1
|
Wei L, Kong X, Wang M, Zhang Y, Pan R, Cheng Y, Lv Z, Zhou J, Ming J. A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation. Anal Bioanal Chem 2022; 414:7923-7933. [PMID: 36136111 DOI: 10.1007/s00216-022-04327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/01/2022]
Abstract
The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K+ or Na+. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL-1, and the detection limit of 0.0021 U mL-1 could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Collapse
Affiliation(s)
- Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xianglong Kong
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Mengran Wang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yixin Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yuanzheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| | - Jingjing Ming
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
2
|
Verma S, Ravichandiran V, Ranjan N. Beyond amyloid proteins: Thioflavin T in nucleic acid recognition. Biochimie 2021; 190:111-123. [PMID: 34118329 DOI: 10.1016/j.biochi.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
Thioflavin T (ThT) is a commercially available fluorescent dye that is commonly used in biomedical research for over five decades. It was first reported as an extrinsic fluorescent probe for the detection of amyloid fibrils and related processes and it has also been used extensively for assessing protein binding in fluorescence-based assays. Although the nucleic acid binding of ThT was reported half of a century ago in the 1970s, it was not widely explored until the start of this decade. In recent years, Thioflavin T has become a major tool in the recognition of many types of non-canonical nucleic acid conformations including duplexes, triplexes, and G-quadruplexes. The propensity of ThT binding is more towards base aberrations, bulges, and mismatches highlighting its importance in serving as a diagnostic tool in a variety of ailments/disease conditions. In this review, we cover major advancements in nucleic acid detection/binding by ThT to a variety of nucleic acid structures.
Collapse
Affiliation(s)
- Smita Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
3
|
Yeasmin Khusbu F, Zhou X, Chen H, Ma C, Wang K. Thioflavin T as a fluorescence probe for biosensing applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Khattab M, Wang F, Clayton AHA. Conformational Plasticity in Tyrosine Kinase Inhibitor-Kinase Interactions Revealed with Fluorescence Spectroscopy and Theoretical Calculations. J Phys Chem B 2018; 122:4667-4679. [PMID: 29629773 DOI: 10.1021/acs.jpcb.8b01530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To understand drug-protein dynamics, it is necessary to account for drug molecular flexibility and binding site plasticity. Herein, we exploit fluorescence from a tyrosine kinase inhibitor, AG1478, as a reporter of its conformation and binding site environment when complexed with its cognate kinase. Water-soluble kinases, aminoglycoside phosphotransferase APH(3')-Ia and mitogen-activated protein kinase 14 (MAPK14), were chosen for this study. On the basis of our prior work, the AG1478 conformation (planar or twisted) was inferred from the fluorescence excitation spectrum and the polarity of the AG1478-binding site was deduced from the fluorescence emission spectrum, while red-edge excitation shift (REES) probed the heterogeneity of the binding site (protein conformation and hydration) distributions in the protein conformational ensemble. In the AG1478-APH(3')-Ia complex, both twisted (or partially twisted) and planar AG1478 conformations were evidenced from emission wavelength-dependent excitation spectra. The binding site environment provided by APH(3')-Ia was moderately polar (λmax = 480 nm) with evidence for considerable heterogeneity (REES = 34 nm). In contrast, in the AG1478-MAPK14 complex, AG1478 was in a predominantly planar conformation with a lower degree of conformational heterogeneity. The binding site environment provided by the MAPK14 protein was of relatively low polarity (λmax = 430 nm) with a smaller degree of heterogeneity (REES = 11 nm). The results are compared with the available X-ray data and discussed in the context of our current understanding of tyrosine kinase inhibitor conformation and protein conformational ensembles.
Collapse
|
5
|
Gao M, Guo J, Song Y, Zhu Z, Yang CJ. Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38356-38363. [PMID: 29027787 DOI: 10.1021/acsami.7b14185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a vital enzyme in DNA phosphorylation and restoration, T4 polynucleotide kinase (T4 PNK) has aroused great interest in recent years. Therefore, numerous strategies have been established for highly sensitive detection of T4 PNK based on diverse signal amplification techniques. However, they often need sophisticated design, a variety of auxiliary reagents and enzymes, or cumbersome manipulations. We have designed a new kind of allosteric aptamer probe (AAP) consisting of streptavidin (SA) aptamer and the complementary DNA (cDNA) for simple detection of T4 PNK without signal amplification and with minimized interference in complex biological samples. When the 5'-terminus of the cDNA is phosphorylated by T4 PNK, the cDNA is degraded by lambda exonuclease to release the fluorescein amidite (FAM)-labeled SA aptamer, which subsequently binds to streptavidin beads. The enhancement of the fluorescence signal on SA beads can be detected precisely and easily by a microscope or flow cytometer. Our method performs well in complex biological samples as a result of the enrichment of the signaling molecules on beads, as well as simple manipulations to discard the background interference and nonbinding molecules. Without signal amplification techniques, our AAP method not only avoids complicated manipulations but also decreases the time required. With the advantages of ease of operation, reliability, and robustness for T4 PNK detection in buffer as well as real biological samples, the AAP has great potential for clinical diagnostics, inhibitor screening, and drug discovery.
Collapse
Affiliation(s)
- Mingxuan Gao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
- The Key Lab of Analysis and Detection Technology for Food Safety of MOE, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350116, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
6
|
Label-free fluorescent assay of T4 polynucleotide kinase phosphatase activity based on G-quadruplexe−thioflavin T complex. Talanta 2017; 165:653-658. [DOI: 10.1016/j.talanta.2017.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/27/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023]
|
7
|
Wang J, Liu H, Ma C, Wang J, Zhong L, Wu K. Label-free monitoring of DNA polymerase activity based on a thrombin-binding aptamer G-quadruplex. Mol Cell Probes 2016; 32:13-17. [PMID: 27771441 DOI: 10.1016/j.mcp.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
We have developed a label-free assay for the detection of DNA polymerase activity based on a thrombin-binding aptamer (TBA) G-quadruplex. In the presence of DNA polymerase, the 3'-OH termini of the hairpin substrate are immediately elongated to replace the TBA, which can be recognized quickly by the ThT dye and results in an increase of fluorescence. This method is highly sensitive with a detection limit of 0.1 U/mL. It is simple and cost-effective without any requirement of labeling with a fluorophore-quencher pair. Furthermore, the proposed method can also be applied to analyze the inhibition of DNA polymerase, which clearly indicates that the proposed method can be applied for screening of potential DNA polymerase inhibitors.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Haisheng Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Changbei Ma
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China.
| | - Jun Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Linxiu Zhong
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Kefeng Wu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Ma DL, Wang W, Mao Z, Yang C, Chen XP, Lu JJ, Han QB, Leung CH. A tutorial review for employing enzymes for the construction of G-quadruplex-based sensing platforms. Anal Chim Acta 2016; 913:41-54. [DOI: 10.1016/j.aca.2016.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/31/2023]
|
9
|
Label-free molecular beacon for real-time monitoring of DNA polymerase activity. Anal Bioanal Chem 2016; 408:3275-80. [DOI: 10.1007/s00216-016-9398-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
|
10
|
Ma C, Jin S, Liu H, Xia K, Tang J, Wang K, Wang J. Thioflavin T as a fluorescence probe for label-free detection of T4 polynucleotide kinase/phosphatase and its inhibitors. Mol Cell Probes 2015; 29:500-502. [PMID: 26577032 DOI: 10.1016/j.mcp.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022]
Abstract
We have developed a new methodology for label-free fluorescence turn-on detection of T4 polynucleotide kinase/phosphatase activity (T4 PNKP) using a Thioflavin T probe. This method is very sensitive with a 0.01 unit/mL limit of detection, which is better than those with labeled fluorophores. Furthermore, T4 PNKP inhibition by the inhibitor heparin is shown, demonstrating the potential to screen suitable inhibitor drugs for T4 PNKP.
Collapse
Affiliation(s)
- Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410081, China.
| | - Shunxin Jin
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Haisheng Liu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Jianhua Tang
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410081, China
| | - Jun Wang
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
11
|
Wang Y, Wu Y, Wang Y, Zhou B, Wu S. A sensitive immobilization-free electrochemical assay for T4PNK activity based on exonuclease III-assisted recycling. RSC Adv 2015. [DOI: 10.1039/c5ra12849h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work develops a novel, immobilization-free, simple and sensitive electrochemical platform for the detection of T4PNK activity based on λ-exo and exonuclease III-assisted signal amplification.
Collapse
Affiliation(s)
- Yonghong Wang
- College of Life Science and Technology
- Central South University of Forestry and Technology
- Changsha
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Yaohui Wu
- College of Life Science and Technology
- Central South University of Forestry and Technology
- Changsha
- China
| | - Yuanqing Wang
- College of Life Science and Technology
- Central South University of Forestry and Technology
- Changsha
- China
| | - Bo Zhou
- College of Life Science and Technology
- Central South University of Forestry and Technology
- Changsha
- China
| | - Shun Wu
- College of Life Science and Technology
- Central South University of Forestry and Technology
- Changsha
- China
| |
Collapse
|