromonas gingivalis. Importantly, they were shown to possess pro-inflammatory properties. Other common human bacteria were screened for the presence of these lipids, and they were found, amongst others, in the oral pathogen Tannerella forsythia. To date, no detailed study into the lipids of this organism has been performed. METHODS Lipids were extracted, separated and purified by HPTLC, and analyzed using GC-MS, ESI-MS and NMR. Of special interest was how T. forsythia acquires the metabolic precursors for the lipids studied here. This was assayed by radioactive and stable isotope incorporation using carbon-14 and deuterium labeled myo-inositol, added to the growth medium. RESULTS T. forsythia synthesizes two phosphodihydroceramides (Tf GL1, Tf GL2) which are constituted by phospho-myo-inositol linked to either a 17-, 18-, or 19-carbon sphinganine, N-linked to either a branched 17:0(3-OH) or a linear 16:0(3-OH) fatty acid which, in Tf GL2, is, in turn, ester-substituted with a branched 15:0 fatty acid. T. forsythia lacks the enzymatic machinery required for myo-inositol synthesis but was found to internalize inositol from the medium for the synthesis of both Tf GL1 and Tf GL2. CONCLUSION The study describes two novel glycolipids in T. forsythia which could be essential in this organism. Their synthesis could be reliant on an external source of myo-inositol. GENERAL SIGNIFICANCE The effects of these unique lipids on the immune system and their role in bacterial virulence could be relevant in the search for new drug targets.
Collapse
Affiliation(s)
- Zoë Anne Megson
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, Vienna, University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Katarzyna Anna Duda
- Department of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/4c, 23845 Borstel, Germany
| | - Regina Engel
- Department of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/4c, 23845 Borstel, Germany
| | - Karin Ortmayr
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria; Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, Vienna, University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Otto Holst
- Department of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/4c, 23845 Borstel, Germany
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
27
|
Ortmayr K, Schwaiger M, Hann S, Koellensperger G. An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry. Analyst 2015; 140:7687-95. [DOI: 10.1039/c5an01629k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed integrated thiol protection and sample preparation strategy prevents unwanted oxidation and allows accurate profiling of sulfur pathway intermediates.
Collapse
Affiliation(s)
- Karin Ortmayr
- Institute of Analytical Chemistry
- University of Vienna
- Faculty of Chemistry
- 1090 Vienna
- Austria
| | - Michaela Schwaiger
- Institute of Analytical Chemistry
- University of Vienna
- Faculty of Chemistry
- 1090 Vienna
- Austria
| | - Stephan Hann
- Department of Chemistry
- University of Natural Resources and Life Sciences (BOKU) Vienna
- 1190 Vienna
- Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry
- University of Vienna
- Faculty of Chemistry
- 1090 Vienna
- Austria
| |
Collapse
|