• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4605581)   Today's Articles (6171)   Subscriber (49373)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Guo Y, Baran D, Ryan L. Insights into the selectivity of polar stationary phases based on quantitative retention mechanism assessment in hydrophilic interaction chromatography. J Chromatogr A 2024;1726:464973. [PMID: 38729044 DOI: 10.1016/j.chroma.2024.464973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
2
Kadar EP, Holliman CL, Vourvahis M, Rodrigues AD. Inception and development of a LC-MS/MS assay for the multiplexed quantitation of nine human drug transporter biomarkers. Bioanalysis 2024;16:347-362. [PMID: 38376139 DOI: 10.4155/bio-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]  Open
3
Redón L, Safar Beiranvand M, Subirats X, Rosés M. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships. Anal Chim Acta 2023;1277:341672. [PMID: 37604624 DOI: 10.1016/j.aca.2023.341672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
4
Wang F, Yang F, Liu J, Bai Q. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory II. HILIC/RPLC dual-retention mechanism of solutes in hydrophilic interaction chromatography over the entire range of water concentration in mobile phase. Talanta 2023;265:124858. [PMID: 37385194 DOI: 10.1016/j.talanta.2023.124858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
5
Lepoittevin M, Blancart-Remaury Q, Kerforne T, Pellerin L, Hauet T, Thuillier R. Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics. Cell Mol Biol Lett 2023;28:43. [PMID: 37210499 DOI: 10.1186/s11658-023-00452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/22/2023]  Open
6
Taylor MR, Kawakami J, McCalley DV. Managing sample introduction problems in hydrophilic interaction liquid chromatography. J Chromatogr A 2023;1700:464006. [PMID: 37167803 DOI: 10.1016/j.chroma.2023.464006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
7
Zhou X, Zhang H, Wang L, Lv L, Wu R. Simultaneous enrichment optimization of glycopeptides and phosphopeptides with the highly hydrophilic DZMOF-FDP. Analyst 2023;148:1483-1491. [PMID: 36876469 DOI: 10.1039/d2an02004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
8
Neequaye T, El Rassi Z. Poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith with bonded Tris ligands for use in hydrophilic interaction capillary electrochromatography. J Chromatogr A 2023;1695:463933. [PMID: 36966604 DOI: 10.1016/j.chroma.2023.463933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
9
Iwakuma Y, Okamoto H, Hamaguchi R, Kuroda Y. Immobilized Artificial Membrane Chromatography Using Acetonitrile-Rich Mobile Phase for Comparison of Retention Properties Between Phospholipidosis-Inducing and Non-inducing Basic Drugs. Chromatographia 2022. [DOI: 10.1007/s10337-022-04225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
10
Cortés S, Subirats X, Rosés M. Solute–Solvent Interactions in Hydrophilic Interaction Liquid Chromatography: Characterization of the Retention in a Silica Column by the Abraham Linear Free Energy Relationship Model. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
11
Hosseinkhani F, Huang L, Dubbelman AC, Guled F, Harms AC, Hankemeier T. Systematic Evaluation of HILIC Stationary Phases for Global Metabolomics of Human Plasma. Metabolites 2022;12:metabo12020165. [PMID: 35208239 PMCID: PMC8875576 DOI: 10.3390/metabo12020165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]  Open
12
McCalley DV. Influence of metals in the column or instrument on performance in hydrophilic interaction liquid chromatography. J Chromatogr A 2022;1663:462751. [PMID: 34995861 DOI: 10.1016/j.chroma.2021.462751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
13
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022;36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
14
Schmitt M, Egorycheva M, Seubert A. Mixed-acidic cation-exchange material for the separation of underivatized amino acids. J Chromatogr A 2021;1664:462790. [PMID: 34999304 DOI: 10.1016/j.chroma.2021.462790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 12/01/2022]
15
Relative significance of hydrophilic partitioning and surface adsorption to the retention of polar compounds in hydrophilic interaction chromatography. Anal Chim Acta 2021;1184:339025. [PMID: 34625265 DOI: 10.1016/j.aca.2021.339025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
16
Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. J Chromatogr A 2021;1656:462543. [PMID: 34571282 DOI: 10.1016/j.chroma.2021.462543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
17
Analytical Platforms for Mass Spectrometry-Based Metabolomics of Polar and Ionizable Metabolites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021;1336:215-242. [PMID: 34628634 DOI: 10.1007/978-3-030-77252-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
18
Balli OI, Uversky VN, Durdagi S, Coskuner-Weber O. Challenges and limitations in the studies of glycoproteins: A computational chemist's perspective. Proteins 2021;90:322-339. [PMID: 34549826 DOI: 10.1002/prot.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022]
19
Precursor Carboxy-silica for Functionalization With Interactive Ligands. II. Carbodiimide Assisted Preparation of Silica Bonded Stationary Phases with D-glucamine for Hydrophilic Interaction Liquid Chromatography. Chromatographia 2021. [DOI: 10.1007/s10337-021-04062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
20
Comparison of the steric selectivity on hydrophilic interaction chromatography columns modified with poly(acrylamide) possessing different morphology. J Chromatogr A 2021;1650:462207. [PMID: 34082188 DOI: 10.1016/j.chroma.2021.462207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
21
Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography. SEPARATIONS 2021. [DOI: 10.3390/separations8040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
22
Performance evaluation of silica microspheres functionalized by different amine-ligands for hydrophilic interaction chromatography. J Chromatogr A 2021;1640:461967. [PMID: 33582513 DOI: 10.1016/j.chroma.2021.461967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
23
Evaluation of a linear free energy relationship for the determination of the column void volume in hydrophilic interaction chromatography. J Chromatogr A 2021;1638:461849. [PMID: 33472106 DOI: 10.1016/j.chroma.2020.461849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
24
Taraji M, Haddad PR. Method Optimisation in Hydrophilic-Interaction Liquid Chromatography by Design of Experiments Combined with Quantitative Structure–Retention Relationships. Aust J Chem 2021. [DOI: 10.1071/ch21102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
25
Castilho LDMB, Gama VDS, Santos ALRD, Faria AMD. Polar polymer-immobilized stationary phase for aqueous reversed-phase liquid chromatography. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1862868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
26
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020;20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022]  Open
27
den Uijl MJ, Schoenmakers PJ, Pirok BWJ, van Bommel MR. Recent applications of retention modelling in liquid chromatography. J Sep Sci 2020;44:88-114. [PMID: 33058527 PMCID: PMC7821232 DOI: 10.1002/jssc.202000905] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
28
Pralow A, Cajic S, Alagesan K, Kolarich D, Rapp E. State-of-the-Art Glycomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020;175:379-411. [PMID: 33112988 DOI: 10.1007/10_2020_143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
29
Mao Z, Li Z, Hu C, Liu Y, Li Q, Chen Z. Glycine-modified organic polymer monolith featuring zwitterionic functionalities for hydrophilic capillary electrochromatography. J Chromatogr A 2020;1629:461497. [PMID: 32858454 DOI: 10.1016/j.chroma.2020.461497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
30
Nitrogen-doping to enhance the separation selectivity of glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta 2020;218:121140. [DOI: 10.1016/j.talanta.2020.121140] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
31
Redón L, Subirats X, Rosés M. HILIC characterization: Estimation of phase volumes and composition for a zwitterionic column. Anal Chim Acta 2020;1130:39-48. [DOI: 10.1016/j.aca.2020.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
32
Guo D, Yang C, Qiu R, Huang S. A novel imidazolium bonding stationary phase derived from N-(3-aminopropyl)-imidazole for hydrophilic interaction liquid chromatography. J Chromatogr A 2020;1625:461331. [DOI: 10.1016/j.chroma.2020.461331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/16/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
33
Gao W, Liu XL, Wang Y, Liang C, Lian HZ, Qiao JQ. Insight into the hydrophilic interaction liquid chromatographic retention behaviors of hydrophilic compounds on different stationary phases. Talanta 2020;219:121363. [PMID: 32887085 DOI: 10.1016/j.talanta.2020.121363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/01/2023]
34
Taniguchi A, Tamura S, Ikegami T. The relationship between polymer structures on silica particles and the separation characteristics of the corresponding columns for hydrophilic interaction chromatography. J Chromatogr A 2020;1618:460837. [DOI: 10.1016/j.chroma.2019.460837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 11/26/2022]
35
Qi B, Gijsen M, Van Brantegem P, De Vocht T, Deferm N, Abza GB, Nauwelaerts N, Wauters J, Spriet I, Annaert P. Quantitative determination of colistin A/B and colistin methanesulfonate in biological samples using hydrophilic interaction chromatography tandem mass spectrometry. Drug Test Anal 2020;12:1183-1195. [PMID: 32336034 DOI: 10.1002/dta.2812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
36
Qing G, Yan J, He X, Li X, Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
37
Baeza-Baeza J, García-Alvarez-Coque M. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography. J Chromatogr A 2020;1615:460757. [DOI: 10.1016/j.chroma.2019.460757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023]
38
Managing the column equilibration time in hydrophilic interaction chromatography. J Chromatogr A 2020;1612:460655. [DOI: 10.1016/j.chroma.2019.460655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022]
39
Rodríguez JPG, Bernardi DI, Gubiani JR, Magalhães de Oliveira J, Morais-Urano RP, Bertonha AF, Bandeira KF, Bulla JIQ, Sette LD, Ferreira AG, Batista JM, Silva TDS, Santos RAD, Martins CHG, Lira SP, Cunha MGD, Trivella DBB, Grazzia N, Gomes NES, Gadelha F, Miguel DC, Cauz ACG, Brocchi M, Berlinck RGS. Water-Soluble Glutamic Acid Derivatives Produced in Culture by Penicillium solitum IS1-A from King George Island, Maritime Antarctica. JOURNAL OF NATURAL PRODUCTS 2020;83:55-65. [PMID: 31895573 DOI: 10.1021/acs.jnatprod.9b00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
40
Si T, Song X, Wang L, Guo Y, Liang X, Wang S. Preparation and evaluation of hydrophobically associating polyacrylamide coated silica composite as high performance liquid chromatographic stationary phase. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
41
Si T, Wang L, Lu X, Liang X, Wang S, Guo Y. An alternative approach for the preparation of a core–shell bimetallic central metal–organic framework as a hydrophilic interaction liquid chromatography stationary phase. Analyst 2020;145:3851-3856. [DOI: 10.1039/d0an00304b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Jandera P, Hájek T. Dual‐mode hydrophilic interaction normal phase and reversed phase liquid chromatography of polar compounds on a single column. J Sep Sci 2019;43:70-86. [DOI: 10.1002/jssc.201900920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
43
Obradović D, Stavrianidi AN, Ustinovich KB, Parenago OO, Shpigun OA, Agbaba D. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography. J Chromatogr A 2019;1603:371-379. [DOI: 10.1016/j.chroma.2019.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022]
44
Evaluating Relative Retention of Polar Stationary Phases in Hydrophilic Interaction Chromatography. SEPARATIONS 2019. [DOI: 10.3390/separations6030042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
45
Guan F, You Y, Li X, Robinson MA. A comprehensive approach to detecting multitudinous bioactive peptides in equine plasma and urine using hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry. Drug Test Anal 2019;11:1308-1325. [PMID: 31250565 DOI: 10.1002/dta.2671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
46
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic Interaction Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819050058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
47
Evaluating the Adsorbed Water Layer on Polar Stationary Phases for Hydrophilic Interaction Chromatography (HILIC). SEPARATIONS 2019. [DOI: 10.3390/separations6020019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]  Open
48
Development and validation of a quantitative ultra performance LC® hydrophilic interaction liquid chromatography MS/MS method to measure fructose and sorbitol in human plasma. Bioanalysis 2019;11:407-425. [PMID: 30887836 DOI: 10.4155/bio-2018-0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
49
Mallik AK, Guragain S, Rahman MM, Takafuji M, Ihara H. L-Lysine-derived highly selective stationary phases for hydrophilic interaction chromatography: Effect of chain length on selectivity, efficiency, resolution, and asymmetry. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
50
Insights into the Mechanism of Separation of Bisphosphonates by Zwitterionic Hydrophilic Interaction Liquid Chromatography: Application to the Quantitation of Risedronate in Pharmaceuticals. SEPARATIONS 2019. [DOI: 10.3390/separations6010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA