1
|
Greer C, Kinlein ZR, Clowers BH. Ion confinement and separation using asymmetric electrodynamic fields in structures for lossless ion manipulations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9900. [PMID: 39185572 DOI: 10.1002/rcm.9900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE TW-SLIM ion mobility separations have demonstrated exceptional resolution by leveraging long paths with minimal loss. All previously reported experiments have used electrode surfaces which are mirrored to generate symmetrically opposing electric fields for ion confinement. However, work with other planar ion optics indicates this may be unnecessary. This study explores conditions under which separations may be obtained using a SLIM with asymmetric electric fields. METHODS The asymmetric field configuration was defined by applying a uniform DC potential to all electrodes of the top PCB of a standard TW-SLIM board pair, with no electrode placement modifications. This configuration was simulated in SIMION to assess transmission through the SLIM. A benchtop TW-SLIM instrument outfitted with a Faraday plate detector was modified likewise, so the top PCB had a uniform DC potential applied to all electrodes, while the bottom board was operated normally. RESULTS Simulations show full ion transmission for four different m/z ion populations over a range of DC biases applied to the "pusher" board. Likewise, the modified benchtop instrument is capable of transmitting, separating, and cycling ions with minimal losses. The effect of pusher strength on separation quality is explored, and comparisons between the standard and modified SLIM are made with respect to resolving the +2 and +3 charge states of neurotensin ions. CONCLUSIONS A functional IMS instrument using asymmetric confining fields demonstrates additional field modifications may be a means to achieve additional functionality with limited interruption of the analysis. A TW-SLIM PCB specifically designed as a pusher board would benefit from minimized manufacturing cost, simplifying assembly, reducing drive electronics, and improved field consistency.
Collapse
Affiliation(s)
- Cullen Greer
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Zackary R Kinlein
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Kwantwi-Barima P, Hollerbach AL, Attah IK, Norheim RV, Ibrahim YM. Ion Mobility Separations Using Cocentric Architecture. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1576-1583. [PMID: 38859729 DOI: 10.1021/jasms.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ion mobility separations, especially using drift tube ion mobility spectrometers, are usually performed in linear channels, which can have a large footprint when extended to achieve higher resolving powers. In this work, we explored the performance of an ion mobility device with a curved architecture, which can have a more compact form. The cocentric ion mobility spectrometer (CoCIMS) manipulates ions between two cocentric surfaces containing a serpentine track. The mobility separation inside the CoCIMS is achieved using traveling waveforms (TWs). We initially evaluated the device using ion trajectory simulations using SIMION, which indicated that when ions traveled circularly inside the CoCIMS they resulted in similar resolving powers and transmitted m/z range as traveling in a straight path. We then performed experimental validation of the CoCIMS in conjunction with a TOF MS. The CoCIMS was made of two flexible printed circuit board materials folded into cocentric cylinders separated by a gap of 2.8 mm. The device was about 50 mm diameter ×152 mm long and provided 1.846 m of serpentine path length. Three sets of mixtures (Agilent tune mixture, tetraalkylammonium salts, and an eight-peptide mixture) and four traveling waveform profiles (square, sine, triangle, and sawtooth) were used. The sawtooth TW profile produced a slightly higher resolving power for the Agilent tuning mixture and tetraalkylammonium ions. The average resolving power for Agilent tune mixture ions ranged from 37 (using sawtooth TW) to 27 (using square TW). The average resolving powers ranged from 45 (sawtooth TW) to 31 (square TW) for tetraalkylammonium ions. The resolving power of the peptide mixture ions was similar among the four TW profiles and ranged from 51 to 56. The average percent error in TWCCS for the peptide mixture ions was about 0.4%. The new device showed promising results, but improvements are needed to further increase the resolving power.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
3
|
Aderorho R, Lucas SW, Chouinard CD. Separation and Characterization of Synthetic Cannabinoid Metabolite Isomers Using SLIM High-Resolution Ion Mobility-Tandem Mass Spectrometry (HRIM-MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:582-589. [PMID: 38361441 DOI: 10.1021/jasms.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are laboratory-made substances that are chemically similar to those found naturally in the cannabis plant. Many of these substances are illicitly manufactured and have been associated with severe health problems, prompting a need to develop analytical methods capable of characterizing both known and previously undetected compounds. This work focuses on a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to the differentiation and structural characterization of synthetic cannabinoid metabolites, specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different compound classes are structurally very similar, differing only in the position of one or a few functional groups; this yielded similarity in measured collision cross section (CCS) values. However, the high resolution of SLIM IM provided adequate separation of many of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH, which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases where baseline separation was precluded due to nearly identical CCS, such as for JWH-018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH compound to provide differentiation of all isomers using a combination of CCS and m/z. Finally, the opportunity to use this method for structural elucidation of unknowns was demonstrated by using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-19/BUTINACA isomers were first mobility separated and could then be individually activated, yielding unique fragments for both targeted identification and structural determination. Overall, the described SLIM IM-MS/MS workflow provides significant potential as a rapid screening tool for the characterization of emerging NPS such as synthetic cannabinoids and their metabolites.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
4
|
Lee JY, Li A, Prabhakaran V, Zhang X, Harrilal CPP, Kovarik L, Ibrahim YM, Smith RD, Garimella SV. Mobility Selective Ion Soft-Landing and Characterization Enabled Using Structures for Lossless Ion Manipulation. Anal Chem 2024; 96:3373-3381. [PMID: 38345945 PMCID: PMC11191849 DOI: 10.1021/acs.analchem.3c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
While conventional ion-soft landing uses the mass-to-charge (m/z) ratio to achieve molecular selection for deposition, here we demonstrate the use of Structures for Lossless Ion Manipulation (SLIM) for mobility-based ion selection and deposition. The dynamic rerouting capabilities of SLIM were leveraged to enable the rerouting of a selected range of mobilities to a different SLIM path (rather than MS) that terminated at a deposition surface. A selected mobility range from a phosphazene ion mixture was rerouted and deposited with a current pulse (∼150 pA) resembling its mobility peak. In addition, from a mixture of tetra-alkyl ammonium (TAA) ions containing chain lengths of C5-C8, selected chains (C6, C7) were collected on a surface, reconstituted into solution-phase, and subsequently analyzed with a SLIM-qToF to obtain an IMS/MS spectrum, confirming the identity of the selected species. Further, this method was used to characterize triply charged tungsten-polyoxometalate anions, PW12O403- (WPOM). The arrival time distribution of the IMS/MS showed multiple peaks associated with the triply charged anion (PW12O403-), of which a selected ATD was deposited and imaged using TEM. Additionally, the identity of the deposited WPOM was ascertained using energy-dispersive (EDS) spectroscopy. Further, we present theory and computations that reveal ion landing energies, the ability to modulate the energies, and deposition spot sizes.
Collapse
Affiliation(s)
- Jung Y. Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | | | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | | | - Libor Kovarik
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Sandilya V.B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| |
Collapse
|
5
|
Huntley AP, Hollerbach AL, Norheim RV, Hamid AM, Anderson GA, Garimella SV, Ibrahim YM. Cyclable Variable Path Length Multilevel Structures for Lossless Ion Manipulations (SLIM) Platform for Enhanced Ion Mobility Separations. Anal Chem 2024:10.1021/acs.analchem.3c05594. [PMID: 38336463 PMCID: PMC11310366 DOI: 10.1021/acs.analchem.3c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Ion mobility-mass spectrometry (IMS-MS) is used to analyze complex samples and provide structural information on unknown compounds. As the complexity of samples increases, there is a need to improve the resolution of IMS-MS instruments to increase the rate of molecular identification. This work evaluated a cyclable and variable path length (and hence resolving power) multilevel Structures for Lossless Ion Manipulations (SLIM) platform to achieve a higher resolving power than what was previously possible. This new multilevel SLIM platform has eight separation levels connected by ion escalators, yielding a total path length of ∼88 m (∼11 m per level). Our new multilevel SLIM can also be operated in an "ion cycling" mode by utilizing a set of return ion escalators that transport ions from the eighth level back to the first, allowing even extendable path lengths (and higher IMS resolution). The platform has been improved to enhance ion transmission and IMS separation quality by reducing the spacing between SLIM boards. The board thickness was reduced to minimize the ions' escalator residence time. Compared to the previous generation, the new multilevel SLIM demonstrated better transmission for a set of phosphazene ions, especially for the low-mobility ions. For example, the transmission of m/z 2834 ions was improved by a factor of ∼3 in the new multilevel SLIM. The new multilevel SLIM achieved 49% better resolving powers for GRGDS1+ ions in 4 levels than our previous 4-level SLIM. The collision cross-section-based resolving power of the SLIM platform was tested using a pair of reverse sequence peptides (SDGRG1+, GRGDS1+). We achieved 1100 resolving power using 88 m of path length (i.e., 8 levels) and 1400 following an additional pass through the eight levels. Further evaluation of the multilevel SLIM demonstrated enhanced separation for positively and negatively charged brain total lipid extract samples. The new multilevel SLIM enables a tunable high resolving power for a wide range of ion mobilities and improved transmission for low-mobility ions.
Collapse
Affiliation(s)
- Adam P. Huntley
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Adam L. Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Randolph V. Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Ahmed M. Hamid
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Gordon A. Anderson
- Gordon A. Anderson Custom Electronics (GAACE), Kennewick, Washington, 99338
| | - Sandilya V.B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| |
Collapse
|
6
|
Kwantwi-Barima P, Garimella SVB, Attah IK, Zheng X, Ibrahim YM, Smith RD. Accumulation of Large Ion Populations with High Ion Densities and Effects Due to Space Charge in Traveling Wave-Based Structures for Lossless Ion Manipulations (SLIM) IMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:365-377. [PMID: 38175933 PMCID: PMC10853970 DOI: 10.1021/jasms.3c00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/19/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
The accumulation of very large ion populations in traveling wave (TW)-based Structures for Lossless ion Manipulations (SLIM) has been studied to better understand aspects of "in-SLIM" ion accumulation, and particularly its use in conjunction with ion mobility spectrometry (IMS). A linear SLIM ion path was implemented that had a "gate" for blocking and accumulating ions for arbitrary time periods. Removing the gate potential caused ions to exit, and the spatial distributions of accumulated ions examined. The ion populations for a set of peptides increased approximately linearly with increased accumulation times until space change effects became significant, after which the peptide precursor ion populations decreased due to growing space charge-related ion activation, reactions, and losses. Ion activation increased with added storage times and the TW amplitude. Lower amplitude TWs in the accumulation/storage region prevented or minimized ion losses or ion heating effects that can also lead to fragmentation. Our results supported the use of an accumulation region close to the SLIM entrance for speeding accumulation, minimizing ion heating, and avoiding ion population profiles that result in IMS peak tailing. Importantly, space charge-driven separations were observed for large populations of accumulated species and attributed to the opposing effects of space charge and the TW. In these separations, ion species form distributions or peaks, sometimes moving against the TW, and are ordered in the SLIM based on their mobilities. Only the highest mobility ions located closest to the gate in the trapped ion population (and where the highest ion densities were achieved) were significantly activated. The observed separations may offer utility for ion prefractionation of ions and increasing the dynamic range measurements, increasing the resolving power of IMS separations by decreasing peak widths for accumulated ion populations, and other purposes benefiting from separations of extremely large ion populations.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Isaac K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
7
|
Hollerbach AL, Ibrahim YM, Meras V, Norheim RV, Huntley AP, Anderson GA, Metz TO, Ewing RG, Smith RD. A Dual-Gated Structures for Lossless Ion Manipulations-Ion Mobility Orbitrap Mass Spectrometry Platform for Combined Ultra-High-Resolution Molecular Analysis. Anal Chem 2023. [PMID: 37307303 DOI: 10.1021/acs.analchem.3c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-resolution ion mobility spectrometry-mass spectrometry (HR-IMS-MS) instruments have enormously advanced the ability to characterize complex biological mixtures. Unfortunately, HR-IMS and HR-MS measurements are typically performed independently due to mismatches in analysis time scales. Here, we overcome this limitation by using a dual-gated ion injection approach to couple an 11 m path length structures for lossless ion manipulations (SLIM) module to a Q-Exactive Plus Orbitrap MS platform. The dual-gate setup was implemented by placing one ion gate before the SLIM module and a second ion gate after the module. The dual-gated ion injection approach allowed the new SLIM-Orbitrap platform to simultaneously perform an 11 m SLIM separation, Orbitrap mass analysis using the highest selectable mass resolution setting (up to 140 k), and high-energy collision-induced dissociation (HCD) in ∼25 min over an m/z range of ∼1500 amu. The SLIM-Orbitrap platform was initially characterized using a mixture of standard phosphazene cations and demonstrated an average SLIM CCS resolving power (RpCCS) of ∼218 and an SLIM peak capacity of ∼156, while simultaneously obtaining high mass resolutions. SLIM-Orbitrap analysis with fragmentation was then performed on mixtures of standard peptides and two reverse peptides (SDGRG1+, GRGDS1+, and RpCCS = 305) to demonstrate the utility of combined HR-IMS-MS/MS measurements for peptide identification. Our new HR-IMS-MS/MS capability was further demonstrated by analyzing a complex lipid mixture and showcasing SLIM separations on isobaric lipids. This new SLIM-Orbitrap platform demonstrates a critical new capability for proteomics and lipidomics applications, and the high-resolution multimodal data obtained using this system establish the foundation for reference-free identification of unknown ion structures.
Collapse
Affiliation(s)
- Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Vanessa Meras
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Adam P Huntley
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Gordon A Anderson
- GAA Custom Engineering, LLC, Benton City, Washington 99320, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Robert G Ewing
- Nuclear, Chemistry & Biology Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Huntley AP, Hollerbach AL, Prabhakaran A, Garimella SV, Giberson CM, Norheim RV, Smith RD, Ibrahim YM. Development of a Structure for Lossless Ion Manipulations (SLIM) High Charge Capacity Array of Traps. Anal Chem 2023; 95:4446-4453. [PMID: 36820625 PMCID: PMC10634340 DOI: 10.1021/acs.analchem.2c05025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Enhancing the sensitivity of low-abundance ions in a complex mixture without sacrificing measurement throughput is highly desirable. This work demonstrates a way to greatly improve the sensitivity of ion mobility (IM)-selected ions by accumulating them in an array of high-capacity ion traps located inside a novel structures for lossless ion manipulations ion mobility spectrometer (SLIM-IMS) module. The array of ion traps used in this work consisted of seven independently controllable traps. Each trap was 386 mm long and possessed a charge capacity of ∼4.5 × 108 charges, with a linear range extending to ∼2.5 × 108 charges. Each ion trap could be used to extract a peak (or ions over a mobility range) from an ion mobility separation based on arrival time. Ions could be stored without losses for long times (>100 s) and then released all at once or one trap at a time. It was possible to accumulate large ion populations by extracting and storing ions over repeated IM separations. Enrichment of up to seven individual ion distributions could be performed using the seven independently controllable ion traps. Additionally, the ion trapping process effectively compressed ion populations into narrow peaks, which provides a greatly improved basis for subsequent ion manipulations. The array of high charge capacity ion traps provides a flexible addition to SLIM and a powerful tool for IMS-MS applications requiring high sensitivity.
Collapse
Affiliation(s)
- Adam P. Huntley
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Adam L. Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Aneesh Prabhakaran
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Sandilya V.B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Cameron M. Giberson
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Randolph V. Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, 99354, United States
| |
Collapse
|
9
|
Fu D, Habtegabir SG, Wang H, Feng S, Han Y. Understanding of protomers/deprotomers by combining mass spectrometry and computation. Anal Bioanal Chem 2023:10.1007/s00216-023-04574-1. [PMID: 36737499 DOI: 10.1007/s00216-023-04574-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present different biological activities. Study on protomers/deprotomers is essentially the study on the acidity/basicity of each intramolecular functional group and its effect on molecular structure. In recent years, the combination of mass spectrometry (MS) and computational chemistry has been proven to be a powerful and effective means to study prototropic isomers. MS-based technologies are developed to discriminate and characterize protomers/deprotomers to provide structural information and monitor transformations, showing great superiority than other experimental methods. Computational chemistry is used to predict the thermodynamic stability of protomers/deprotomers, provide the simulated MS/MS spectra, infrared spectra, and calculate collision cross-section values. By comparing the theoretical data with the corresponding experimental results, the researchers can not only determine the protomer/deprotomer structure, but also investigate the structure-activity relationship in a given system. This review covers various MS methods and theoretical calculations and their devotion to isomer discrimination, structure identification, conformational transformation, and phase transition investigation of protomers/deprotomers.
Collapse
Affiliation(s)
- Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Haodong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Shijie Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China.
| |
Collapse
|
10
|
Kwantwi-Barima P, Harrilal CP, Garimella SVB, Attah IK, Smith RD, Ibrahim YM. Effect of Traveling Waveform Profiles on Collision Cross Section Measurements in Structures for Lossless Ion Manipulations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:783-792. [PMID: 35437008 PMCID: PMC10634343 DOI: 10.1021/jasms.1c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We evaluated the effect of four different waveform profiles (Square, Sine, Triangle, and asymmetric Sawtooth) on the accuracy of collision cross section (CCS) measurements using traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM). The effects of the waveform profiles on the accuracy of the CCS measurements were evaluated for four classes of compounds (lipids, peptides, steroids, and nucleosides) at different TW speeds (126-206 m/s) and amplitudes (15-89 V). For the lipids and peptides, the TWIMS-based CCS (TWCCS) deviations from the corresponding drift-tube-based CCS (DTCCS) measurements were significantly lower in experiments conducted using the Sawtooth waveform compared to the square waveform. This observation can be rationalized by the lower maximum electric field experienced by ions with a Sawtooth waveform, as compared to the other waveforms, resulting in a lower probability for significant ion heating. We also observed that given approximately comparable resolution for all four waveforms, the Sawtooth waveform resulted in lower TWCCS error and a better agreement with DTCCS values than the Square waveform. In addition, for the steroids and nucleosides, an opposite TWCCS trend was observed, with higher errors with the Sawtooth waveform and lower with the Square waveform, suggesting that these molecules tend to become slightly more compact under ion heating conditions. Under optimum conditions, all TWCCS measurements on the SLIM platform were within 0.5% of those measured in the drift tube ion mobility spectrometry.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Christopher P Harrilal
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
11
|
Chen X, Latif M, Gandhi VD, Chen X, Hua L, Fukushima N, Larriba-Andaluz C. Enhancing Separation and Constriction of Ion Mobility Distributions in Drift Tubes at Atmospheric Pressure Using Varying Fields. Anal Chem 2022; 94:5690-5698. [PMID: 35357157 DOI: 10.1021/acs.analchem.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A linearly decreasing electric field has been previously proven to be effective for diffusional correction of ions in a varying field drift tube (VFDT) system, leading to higher resolving powers compared to a conventional drift tube due to its capacity to narrow distributions midflight. However, the theoretical predictions in resolving power of the VFDT were much higher than what was observed experimentally. The reason behind this discrepancy has been identified as the difference between the theoretically calculated resolving power (spatial) and the experimental one (time). To match the high spatial resolving power experimentally, a secondary high voltage pulse (HVP) at a properly adjusted time is used to provide the ions with enough momentum to increase their drift velocity and hence their time-resolving power. A series of systematic numerical simulations and experimental tests have been designed to corroborate our theoretical findings. The HVP-VFDT atmospheric pressure portable system improves the resolving power from the maximum expected of 60-80 for a regular drift tube to 250 in just 21 cm in length and 7kV, an unprecedent accomplishment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohsen Latif
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | - Viraj D Gandhi
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Purdue University, West Lafayette, Indiana 47907, United States
| | - Xuemeng Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Leyan Hua
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | | | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
12
|
Wang Q. Building Personalized Cancer Therapeutics through Multi-Omics Assays and Bacteriophage-Eukaryotic Cell Interactions. Int J Mol Sci 2021; 22:ijms22189712. [PMID: 34575870 PMCID: PMC8468737 DOI: 10.3390/ijms22189712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage-eukaryotic cell interaction provides the biological foundation of Phage Display technology, which has been widely adopted in studies involving protein-protein and protein-peptide interactions, and it provides a direct link between the proteins and the DNA encoding them. Phage display has also facilitated the development of new therapeutic agents targeting personalized cancer mutations. Proteins encoded by mutant genes in cancers can be processed and presented on the tumor cell surface by human leukocyte antigen (HLA) molecules, and such mutant peptides are called Neoantigens. Neoantigens are naturally existing tumor markers presented on the cell surface. In clinical settings, the T-cell recognition of neoantigens is the foundation of cancer immunotherapeutics. This year, we utilized phage display to successfully develop the 1st antibody-based neoantigen targeting approach for next-generation personalized cancer therapeutics. In this article, we discussed the strategies for identifying neoantigens, followed by using phage display to create personalized cancer therapeutics-a complete pipeline for personalized cancer treatment.
Collapse
Affiliation(s)
- Qing Wang
- Complete Omics Inc., 1448 S. Rolling Rd, Baltimore, MD 21227, USA
| |
Collapse
|
13
|
Arndt JR, Wormwood Moser KL, Van Aken G, Doyle RM, Talamantes T, DeBord D, Maxon L, Stafford G, Fjeldsted J, Miller B, Sherman M. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2019-2032. [PMID: 33835810 DOI: 10.1021/jasms.0c00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Characterization and monitoring of post-translational modifications (PTMs) by peptide mapping is a ubiquitous assay in biopharmaceutical characterization. Often, this assay is coupled to reversed-phase liquid chromatographic (LC) separations that require long gradients to identify all components of the protein digest and resolve critical modifications for relative quantitation. Incorporating ion mobility (IM) as an orthogonal separation that relies on peptide structure can supplement the LC separation by providing an additional differentiation filter to resolve isobaric peptides, potentially reducing ambiguity in identification through mobility-aligned fragmentation and helping to reduce the run time of peptide mapping assays. A next-generation high-resolution ion mobility (HRIM) technique, based on structures for lossless ion manipulations (SLIM) technology with a 13 m ion path, provides peak capacities and higher resolving power that rivals traditional chromatographic separations and, owing to its ability to resolve isobaric peptides that coelute in faster chromatographic methods, allows for up to 3× shorter run times than conventional peptide mapping methods. In this study, the NIST monoclonal antibody IgG1κ (NIST RM 8671, NISTmAb) was characterized by LC-HRIM-MS and LC-HRIM-MS with collision-induced dissociation (HRIM-CID-MS) using a 20 min analytical method. This approach delivered a sequence coverage of 96.5%. LC-HRIM-CID-MS experiments provided additional confidence in sequence determination. HRIM-MS resolved critical oxidations, deamidations, and isomerizations that coelute with their native counterparts in the chromatographic dimension. Finally, quantitative measurements of % modification were made using only the m/z-extracted HRIM arrival time distributions, showing good agreement with the reference liquid-phase separation. This study shows, for the first time, the analytical capability of HRIM using SLIM technology for enhancing peptide mapping workflows relevant to biopharmaceutical characterization.
Collapse
Affiliation(s)
- James R Arndt
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Kelly L Wormwood Moser
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Gregory Van Aken
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Rory M Doyle
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Tatjana Talamantes
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Laura Maxon
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - George Stafford
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - John Fjeldsted
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Bryan Miller
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Melissa Sherman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
14
|
May JC, Leaptrot KL, Rose BS, Moser KLW, Deng L, Maxon L, DeBord D, McLean JA. Resolving Power and Collision Cross Section Measurement Accuracy of a Prototype High-Resolution Ion Mobility Platform Incorporating Structures for Lossless Ion Manipulation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1126-1137. [PMID: 33734709 PMCID: PMC9296130 DOI: 10.1021/jasms.1c00056] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A production prototype structures for lossless ion manipulation ion mobility (SLIM IM) platform interfaced to a commercial high-resolution mass spectrometer (MS) is described. The SLIM IM implements the traveling wave ion mobility technique across a ∼13m path length for high-resolution IM (HRIM) separations. The resolving power (CCS/ΔCCS) of the SLIM IM stage was benchmarked across various parameters (traveling wave speeds, amplitudes, and waveforms), and results indicated that resolving powers in excess of 200 can be accessed for a broad range of masses. For several cases, resolving powers greater than 300 were achieved, notably under wave conditions where ions transition from a nonselective "surfing" motion to a mobility-selective ion drift, that corresponded to ion speeds approximately 30-70% of the traveling wave speed. The separation capabilities were evaluated on a series of isomeric and isobaric compounds that cannot be resolved by MS alone, including reversed-sequence peptides (SDGRG and GRGDS), triglyceride double-bond positional isomers (TG 3, 6, 9 and TG 6, 9, 12), trisaccharides (melezitose, raffinose, isomaltotriose, and maltotriose), and ganglioside lipids (GD1b and GD1a). The SLIM IM platform resolved the corresponding isomeric mixtures, which were unresolvable using the standard resolution of a drift-tube instrument (∼50). In general, the SLIM IM-MS platform is capable of resolving peaks separated by as little as ∼0.6% without the need to target a specific separation window or drift time. Low CCS measurement biases <0.5% were obtained under high resolving power conditions. Importantly, all the analytes surveyed are able to access high-resolution conditions (>200), demonstrating that this instrument is well-suited for broadband HRIM separations important in global untargeted applications.
Collapse
Affiliation(s)
- Jody C. May
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| | - Katrina L. Leaptrot
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| | - Bailey S. Rose
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| | | | - Liulin Deng
- MOBILion
Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Laura Maxon
- MOBILion
Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion
Systems, Chadds Ford, Pennsylvania 19317, United States
| | - John A. McLean
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| |
Collapse
|
15
|
Li A, Nagy G, Conant CR, Norheim RV, Lee JY, Giberson C, Hollerbach AL, Prabhakaran V, Attah IK, Chouinard CD, Prabhakaran A, Smith RD, Ibrahim YM, Garimella SVB. Ion Mobility Spectrometry with High Ion Utilization Efficiency Using Traveling Wave-Based Structures for Lossless Ion Manipulations. Anal Chem 2020; 92:14930-14938. [PMID: 33105077 PMCID: PMC9009212 DOI: 10.1021/acs.analchem.0c02100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ion packets introduced from gates, ion funnel traps, and other conventional ion injection mechanisms produce ion pulse widths typically around a few microseconds or less for ion mobility spectrometry (IMS)-based separations on the order of 100 milliseconds. When such ion injection techniques are coupled with ultralong path length traveling wave (TW)-based IMS separations (i.e., on the order of seconds) using structures for lossless ion manipulations (SLIMs), typically very low ion utilization efficiency is achieved for continuous ion sources [e.g., electrospray ionization (ESI)]. Even with the ability to trap and accumulate much larger populations of ions than being conventionally feasible over longer time periods in SLIM devices, the subsequent long separations lead to overall low ion utilization. Here, we report the use of a highly flexible SLIM arrangement, enabling concurrent ion accumulation and separation and achieving near-complete ion utilization with ESI. We characterize the ion accumulation process in SLIM, demonstrate >98% ion utilization, and show both increased signal intensities and measurement throughput. This approach is envisioned to have broad utility to applications, for example, involving the fast detection of trace chemical species.
Collapse
Affiliation(s)
- Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Randolph V Norheim
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joon Yong Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Cameron Giberson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Venkateshkumar Prabhakaran
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher D Chouinard
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aneesh Prabhakaran
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Li A, Conant CR, Zheng X, Bloodsworth KJ, Orton DJ, Garimella SVB, Attah IK, Nagy G, Smith RD, Ibrahim YM. Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations. Anal Chem 2020; 92:14976-14982. [PMID: 33136380 DOI: 10.1021/acs.analchem.0c02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0-p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.
Collapse
Affiliation(s)
- Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
17
|
Hollerbach AL, Li A, Prabhakaran A, Nagy G, Harrilal CP, Conant CR, Norheim RV, Schimelfenig CE, Anderson GA, Garimella SVB, Smith RD, Ibrahim YM. Ultra-High-Resolution Ion Mobility Separations Over Extended Path Lengths and Mobility Ranges Achieved using a Multilevel Structures for Lossless Ion Manipulations Module. Anal Chem 2020; 92:7972-7979. [PMID: 32383592 DOI: 10.1021/acs.analchem.0c01397] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past few years, structures for lossless ion manipulations (SLIM) have used traveling waves (TWs) to move ions over long serpentine paths that can be further lengthened by routing the ions through multiple passages of the same path. Such SLIM "multipass" separations provide unprecedentedly high ion mobility resolving powers but are ultimately limited in their ion mobility range because of the range of mobilities spanned in a single pass; that is, higher mobility ions ultimately "overtake" and "lap" lower mobility ions that have experienced fewer passes, convoluting their arrival time distribution at the detector. To achieve ultrahigh resolution separations over broader mobility ranges, we have developed a new multilevel SLIM possessing multiple stacked serpentine paths. Ions are transferred between SLIM levels through apertures (or ion escalators) in the SLIM surfaces. The initial multilevel SLIM module incorporates four levels and three interlevel ion escalator passages, providing a total path length of 43.2 m. Using the full path length and helium buffer gas, high resolution separations were achieved for Agilent tuning mixture phosphazene ions over a broad mobility range (K0 ≈ 3.0 to 1.2 cm2/(V*s)). High sensitivity was achieved using "in-SLIM" ion accumulation over an extended trapping region of the first SLIM level. High transmission efficiency of ions over a broad mobility range (e.g., K0 ≈ 3.0 to 1.67 cm2/(V*s)) was achieved, with transmission efficiency rolling off for the lower mobility ions (e.g., K0 ≈ 1.2 cm2/(V*s)). Resolving powers of up to ∼560 were achieved using all four ion levels to separate reverse peptides (SDGRG1+ and GRGDS1+). A complex mixture of phosphopeptides showed similar coverage could be achieved using one or all four SLIM levels, and doubly charged phosphosite isomers not significantly separated using one SLIM level were well resolved when four levels were used. The new multilevel SLIM technology thus enables wider mobility range ultrahigh-resolution ion mobility separations and expands on the ability of SLIM to obtain improved separations of complex mixtures with high sensitivity.
Collapse
Affiliation(s)
- Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Aneesh Prabhakaran
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Christopher P Harrilal
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Colby E Schimelfenig
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Gordon A Anderson
- GAA Custom Engineering, LLC, P.O. Box 335, Benton City, Washington 99320, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
18
|
Morris CB, Poland JC, May JC, McLean JA. Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules. Methods Mol Biol 2020; 2084:1-31. [PMID: 31729651 DOI: 10.1007/978-1-0716-0030-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) combines complementary size- and mass-selective separations into a single analytical platform. This chapter provides context for both the instrumental arrangements and key application areas that are commonly encountered in bioanalytical settings. New advances in these high-throughput strategies are described with description of complementary informatics tools to effectively utilize these data-intensive measurements. Rapid separations such as these are especially important in systems, synthetic, and chemical biology in which many small molecules are transient and correspond to various biological classes for integrated omics measurements. This chapter highlights the fundamentals of IM-MS and its applications toward biomolecular separations and discusses methods currently being used in the fields of proteomics, lipidomics, and metabolomics.
Collapse
Affiliation(s)
- Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - James C Poland
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Li A, Garimella SVB, Ibrahim YM. A simulation study of the influence of the traveling wave patterns on ion mobility separations in structures for lossless ion manipulations. Analyst 2019; 145:240-248. [PMID: 31746829 DOI: 10.1039/c9an01509d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Probing molecular properties in the gas phase requires the integration of complementary ion manipulation approaches such as ion mobility spectrometry. Structures for lossless ion manipulations (SLIM) have recently been developed to perform ultra-high resolution ion mobility separations using traveling waves as well as providing other advanced capabilities. Despite its success, the design aspects of SLIM have not been fully explored and remained largely unchanged. Here, we report on a computational study using SIMION simulations of a number of traveling wave (TW) patterns that can be used in SLIM. The TW pattern used in the current SLIM device is a set of 8 electrodes where, at any time, 4 electrodes are held at high voltage (i.e., 1111), while the other 4 electrodes are held at low voltage (i.e., 0000), forming one micro-trapping region of 11110000 pattern. Ion trajectory simulations demonstrated the feasibility to simplify the 8-electrode set to a shorter pattern (e.g., 6-electrode or 4-electrode set) while maintaining or improving the performance. The RF and TW amplitudes, guard voltage, and TW speed were optimized subsequently on the symmetric patterns of the 4-, 6-, and 8-electrode sets to further improve the performance. The resolution, peak broadening, peak capacity, and peak generation rate of each pattern were evaluated, showing that the 111000 pattern of the 6-electrode set has comparable performance to the current 11110000 pattern and is always better than the 1100 pattern. This work provides insight into the feasibility for simplification and modification of the TW configuration in SLIM and other traveling wave devices.
Collapse
Affiliation(s)
- Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|
20
|
Attah IK, Nagy G, Garimella SVB, Norheim RV, Anderson GA, Ibrahim YM, Smith RD. Traveling-Wave-Based Electrodynamic Switch for Concurrent Dual-Polarity Ion Manipulations in Structures for Lossless Ion Manipulations. Anal Chem 2019; 91:14712-14718. [PMID: 31621288 PMCID: PMC7239325 DOI: 10.1021/acs.analchem.9b03987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe the development of a dual-polarity traveling-wave (TW) structures for lossless ion manipulations (SLIM) ion mobility spectrometry (IMS) device capable of switching both positive and negative ions that are traveling simultaneously along the same path to different regions of the SLIM. Through simulations, the routing efficiency of the SLIM TW switch was compared to a SLIM direct-current-based (DC) switch developed previously for IMS-MS. We also report on the initial experimental evaluation of a dual-polarity SLIM platform, which uses the TW-based ion switch to achieve higher resolution multipass serpentine ultralong path with extended routing (SUPER) IMS separations. Overall, these results show that the dual-polarity TW switch is not only as effective as DC switching in terms of routing efficiency but also is agnostic to the polarity of the ions being routed.
Collapse
Affiliation(s)
- Isaac K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Randolph V. Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gordon A. Anderson
- GAA Custom Engineering, LLC, Benton City, Washington 99320, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
21
|
Dodds JN, Baker ES. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2185-2195. [PMID: 31493234 PMCID: PMC6832852 DOI: 10.1007/s13361-019-02288-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 05/07/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
22
|
Attah IK, Garimella SVB, Webb IK, Nagy G, Norheim RV, Schimelfenig CE, Ibrahim YM, Smith RD. Dual Polarity Ion Confinement and Mobility Separations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:967-976. [PMID: 30834510 PMCID: PMC6520127 DOI: 10.1007/s13361-019-02138-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 05/12/2023]
Abstract
Here, we present simulations and describe the initial implementation of a device capable of performing simultaneous ion mobility (IM) separations of positive and negative ions based upon the structures for lossless ion manipulations (SLIM). To achieve dual polarity ion confinement, the DC fields used for lateral confinement in previous SLIM were replaced with RF fields. Concurrent ion transport and mobility separation in the SLIM device are shown possible due to the nature of the traveling wave (TW) voltage profile which has potential minima at opposite sides of the wave for each ion polarity. We explored the potential for performing simultaneous IM separations of cations and anions over the same SLIM path and the impacts on the achievable IM resolution and resolving power. Initial results suggest comparable IM performance with previous single-polarity SLIM separations can be achieved. We also used ion trajectory simulations to investigate the capability to manipulate the spatial distributions of ion populations based on their polarities by biasing the RF fields and TW potentials on each SLIM surface so as to limit the interactions between opposite polarity ions. Graphical Abstract.
Collapse
Affiliation(s)
- Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Colby E Schimelfenig
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
23
|
Eaton RM, Allen SJ, Bush MF. Principles of Ion Selection, Alignment, and Focusing in Tandem Ion Mobility Implemented Using Structures for Lossless Ion Manipulations (SLIM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1115-1125. [PMID: 30963456 DOI: 10.1007/s13361-019-02170-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Tandem ion mobility (IM) enables the characterization of subpopulations of ions from larger ensembles, including differences that cannot be resolved in a single dimension of IM. Tandem IM consists of at least two IM regions that are each separated by an ion selection region. In many implementations of tandem IM, ions eluting from a dimension of separation are filtered and immediately transferred to the subsequent dimension of separation (selection-only experiments). We recently reported a mode of operation in which ions eluting from a dimension are trapped prior to the subsequent dimension (selection-trapping experiments), which was implemented on an instrument constructed using the structures for lossless ion manipulations (SLIM) architecture. Here, we use a combination of experiments and trajectory simulations to characterize aspects of the selection, trapping, and separation processes underlying these modes of operation. For example, the actual temporal profile of filtered ions can be very similar to the width of the waveforms used for selection, but depending on experimental parameters, can differ by up to ± 500 μs. Experiments and simulations indicate that ions in selection-trapping experiments can be spatially focused between dimensions, which removes the broadening that occurred during the preceding dimension. During focusing, individual ions are thermalized, which aligns and establishes common initial conditions for the subsequent dimension. Therefore, selection-trapping experiments appear to offer significant advantages relative to selection-only experiments, which we anticipate will become more pronounced in future experiments that make use of longer IM separations, additional dimensions of analysis, and the outcomes of this study. Graphical Abstract.
Collapse
Affiliation(s)
- Rachel M Eaton
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Samuel J Allen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
24
|
Garimella SVB, Nagy G, Ibrahim YM, Smith RD. Opening new paths for biological applications of ion mobility - mass spectrometry using Structures for Lossless Ion Manipulations. Trends Analyt Chem 2019; 116:300-307. [PMID: 32831434 DOI: 10.1016/j.trac.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion mobility separations coupled to mass spectrometry (IM-MS) have received much attention for their ability to provide complementary structural information to solution-phase-based separations, as well as to aid in the identification of unknown compounds. While IM-MS is an increasingly powerful analytical technique, significant bottlenecks related to the resolution of measurements have kept it from becoming broadly applied for biological analyses. Presently, IM-MS-based measurements also remain limited in terms of their sensitivity as compared to state of the art MS-based approaches alone. Structures for Lossless Ion Manipulations (SLIM)-based IM separations provide a basis for overcoming these bottlenecks, addressing issues associated with resolution and sensitivity in the omics, and potentially opening the door to much broader application.
Collapse
Affiliation(s)
| | - Gabe Nagy
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | |
Collapse
|
25
|
Kirk AT, Bohnhorst A, Raddatz CR, Allers M, Zimmermann S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem 2019; 411:6229-6246. [PMID: 30957205 DOI: 10.1007/s00216-019-01807-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.
Collapse
Affiliation(s)
- Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany.
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Maria Allers
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|
26
|
Ben Faleh A, Warnke S, Rizzo TR. Combining Ultrahigh-Resolution Ion-Mobility Spectrometry with Cryogenic Infrared Spectroscopy for the Analysis of Glycan Mixtures. Anal Chem 2019; 91:4876-4882. [PMID: 30835102 DOI: 10.1021/acs.analchem.9b00659] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The isomeric complexity of glycans make their analysis by traditional techniques particularly challenging. While the recent combination of ion mobility spectrometry (IMS) with cryogenic IR spectroscopy has demonstrated promise as a new technique for glycan analysis, this approach has been limited by the modest resolution of the ion mobility stage. In this work we report results from a newly developed instrument that combines ultrahigh-resolution IMS with cryogenic IR spectroscopy for glycan analysis. This apparatus makes use of the recent development in traveling-wave IMS called structures for lossless ion manipulation. The IMS stage allows the selection of glycan isomers that differ in collisional cross section by as little as 0.2% before injecting them into a cryogenic ion trap for IR spectral analysis. We compare our results to those using drift-tube IMS and highlight the advantages of the substantial increase in resolution. Application of this approach to glycan mixtures demonstrates our ability to isolate individual components, measure a cryogenic IR spectrum, and identify them using a spectroscopic database.
Collapse
Affiliation(s)
- Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCPM, Station 6 , CH-1015 Lausanne , Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCPM, Station 6 , CH-1015 Lausanne , Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCPM, Station 6 , CH-1015 Lausanne , Switzerland
| |
Collapse
|
27
|
Allen SJ, Eaton RM, Bush MF. Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c. Anal Chem 2017. [PMID: 28636328 DOI: 10.1021/acs.analchem.7b01234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility (IM) is a gas-phase separation technique that is used to determine the collision cross sections of native-like ions of proteins and protein complexes, which are in turn used as restraints for modeling the structures of those analytes in solution. Here, we evaluate the stability of native-like ions using tandem IM experiments implemented using structures for lossless ion manipulations (SLIM). In this implementation of tandem IM, ions undergo a first dimension of IM up to a switch that is used to selectively transmit ions of a desired mobility. Selected ions are accumulated in a trap and then released after a delay to initiate the second dimension of IM. For delays ranging from 16 to 33 231 ms, the collision cross sections of native-like, 7+ cytochrome c ions increase monotonically from 15.1 to 17.1 nm2. The largest products formed in these experiments at near-ambient temperature are still far smaller than those formed in energy-dependent experiments (∼21 nm2). However, the collision cross section increases by ∼2% between delay times of 16 and 211 ms, which may have implications for other IM experiments on these time scales. Finally, two subpopulations from the full population were each mobility selected and analyzed as a function of delay time, showing that the three populations can be differentiated for at least 1 s. Together, these results suggest that elements of native-like structure can have long lifetimes at near-ambient temperature in the gas phase but that gas-phase dynamics should be considered when interpreting results from IM.
Collapse
Affiliation(s)
- Samuel J Allen
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M Eaton
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
28
|
Garimella SVB, Webb IK, Prabhakaran A, Attah IK, Ibrahim YM, Smith RD. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1442-1449. [PMID: 28560562 PMCID: PMC5551421 DOI: 10.1007/s13361-017-1680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 05/06/2023]
Abstract
Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Aneesh Prabhakaran
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
29
|
Deng L, Garimella SVB, Hamid AM, Webb IK, Attah IK, Norheim RV, Prost SA, Zheng X, Sandoval JA, Baker ES, Ibrahim YM, Smith RD. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM). Anal Chem 2017; 89:6432-6439. [PMID: 28497957 PMCID: PMC5627995 DOI: 10.1021/acs.analchem.7b00189] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within structures for lossless ion manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also efficient ion population compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a SLIM serpentine ultralong path with extended routing (SUPER) region after which CRIMP compression allows the large ion populations to be "squeezed". The SLIM SUPER IM module has two regions, one operating with conventional traveling waves (i.e., traveling trap; TT region) and the second having an intermittently pausing or "stuttering" TW (i.e., stuttering trap; ST region). When a stationary voltage profile was used in the ST region, ions are blocked at the TT-ST interface and accumulated in the TT region and then can be released by resuming a conventional TW in the ST region. The population can also be compressed using CRIMP by the repetitive merging of ions distributed over multiple TW bins in the TT region into a single TW bin in the ST region. Ion accumulation followed by CRIMP compression provides the basis for the use of larger ion populations for IM separations. We show that over 109 ions can be accumulated with high efficiency in the present device and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Approximately 5 × 109 charges introduced from an electrospray ionization source were trapped for a 40 s accumulation period, more than 2 orders of magnitude greater than the previously reported charge capacity of an ion funnel trap. Importantly, we show that extended ion accumulation in conjunction with CRIMP compression and multiple passes through the serpentine path provides the basis for a highly desirable combination of ultrahigh sensitivity and SLIM SUPER high-resolution IM separations.
Collapse
Affiliation(s)
- Liulin Deng
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ahmed M. Hamid
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ian K. Webb
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Isaac K. Attah
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Randolph V. Norheim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Spencer A. Prost
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Xueyun Zheng
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jeremy A. Sandoval
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Erin S. Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| |
Collapse
|
30
|
Ibrahim YM, Hamid AM, Deng L, Garimella SVB, Webb IK, Baker ES, Smith RD. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst 2017; 142:1010-1021. [PMID: 28262893 PMCID: PMC5431593 DOI: 10.1039/c7an00031f] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structures for lossless ion manipulations (SLIM) provide a new paradigm for efficient, complex and extended gas phase ion manipulations. SLIM are created from electric fields generated by the application of DC and RF potentials to arrays of electrodes patterned on two parallel surfaces. The electric fields provide lossless ion manipulations, including effective ion transport and storage. SLIM modules have been developed using both constant and oscillatory electric fields (e.g. traveling waves) to affect the ion motion. Ion manipulations demonstrated to date with SLIM include: extended trapping, ion selection, ion dissociation, and ion mobility spectrometry (IMS) separations achieving unprecedented ultra high resolution. SLIM thus provide the basis for previously impractical manipulations, such as very long path length ion mobility separations where ions traverse a serpentine path multiple times, as well as new capabilities that extend the utility of these developments based on temporal and spatial compression of ion mobility separations and other ion distributions. The evolution of SLIM devices developed over the last three years is reviewed and we provide examples of various ion manipulations performed, and briefly discuss potential applications and new directions.
Collapse
Affiliation(s)
- Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ahmed M Hamid
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Liulin Deng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
31
|
Ibrahim YM, Hamid AM, Cox JT, Garimella SVB, Smith RD. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations. Anal Chem 2017; 89:1972-1977. [PMID: 28208272 PMCID: PMC5470846 DOI: 10.1021/acs.analchem.6b04500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe two approaches based upon ion "elevator" and "escalator" components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations, we designed elevator and escalator components based upon ion current measurements providing essentially lossless transmission in multilevel designs. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g., in a linear section). The analysis of singly charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing, e.g., much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which, e.g., different levels may operate at different temperatures or with different gases.
Collapse
Affiliation(s)
- Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Ahmed M. Hamid
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Jonathan T. Cox
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
32
|
Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations. Int J Mol Sci 2017; 18:ijms18010183. [PMID: 28106768 PMCID: PMC5297815 DOI: 10.3390/ijms18010183] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
Understanding the biological roles and mechanisms of lipids and glycolipids is challenging due to the vast number of possible isomers that may exist. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid presence and changes. However, difficulties in distinguishing the many structural isomers, due to the distinct lipid acyl chain positions, double bond locations or specific glycan types, inhibit the delineation and assignment of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations by applying traveling waves in a serpentine multi-pass Structures for Lossless Ion Manipulations (SLIM) platform to enhance the separation of selected lipid and glycolipid isomers. The multi-pass arrangement allowed the investigation of paths ranging from ~16 m (one pass) to ~60 m (four passes) for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer-specific biological activities and disease processes.
Collapse
|
33
|
Garimella SVB, Hamid AM, Deng L, Ibrahim YM, Webb IK, Baker ES, Prost SA, Norheim RV, Anderson GA, Smith RD. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations Using Compression Ratio Ion Mobility Programming. Anal Chem 2016; 88:11877-11885. [PMID: 27934097 PMCID: PMC5470847 DOI: 10.1021/acs.analchem.6b03660] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this work we report an approach for spatial and temporal gas-phase ion population manipulation, wherein we collapse ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventional traveling wave (TW)-driven region to a region where the TW is intermittently halted or "stuttered". This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllable and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using "structures for lossless ion manipulations" (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved signal-to-noise (S/N) ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multipass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening and increasing peak widths.
Collapse
Affiliation(s)
| | | | | | - Yehia M. Ibrahim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ian K. Webb
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erin S. Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Spencer A. Prost
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Randolph V. Norheim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
34
|
Allen SJ, Eaton RM, Bush MF. Analysis of Native-Like Ions Using Structures for Lossless Ion Manipulations. Anal Chem 2016; 88:9118-26. [DOI: 10.1021/acs.analchem.6b02089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel J. Allen
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M. Eaton
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
35
|
Hamid AM, Garimella SVB, Ibrahim YM, Deng L, Zheng X, Webb IK, Anderson GA, Prost SA, Norheim RV, Tolmachev AV, Baker ES, Smith RD. Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations. Anal Chem 2016; 88:8949-8956. [PMID: 27479234 DOI: 10.1021/acs.analchem.6b01914] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on ion mobility (IM) separations achievable using traveling waves (TW) in a Structures for Lossless Ion Manipulations (SLIM) module having a 44 cm path length and 16 90° turns. The performance of the TW-SLIM module was evaluated for ion transmission and IM separations with different RF, TW parameters, and SLIM surface gaps in conjunction with mass spectrometry. In this work, TWs were created by the transient and dynamic application of DC potentials. The module demonstrated highly robust performance and, even with 16 closely spaced turns, achieving IM resolution performance and ion transmission comparable to a similar straight path module. We found an IM peak capacity of ∼31 and peak generation rate of 780 s(-1) for TW speeds of ∼80 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ∼0.9-m drift tube-based IM-MS platform operated at the same pressure (4 Torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater IM resolution via greatly extended ion path lengths and using compact serpentine designs.
Collapse
Affiliation(s)
- Ahmed M Hamid
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Liulin Deng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gordon A Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Spencer A Prost
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aleksey V Tolmachev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
36
|
Webb IK, Garimella SVB, Norheim RV, Baker ES, Ibrahim YM, Smith RD. A Structures for Lossless Ion Manipulations (SLIM) Module for Collision Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1285-8. [PMID: 27098413 PMCID: PMC4899216 DOI: 10.1007/s13361-016-1397-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 05/13/2023]
Abstract
A collision induced dissociation (CID) structure for lossless ion manipulations (SLIM) module is introduced and coupled to a quadrupole time-of-flight (QTOF) mass spectrometer. The SLIM CID module was mounted after an ion mobility (IM) drift tube to enable IM/CID/MS studies. The efficiency of CID was studied by using the model peptide leucine enkephalin. CID efficiencies (62%) compared favorably with other beam-type CID methods. Additionally, the SLIM CID module was used to fragment a mixture of nine peptides after IM separation. This work also represents the first application of SLIM in the 0.3 to 0.5 Torr pressure regime, an order of magnitude lower in pressure than previously studied. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ian K Webb
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Sandilya V B Garimella
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Randolph V Norheim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Erin S Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Yehia M Ibrahim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
37
|
Garimella SVB, Ibrahim YM, Tang K, Webb IK, Baker ES, Tolmachev AV, Chen TC, Anderson GA, Smith RD. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1128-35. [PMID: 27052738 PMCID: PMC4955798 DOI: 10.1007/s13361-016-1371-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 05/13/2023]
Abstract
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Aleksey V Tolmachev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tsung-Chi Chen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gordon A Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
38
|
Chen TC, Ibrahim YM, Webb IK, Garimella SVB, Zhang X, Hamid AM, Deng L, Karnesky WE, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Baker ES, Smith RD. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations. Anal Chem 2016; 88:1728-33. [PMID: 26752262 DOI: 10.1021/acs.analchem.5b03910] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in an extended and more effective manner, while opening opportunities for many more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolation and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. A linear improvement in ion intensity was observed with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.
Collapse
Affiliation(s)
- Tsung-Chi Chen
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Xing Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ahmed M Hamid
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Liulin Deng
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - William E Karnesky
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Spencer A Prost
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jeremy A Sandoval
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Gordon A Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Aleksey V Tolmachev
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|