1
|
Wei K, Ye Z, Dong W, Zhang L, Wang W, Li J, Eltzov E, Wang S, Mao X. Generating robust aptamers for food analysis by sequence-based configuration optimization. Talanta 2024; 275:126044. [PMID: 38626500 DOI: 10.1016/j.talanta.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Advanced analytical techniques are emerging in the food industry. Aptamer-based biosensors achieve rapid and highly selective analysis, thus drawing particular attention. Aptamers are oligonucleotide probes screened via in vitro Systematic Evolution of Ligands by EXponential Enrichment (SELEX), which can bind with their specific targets by folding into three-dimensional configurations and accept various modifications to be incorporated into biosensors, showing great potential in food analysis. Unfortunately, aptamers obtained by SELEX may not possess satisfactory affinity. Post-SELEX strategies were proposed to optimize aptamers' configuration and enhance the binding affinity, with specificity confirmed. Sequence-based optimization strategies exhibit great advantages in simple operation, good generalization, low cost, etc. This review summarizes the latest study (2015-2023) on generating robust aptamers for food targets by sequence-based configuration optimization, as well as the generated aptamers and aptasensors, with an expectation to provide inspirations for developing aptamer and aptasensors with high performance for food analysis and to safeguard food quality and safety.
Collapse
Affiliation(s)
- Kaiyue Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Ziyang Ye
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Wenhui Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Ling Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Wenjing Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| |
Collapse
|
2
|
Wen X, Huang Z, Yang X, He X, Li L, Chen H, Wang K, Guo Q, Liu J. Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy. Proc Natl Acad Sci U S A 2024; 121:e2321116121. [PMID: 38557176 PMCID: PMC11009676 DOI: 10.1073/pnas.2321116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.
Collapse
Affiliation(s)
- Xiaohong Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| | - Zhixiang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Lie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Haiyan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| |
Collapse
|
3
|
Lam SY, Lau HL, Kwok CK. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application. BIOSENSORS 2022; 12:1142. [PMID: 36551109 PMCID: PMC9776347 DOI: 10.3390/bios12121142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Small-molecule contaminants, such as antibiotics, pesticides, and plasticizers, have emerged as one of the substances most detrimental to human health and the environment. Therefore, it is crucial to develop low-cost, user-friendly, and portable biosensors capable of rapidly detecting these contaminants. Antibodies have traditionally been used as biorecognition elements. However, aptamers have recently been applied as biorecognition elements in aptamer-based biosensors, also known as aptasensors. The systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro technique used to generate aptamers that bind their targets with high affinity and specificity. Over the past decade, a modified SELEX method known as Capture-SELEX has been widely used to generate DNA or RNA aptamers that bind small molecules. In this review, we summarize the recent strategies used for Capture-SELEX, describe the methods commonly used for detecting and characterizing small-molecule-aptamer interactions, and discuss the development of aptamer-based biosensors for various applications. We also discuss the challenges of the Capture-SELEX platform and biosensor development and the possibilities for their future application.
Collapse
Affiliation(s)
- Sin Yu Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hill Lam Lau
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Kit Kwok
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
4
|
Cai R, Chen X, Zhang Y, Wang X, Zhou N. Systematic bio-fabrication of aptamers and their applications in engineering biology. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 3:223-245. [PMID: 38013802 PMCID: PMC9550155 DOI: 10.1007/s43393-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/27/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules that have high affinity and selectivity to bind to specific targets. Compared to antibodies, aptamers are easy to in vitro synthesize with low cost, and exhibit excellent thermal stability and programmability. With these features, aptamers have been widely used in biology and medicine-related fields. In the meantime, a variety of systematic evolution of ligands by exponential enrichment (SELEX) technologies have been developed to screen aptamers for various targets. According to the characteristics of targets, customizing appropriate SELEX technology and post-SELEX optimization helps to obtain ideal aptamers with high affinity and specificity. In this review, we first summarize the latest research on the systematic bio-fabrication of aptamers, including various SELEX technologies, post-SELEX optimization, and aptamer modification technology. These procedures not only help to gain the aptamer sequences but also provide insights into the relationship between structure and function of the aptamers. The latter provides a new perspective for the systems bio-fabrication of aptamers. Furthermore, on this basis, we review the applications of aptamers, particularly in the fields of engineering biology, including industrial biotechnology, medical and health engineering, and environmental and food safety monitoring. And the encountered challenges and prospects are discussed, providing an outlook for the future development of aptamers.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
5
|
Li L, Wan J, Wen X, Guo Q, Jiang H, Wang J, Ren Y, Wang K. Identification of a New DNA Aptamer by Tissue-SELEX for Cancer Recognition and Imaging. Anal Chem 2021; 93:7369-7377. [PMID: 33960774 DOI: 10.1021/acs.analchem.1c01445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer has become one of the most common diseases with high mortality in humans. Early and accurate diagnosis of cancer is of great significance to enhance the survival rate of patients. Therefore, effective molecular ligands capable of selectively recognizing cancer are urgently needed. In this work, we identified a new DNA aptamer named SW1 by tissue-based systematic evolution of ligands by exponential enrichment (tissue-SELEX), in which cancerous liver tissue sections were used as the positive control and adjacent normal liver tissue sections were used as the negative control. Taking immobilized liver cancer SMMC-7721 cells as the research object, aptamer SW1 exhibited excellent affinity with a Kd value of 123.62 ± 17.53 nM, and its binding target was preliminarily determined as a non-nucleic acid substance in the nucleus. Moreover, tissue imaging results showed that SW1 explicitly recognized cancerous liver tissues with a high detection rate of 72.7% but displayed a low detection rate to adjacent normal tissues. In addition to liver cancer cells and tissues, aptamer SW1 has been demonstrated to recognize various other types of cancer cells and tissues. Furthermore, SW1-A, an optimized aptamer of SW1, maintained its excellent affinity toward liver cancer cells and tissues. Collectively, these results indicate that SW1 possesses great potential for use as an effective molecular probe for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Lie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jun Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohong Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huishan Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yazhou Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Allemailem KS, Almatroudi A, Alsahli MA, Basfar GT, Alrumaihi F, Rahmani AH, Khan AA. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020; 10:551. [PMID: 33269185 PMCID: PMC7686427 DOI: 10.1007/s13205-020-02546-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The innovative discovery of aptamers was based on target-specific treatment in clinical diagnostics and therapeutics. Aptamers are synthetic, single-stranded oligonucleotides, simply described as chemical antibodies, which can bind to diverse targets with high specificity and affinity. Aptamers are synthesized by the SELEX technique, and possess distinctive properties as small size (10-50 kDa), higher stability, easy manufacture and less immunogenicity. These oligonucleotides are easily degraded by nucleases, so require some important modifications like capping and incorporation of modified nucleotides. RNA aptamers can be modified chemically on 2' positions using -NH3, -F, -deoxy, or -OMe groups to enhance their nuclease resistance. Aptamers have been employed for multiple purposes, as direct drugs or aptamer-drug conjugates targeted against different diseased cells. Different aptamer-conjugated nanovehicles (e.g., micelles, liposomes, silica nano-shells) have been designed to transport diverse anticancer-drugs like doxorubicin and cisplatin in bulk to minimize systemic cytotoxicity. Some drug-loaded nanovehicles (up to 97% loading capacity) and conjugated with specific aptamer resulted in more than 60% tumor inhibition as compared to unconjugated drug-loaded nanovehicles which showed only 31% cancer inhibition. In addition, aptamers have been widely used in basic research, food safety, environmental monitoring, clinical diagnostics and therapeutics. Different FDA-approved RNA and DNA aptamers are now available in the market, used for the treatment of diverse diseases, especially cancer. These aptamers include Macugen, Pegaptanib, etc. Despite a good progress in aptamer use, the present-day chemotherapeutics and drug targeting systems still face great challenges. Here in this review article, we are discussing nucleic acid aptamers, preparation, role in the transportation of different nanoparticle vehicles and their applications as therapeutic agents.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| |
Collapse
|
7
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. ACTA ACUST UNITED AC 2019; 3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Cell-SELEX can not only generate aptamers for specific cell isolation/detection, diagnosis, and therapy, but also lead to the discovery of biomarkers and unexpected molecular events. However, most cell-SELEX research is concentrated on aptamer generation and applications. In this progress report, recent research progress with cell-SELEX in terms of the discovery of biomarkers and unexpected molecular events is highlighted. In particular, the key technical challenges for cell-SELEX-based biomarker discovery, namely, the methods for identification and validation of target proteins of aptamers, are discussed in detail. Finally, the prospects of the applications of cell-SELEX in this field now and in the near future are described. It is expected that this report will attract attention to the benefit of cell-SELEX and provide a practical reference for biomedical researchers.
Collapse
Affiliation(s)
- Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
10
|
Sun Y, Duan N, Ma P, Liang Y, Zhu X, Wang Z. Colorimetric Aptasensor Based on Truncated Aptamer and Trivalent DNAzyme for Vibrio parahemolyticus Determination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2313-2320. [PMID: 30721047 DOI: 10.1021/acs.jafc.8b06893] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, after optimizing the original aptamer sequence by truncation and site-directed mutagenesis, a simple and sensitive colorimetric aptasensor was established for detecting the widespread food-borne pathogen Vibrio parahemolyticus ( V. parahemolyticus). The detection strategy was based on the competition for an V. parahemolyticus specific aptamer between its complementary DNA (cDNA) and V. parahemolyticus. The aptamer-conjugated magnetic nanoparticles (MNPs) were used as capture probes, and the G-quadruplex (G4) DNAzyme was employed as the signal amplifying element. Under optimal conditions, a wide linear detection range (from 102 to 107 cfu/mL) was available, and the detection limit could be as low as 10 cfu/mL. This method was also used to detect V. parahemolyticus in contaminated salmon samples, and the results showed good consistency with those obtained from standard plate counting method. Therefore, this novel aptasensor could be a good candidate for sensitive and selective detection of V. parahemolyticus without complicated operations.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Yao Liang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Xiaoyin Zhu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi 214122 , China
- Collaborative Innovation Center of Food safety and Quality Control of Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
11
|
Pereira RL, Nascimento IC, Santos AP, Ogusuku IEY, Lameu C, Mayer G, Ulrich H. Aptamers: novelty tools for cancer biology. Oncotarget 2018; 9:26934-26953. [PMID: 29928493 PMCID: PMC6003562 DOI: 10.18632/oncotarget.25260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Although the term ‘cancer’ was still over two thousand years away of being coined, the first known cases of the disease date back to about 3000BC, in ancient Egypt. Five thousand years later, still lacking a cure, it has become one of the leading causes of death, killing over half a dozen million people yearly. So far, monoclonal antibodies are the most successful immune-therapy tools when it comes to fighting cancer. The number of clinical trials that use them has been increasing steadily during the past few years, especially since the Food and Drug Administration greenlit the use of the first immune-checkpoint blockade antibodies. However, albeit successful, this approach does come with the cost of auto-inflammatory toxicity. Taking this into account, the development of new therapeutic reagents with low toxicity becomes evident, particularly ones acting in tandem with the tools currently at our disposal. Ever since its discovery in the early nineties, aptamer technology has been used for a wide range of diagnostic and therapeutic applications. With similar properties to those of monoclonal antibodies, such as high-specificity of recognition and high-affinity binding, and the advantages of being developed using in vitro selection procedures, aptamers quickly became convenient building blocks for the generation of multifunctional constructs. In this review, we discuss the steps involved in the in vitro selection process that leads to functional aptamers - known as Systematic Evolution of Ligands by Exponential Enrichment - as well as the most recent applications of this technology in diagnostic and treatment of oncological illnesses. Moreover, we also suggest ways to improve such use.
Collapse
Affiliation(s)
- Ricardo L Pereira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isis C Nascimento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Ana P Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isabella E Y Ogusuku
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121, Bonn, Germany.,Center of Aptamer Research and Development (CARD), University of Bonn, 53121, Bonn, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
12
|
Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamer developed by Cell-SELEX. Talanta 2017; 170:56-62. [DOI: 10.1016/j.talanta.2017.03.094] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
|
13
|
Gopinathan P, Hung LY, Wang CH, Chiang NJ, Wang YC, Shan YS, Lee GB. Automated selection of aptamers against cholangiocarcinoma cells on an integrated microfluidic platform. BIOMICROFLUIDICS 2017; 11:044101. [PMID: 28713479 PMCID: PMC5498186 DOI: 10.1063/1.4991005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
An integrated microfluidic system capable of automatically identifying aptamers specific to cholangiocarcinoma (CCA) cells was developed herein. The developed system was capable of performing cell-based systematic evolution of ligands via an exponential enrichment (Cell-SELEX) process on-chip, and only six rounds of Cell-SELEX were required to identify high specificity aptamers; this represents a significant improvement in speed over conventional SELEX, in which 15-20 rounds are typically required. Using the microfluidic chip developed, three aptamers specific to CCA cells (one for SNU-478 cells and two for HuCCT-1 cells) were successfully screened. This automated system could be modified to uncover aptamer probes against other cancer cells, thereby allowing for earlier diagnosis and consequently a potentially improved prognosis.
Collapse
Affiliation(s)
- Priya Gopinathan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Yu-Chun Wang
- Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | | |
Collapse
|
14
|
Huang ZX, Xie Q, Guo QP, Wang KM, Meng XX, Yuan BY, Wan J, Chen YY. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Zhu Q, Liu G, Kai M. DNA Aptamers in the Diagnosis and Treatment of Human Diseases. Molecules 2015; 20:20979-97. [PMID: 26610462 PMCID: PMC6332121 DOI: 10.3390/molecules201219739] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Aptamers have a promising role in the field of life science and have been extensively researched for application as analytical tools, therapeutic agents and as vehicles for targeted drug delivery. Compared with RNA aptamers, DNA aptamers have inherent advantages in stability and facility of generation and synthesis. To better understand the specific potential of DNA aptamers, an overview of the progress in the generation and application of DNA aptamers in human disease diagnosis and therapy are presented in this review. Special attention is given to researches that are relatively close to practical application. DNA aptamers are expected to have great potential in the diagnosis and treatment of human diseases.
Collapse
Affiliation(s)
- Qinchang Zhu
- Faculty of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ge Liu
- Department of Genomic Epidemiology, Research Center for Environment and Developmental Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Masaaki Kai
- Faculty of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|