1
|
Hassan RO. Microextraction with smartphone detection of thiocyanate in saliva of tobacco smokers using paper-based analytical method. J Sep Sci 2024; 47:e2300596. [PMID: 37968809 DOI: 10.1002/jssc.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
This study presents a novel, cost-effective approach involving spectrophotometric and smartphone paper-based (SPB) methods and a distinctive salting-out air-assisted dispersive microextraction procedure to quantify thiocyanate in saliva samples. The method relies on the inhibitory effect of thiocyanate on quinoneimine dye formation during the Emerson reaction with sodium hypochlorite. Spectrophotometry quantifies the extracted dye by monitoring quinoneimine color intensity reduction at 525 nm. In the SPB method, extracted dye is applied to a paper strip, a smartphone captures the colored paper, and an application analyzes red, green, and blue components. All analyte determination and extraction variables were explored. Both methods exhibit good linearity (10-100 μg/L) with a coefficient of determination of 0.9991 and a limit of detection of 7.5 μg/L for the spectrophotometric method, and a coefficient of determination of 0.9988 and a limit of detection of 8.8 μg/L for the SPB method. The calculated values for the enrichment factor and extraction recovery of the developed extraction methodology were 46% and 93%, respectively. The methods detect thiocyanate in saliva samples, producing results comparable to a validated method.
Collapse
Affiliation(s)
- Rebwar Omar Hassan
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Li S, Wei Z, Xiong L, Xu Q, Yu L, Xiao Y. In Situ Formation of o-Phenylenediamine Cascade Polymers Mediated by Metal-Organic Framework Nanozymes for Fluorescent and Photothermal Dual-Mode Assay of Acetylcholinesterase Activity. Anal Chem 2022; 94:17263-17271. [PMID: 36463539 DOI: 10.1021/acs.analchem.2c04218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A fluorescent and photothermal dual-mode assay method was established for the detection of acetylcholinesterase (AChE) activity based on in situ formation of o-phenylenediamine (oPD) cascade polymers. First, copper metal-organic frameworks of benzenetricarboxylic acid (Cu-BTC) were screened out as nanozymes with excellent oxidase-like activity and confinement catalysis effect. Then, an ingenious oPD cascade polymerization strategy was proposed. That is, oPD was oxidized by Cu-BTC to oPD oligomers with strong yellow fluorescence, and oPD oligomers were further catalyzed to generate J-aggregation, which promotes the formation of oPD polymer nanoparticles with a high photothermal effect. By utilizing thiocholine (enzymolysis product of acetylthiocholine) to inhibit the Cu-BTC catalytic effect, AChE activity was detected through the fluorescence-photothermal dual-signal change of oPD oligomers and polymer nanoparticles. Both assay modes have low detection limitation (0.03 U L-1 for fluorescence and 0.05 U L-1 for photothermal) and can accurately detect the AChE activity of human serum (recovery 85.0-111.3%). The detection results of real serum samples by fluorescent and photothermal dual modes are consistent with each other (relative error ≤ 5.2%). It is worth emphasizing that this is the first time to report the high photothermal effect of oPD polymers and the fluorescence-photothermal dual-mode assay of enzyme activity.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Carbon dots as potential greener and sustainable fluorescent nanomaterials in service of pollutants sensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Rahin Ahmed S, Sherazee M, Srinivasan S, Reza Rajabzadeh A. Nanozymatic detection of thiocyanate through accelerating the growth of ultra-small gold nanoparticles/graphene quantum dots hybrids. Food Chem 2022; 379:132152. [PMID: 35063843 DOI: 10.1016/j.foodchem.2022.132152] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
Thiocyanate (SCN-) concentration monitoring in food is important to ensure the health and safety of the consumers.A colorimetric detection of thiocyanate (SCN-) based on the nanozymatic activity of gold nanoparticle-graphene quantum dots (GQDs-Au NPs) hybrids in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 has been proposed. Here, a new synthesis method of GQDs directly from graphite was introduced. Transmission electron microscopy (TEM) images revealed that the size of the GQDs was 3-5 nm, and the emission peak appeared at 450 nm. As-synthesized GQDs was utilized to produce GQDs-Au NPs hybrids without additional chemicals. However, the presence of SCN- inhibits the growth of Au NPs, the resulting Au NPs are smaller in size. Moreover, SCN- group is well-known for hydroxyl radical (OH) scavenging activity that could oxidize TMB. Both effects boosted the nanozymatic activity of GQDs-Au NPs to detect SCN- under optimized conditions with a limit of detection (LOD) of 3 nM. Present study also validates the methodology to detect SCN- in raw milk.
Collapse
Affiliation(s)
- Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada
| | - Masoomeh Sherazee
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
5
|
Ahmed SR, Sherazee M, Srinivasan S, Rajabzadeh AR. Positively Charged Gold Quantum Dots: An Nanozymatic "Off-On" Sensor for Thiocyanate Detection. Foods 2022; 11:foods11091189. [PMID: 35563912 PMCID: PMC9099475 DOI: 10.3390/foods11091189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The concentration of thiocyanate (SCN−) in bodily fluids is a good indicator of potential and severe health issues such as nasal bleeding, goiters, vertigo, unconsciousness, several inflammatory diseases, and cystic fibrosis. Herein, a visual SCN− sensing method has been developed using the enzyme-like nature of positively charged gold quantum dots (Au QDs) mixed with 3,3′,5,5′-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2). This research also reports a new method of synthesizing positively charged Au QDs directly from gold nanoparticles through a hydrothermal process. Microscopic imaging has showed that the Au QDs were 3–5 nm in size, and the emission wavelength was at 438 nm. Au QDs did not display any enzyme-like nature while mixed up with TMB and H2O2. However, the nanozymatic activity of Au QDs appeared when SCN− was included, leading to a very low detection limit (LOD) of 8 nM and 99–105% recovery in complex media. The steady-state kinetic reaction of Au QDs showed that Au QDs had a lower Michaelis–Menten constant (Km) toward H2O2 and TMB, which indicates that the Au QDs had a higher affinity for H2O2 and TMB than horseradish peroxidase (HRP). A mechanism study has revealed that the scavenging ability of hydroxyl (•OH) radicals by the SCN− group plays an important role in enhancing the sensitivity in this study. The proposed nanozymatic “Off–On” SCN− sensor was also successfully validated in commercial milk samples.
Collapse
|
6
|
Santonocito R, Intravaia M, Caruso IM, Pappalardo A, Trusso Sfrazzetto G, Tuccitto N. Fluorescence sensing by carbon nanoparticles. NANOSCALE ADVANCES 2022; 4:1926-1948. [PMID: 36133414 PMCID: PMC9418512 DOI: 10.1039/d2na00080f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/20/2022] [Indexed: 05/03/2023]
Abstract
Sensing is one of the most important fields in which chemists, engineers and other scientists are involved to realize sensoristic devices that can detect different analytes, both chemicals and biologicals. In this context, fluorescence sensing paves the way for the realization of smart sensoristic devices due to the possibility to detect the target analyte via a change in colour or emission. Recently (since 2006), carbon nanoparticles, which are a "new class" of nanostructures based on carbon atoms, have been widely used in sensing applications due to their intriguing optical properties. The scientific literature on this topic started from 2006 and a progressive increase in the corresponding number of publications has been observed. This review summarises the application of carbon nanoparticles in the sensing field, focusing on chemical and ion sensing.
Collapse
Affiliation(s)
| | | | - Ivana Maria Caruso
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Research Unit of Catania 95125 Catania Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Research Unit of Catania 95125 Catania Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
- Laboratory for Molecular Surfaces and Nanotechnology - CSGI 95125 Catania Italy
| |
Collapse
|
7
|
Gao Y, Liu Y, Zhang H, Lu W, Jiao Y, Shuang S, Dong C. One-pot synthesis of efficient multifunctional nitrogen-doped carbon dots with efficient yellow fluorescence emission for detection of hypochlorite and thiosulfate. J Mater Chem B 2022; 10:8910-8917. [DOI: 10.1039/d2tb01695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CD-based ratiometric fluorescence probes are of great significance for visual detection, but accomplishing this goal is still a particularly challenging task.
Collapse
Affiliation(s)
- Yifang Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Huilin Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
8
|
Chen BB, Huang CZ. Preparation of carbon dots and their sensing applications. SENSING AND BIOSENSING WITH OPTICALLY ACTIVE NANOMATERIALS 2022:9-40. [DOI: 10.1016/b978-0-323-90244-1.00005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Lu C, Ding H, Wang Y, Xiong C, Wang X. Colorimetric and turn-on fluorescence determination of mercury (II) by using carbon dots and gold nanoparticles. NANOTECHNOLOGY 2021; 32:155501. [PMID: 33412520 DOI: 10.1088/1361-6528/abd977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A colorimetric and turn-on fluorometric assay with high sensitivity and selectivity is described for the optical detection of mercury (II) ions (Hg2+), based on carbon dots with -SH (SN-CDs) and gold nanoparticles (AuNPs). On addition of Hg2+, the color of the system (SN-CDs/AuNPs) changes from red to blue. A new absorption peak appears at 700 nm, and its absorbance increases with the concentration of Hg2+, while at 530 nm, the absorbance of AuNPs decreases. Taking the ratio of absorbance at 700 and 530 nm as a signal, a colorimetric method with linear detection range of 0.5-4.0 μM was established for the determination of Hg2+. Meanwhile, citrate ions on the surface of AuNPs can reduce Hg2+ to Hg0, and through the strong affinity of Hg0 and gold, gold-mercury alloys were formed to occupy the surface of AuNPs, so that the SN-CDs were re-free and the fluorescence of SN-CDs was restored. Consequently, a fluorometric method was founded in the linear detection range from 0.5 to 15.0 μM of mercury (II). This dual-mode (colorimetric and turn-on fluorometric) method was applied successfully for determination of Hg2+ in real water samples.
Collapse
Affiliation(s)
- Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hao Ding
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Yutong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Chaoying Xiong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
11
|
Zhang C, Li X, Li T, Liu M, Zhang K, Zheng Y, Lan M, Zhang J, Zhang Z. Design and Synthesis of Nanosensor Based on Unsaturated Double Bond Functional Carbon Dots for Phenylephrine Detection Using Bromine As a Bridge. Anal Chem 2021; 93:5145-5150. [PMID: 33728906 DOI: 10.1021/acs.analchem.0c04943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, carbon dots (CDs) have attracted great research interest in the field of nanochemosensors due to their fascinating optical properties. However, synthesis of CDs with novel recognition groups in a convenient method is still an area to be explored urgently. In this work, we reported a simple strategy to prepare fluorescent CDs with carbon-carbon double bonds (C═C) as the characteristic structure for phenylephrine (PHE) identification and detection. The itaconic acid and polyethylenimine (PEI) were selected as precursors to fabricate highly emissive CDs under the hydrothermal cross-linking and carbonization process. The fluorescence of designed CDs at 465 nm can be effectively quenched by bromine aqueous solution due to the electrophilic addition reaction with the double bonds. On the other hand, the presence of PHE can inhibit fluorescence quenching by bromine-consumption of a substitution reaction. Inspired by the novel findings, a convenient assay for PHE determination was established using the fluorescence of C═C bond functional CDs as an output signal and bromine as a bridge. The method demonstrated here provided a unique way to develop CD-based nanosensors.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xiangcao Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Taotao Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Meilin Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yu Zheng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
12
|
Kang G, Jing Y, Liu W, Zhang C, Lu L, Chen C, Lu Y. Inhibited oxidase mimetic activity of palladium nanoplates by poisoning the active sites for thiocyanate detection. Analyst 2021; 146:1650-1655. [PMID: 33522553 DOI: 10.1039/d1an00002k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel convenient colorimetric method for sensitive detection of thiocyanate (SCN-) has been developed based on its suppression of the oxidase-like activity of palladium square nanoplates on reduced graphene oxide (Pd SP@rGO). SCN- can be adsorbed onto the surface of Pd SP@rGO via binding with Pd atoms and blocks the active sites that mimic oxidase, thus inhibiting the corresponding chromogenic reaction of 3,3',5,5'-tetramethylbenzidine, which has been comprehensively revealed by the UV-vis spectra and X-ray photoelectron spectra. The color fading exhibits SCN- concentration-dependent behavior and can be easily recorded by either UV-vis spectroscopy or naked-eye observation. Therefore, both quantitative detection via measurement of the decrease in absorbance and visual detection of SCN- can be achieved. Owing to the intrinsic amplification of signals by the oxidase-like activity of Pd SP@rGO without resorting to unstable and destructive H2O2, this assay is straightforward, robust and sensitive enough for the detection of SCN- in real samples. Furthermore, an "INH" logic gate is rationally constructed based on the proposed colorimetric SCN- sensor.
Collapse
Affiliation(s)
- Ge Kang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yijia Jing
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
13
|
Li S, Zhang Z. Recent advances in the construction and analytical applications of carbon dots-based optical nanoassembly. Talanta 2021; 223:121691. [PMID: 33303144 DOI: 10.1016/j.talanta.2020.121691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022]
Abstract
Recently, more and more attention has been focused on the construction and analytical applications of optical nanoassembly through combining carbon dots (CDs) with various other functional nanomaterials. The rational design and manufacture of CDs-based optical nanoassembly will be critical to meeting the needs of analytical science. The last decade has witnessed the immense potential of CDs-based optical nanoassembly in multiple sensing applications owing to their controlled optical properties, adjustable surface chemistry and microscopic morphology. This feature article collects the recent advances in the research and development of CDs-based optical nanoassembly and their applications in analytical sensors, aiming to provide vital insights and suggestions to inspire their broad sensing applications.
Collapse
Affiliation(s)
- Siqiao Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Abstract
Optical sensors are always fascinating for chemists due to their selectivity, sensitivity, robustness and cost-effective nature.
Collapse
Affiliation(s)
- Hafiz Muhammad Junaid
- Institute of Chemistry
- University of the Punjab
- Quaid-e-Azam Campus
- Lahore 54590
- Pakistan
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro
- Pakistan
| | - Madeeha Batool
- Institute of Chemistry
- University of the Punjab
- Quaid-e-Azam Campus
- Lahore 54590
- Pakistan
| |
Collapse
|
15
|
Askari F, Rahdar A, Dashti M, Trant JF. Detecting Mercury (II) and Thiocyanate Using "Turn-on" Fluorescence of Graphene Quantum Dots. J Fluoresc 2020; 30:1181-1187. [PMID: 32691262 DOI: 10.1007/s10895-020-02586-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022]
Abstract
In this work, 1.8 nm graphene quantum dots (GQDs), exhibiting bright blue fluorescence, were prepared using a bottom-up synthesis from citric acid. The fluorescence of the GQDs could be almost completely quenched (about 96%) by adding Hg2+. Quenching was far less efficient with other similar heavy metals, Tl+, Pb2+ and Bi3+. Fluorescence could be near quantitatively restored through the introduction of thiocyanate. This "turn-on" fluorescence can thus be used to detect both or either environmental and physiological contaminants mercury and thiocyanate and could prove useful for the development of simple point-of-care diagnostics in the future. Graphical Abstract.
Collapse
Affiliation(s)
- Faezeh Askari
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran.
| | - Mohadeseh Dashti
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
16
|
Cui X, Wei T, Hao M, Qi Q, Wang H, Dai Z. Highly sensitive and selective colorimetric sensor for thiocyanate based on electrochemical oxidation-assisted complexation reaction with Gold nanostars etching. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122217. [PMID: 32062538 DOI: 10.1016/j.jhazmat.2020.122217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/18/2023]
Abstract
In this work, we developed an electrochemical oxidation-assisted complexation strategy for highly sensitive and selective detection of thiocyanate (SCN-). Gold nanostars (AuNSs) with uniform and sharp tips were first prepared, and we found they can be quickly etched to gold nanoparticles (AuNPs) under electrochemical oxidation with the existence of halide and halogen-like ions. Through introducing SCN--selective molecule: zinc phthalocyanine (ZnPc), the fabricated ZnPc-AuNSs/ITO electrode can rapidly and selectively response to SCN- under electrochemical oxidation, manifesting as a noticeable change in color from navy blue to red. Thus SCN- concentration can be easily reflected. The wide wavelength tuning range of AuNSs to AuNPs make the ZnPc-AuNSs/ITO sensor obtain a much wider detection range for SCN- (10 nM to 80 mM) than most other reported studies. In addition, the detection limit is as low as 3 nM. It renders the sensor to be easily used in much diluted matrixes, which can further lower the interference. We further applied the colorimetric sensor to SCN- detection in wastewater and milk, excellent performance was obtained. The proposed electrochemical oxidation-assisted complexation strategy will have good promise in developing colorimetric sensors with high selectivity and wide detection range, and will display more useful application in environmental monitoring.
Collapse
Affiliation(s)
- Xinwen Cui
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Mengyuan Hao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Qi Qi
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Huafeng Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China; Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
17
|
Zhao Y, Liu R, Cui X, Fu Q, Yu M, Fei Q, Feng G, Shan H, Huan Y. Colorimetric Sensor for Thiocyanate Based on Anti-aggregation of Gold Nanoparticles in the Presence of 2-Aminopyridine. ANAL SCI 2020; 36:1165-1169. [PMID: 32336728 DOI: 10.2116/analsci.20p035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Based on the anti-aggregation mechanism of citrate stabilized gold nanoparticle (AuNPs), a new specific and sensitive colorimetric sensor for thiocyanate (SCN-) was developed. In this scheme, the AuNPs were aggregated in the presence of the aggregating agent 2-aminopyridine (2-AP) due to electrostatic attraction. The solution color changed from red to blue. When SCN- was present, SCN- formed a sulfur-gold bond with the AuNPs to protect the AuNPs from aggregation. Thiocyanate can be detected by the color change of the solution from blue to red. The results showed that the absorbance ratio A675/A520 was linear with the concentration of SCN- in the range of 0.4 - 1.2 μmol L-1 by UV-Vis spectroscopy. The limit of detection (LOD) of this assay was 0.37 μmol L-1. The system also had excellent selectivity and anti-interference ability. In addition, this method was successfully used for the detection of SCN- in actual water samples and achieved good results.
Collapse
Affiliation(s)
- Yuqi Zhao
- College of Chemistry, Jilin University
| | - Ruxin Liu
- College of Chemistry, Jilin University
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, The Second Hospital of Jilin University
| | | | - Miao Yu
- College of Chemistry, Jilin University
| | - Qiang Fei
- College of Chemistry, Jilin University
| | | | | | | |
Collapse
|
18
|
Wang Z, Dong B, Cui X, Fan Q, Huan Y, Shan H, Feng G, Fei Q. Core-shell Au@Pt Nanoparticles Catalyzed Luminol Chemiluminescence for Sensitive Detection of Thiocyanate. ANAL SCI 2020; 36:1045-1051. [PMID: 32115463 DOI: 10.2116/analsci.19p475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, core-shell Au@Pt nanoparticles (Au@Pt NPs) with peroxidase catalytic activity were synthesized by the seed-mediated method, and were used to catalyze the reaction of luminol-H2O2 to enhance the chemiluminescence (CL) intensity. It was found that thiocyanate (SCN-) can effectively inhibit the catalytic activity of Au@Pt NPs. Based on this phenomenon, a method to detect SCN- by using the Au@Pt NPs-catalytic luminol-H2O2 CL system was established, which has an ultra-low detection limit and an ultra-wide linear range, as well as the advantages of being simple and having low-cost and convenient operation. The research mechanism indicated that SCN- could be adsorbed on the surface of Au@Pt NPs and occupies the active sites of Pt nanostructures, which led to a decrease in the amount of Pt0 and a loss of the excellent catalytic activity of Au@Pt NPs. After optimizing the experimental conditions, this assay for detecting SCN- exhibited a good linear range from 5 to 180 nM, and the low detection limit was 2.9 nM. In addition, this approach has been successfully applied to the detection of SCN- in tap-water samples, which has practical application value and embodies good development prospects.
Collapse
Affiliation(s)
- Ze Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University
| | - Bin Dong
- Department of Analytical Chemistry, College of Chemistry, Jilin University
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, the Second Hospital of Jilin University
| | | | - Yanfu Huan
- Department of Analytical Chemistry, College of Chemistry, Jilin University
| | - Hongyan Shan
- Department of Analytical Chemistry, College of Chemistry, Jilin University
| | - Guodong Feng
- Department of Analytical Chemistry, College of Chemistry, Jilin University
| | - Qiang Fei
- Department of Analytical Chemistry, College of Chemistry, Jilin University
| |
Collapse
|
19
|
High performance cyanide sensing with tunable limit of detection by stimuli-responsive gold nanoparticles modified with poly (N,N-dimethylaminoethyl methacrylate). Talanta 2019; 204:198-205. [DOI: 10.1016/j.talanta.2019.05.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022]
|
20
|
Yang T, Zuo Y, Zhang Y, Gou Z, Wang X, Lin W. Novel fluorene-based fluorescent probe with excellent stability for selective detection of SCN - and its applications in paper-based sensing and bioimaging. J Mater Chem B 2019; 7:4649-4654. [PMID: 31364673 DOI: 10.1039/c9tb00742c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SCN- is one of the most important anions in metabolic processes. However, the investigation of SCN- in living systems is restricted by the lack of stable functional molecular tools. Herein, the first fluorene-based polymer fluorescent probe V1 was synthesized through rational design. Compared with small molecule fluorescent probes, V1 exhibited excellent fluorescence stability in bovine serum albumin (BSA) solution. Furthermore, the V1-based paper sensor was highly selective toward SCN- in aqueous solution. Significantly, these merits of the probe V1 enable the detection of SCN- in different living cell lines and zebrafish.
Collapse
Affiliation(s)
- Tingxin Yang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Yujing Zuo
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Yu Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zhiming Gou
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiaoni Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
21
|
Chen Y, Lian Y, Huang M, Wei L, Xiao L. A dual-mode fluorometric/colorimetric sensor for Cu 2+ detection based on hybridized carbon dots and gold-silver core-shell nanoparticles. Analyst 2019; 144:4250-4257. [PMID: 31215576 DOI: 10.1039/c9an00850k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A fluorometric and colorimetric dual mode sensing platform based on hybridized carbon dots (Cdots) and gold-silver core-shell nanoparticles (Au@Ag NPs) has been established for the sensitive detection of trace Cu2+ ions in aqueous solution. In this system, the fluorescence of Cdots was quenched by Au@Ag NPs due to the surface plasmon-enhanced energy transfer. Due to the fact that Cu2+ could accelerate the etching process of Au@Ag NPs in the presence of thiosulfate, the fluorescence of Cdots was recovered. The limit of detection (LOD) is 4.81 nM for fluorometric measurements and 3.85 nM for colorimetric measurements. The dynamic range from these two modes is 0.005-1 μM. Importantly, Cu2+ in solution can also be directly visualized by this sensor via evident color change from the solution. Therefore, this dual mode nanosensor has potential applications for the efficient detection of Cu2+ ions in aqueous samples with great selectivity and high sensitivity.
Collapse
Affiliation(s)
- Yuqing Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Yawen Lian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Mengna Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Fluorometric and colorimetric dual-readout alkaline phosphatase activity assay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect. Mikrochim Acta 2019; 186:348. [DOI: 10.1007/s00604-019-3478-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
|
23
|
Chen X, Wang Y, Zhao X, Liu B, Xu Y, Wang Y. A gadolinium(III)-porphyrin based coordination polymer for colorimetric and fluorometric dual mode determination of ferric ions. Mikrochim Acta 2019; 186:63. [PMID: 30627859 DOI: 10.1007/s00604-018-3171-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
A coordination polymer (CP) based nanoprobe is described for colorimetric and fluorometric (dual mode) determination of ferric ion. The method is making use of a nanosized Gd(III)-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin coordination polymer that was prepared by a single-step hydrothermal procedure. The nanoprobe is monodisperse and has uniform size and good water solubility. It also exhibits strong fluorescence and magnetic resonance response. On exposure to Fe(III), the color of the solution changes from red to brown as the concentration of Fe(III) exceed 5 μM. Similarly, the red fluorescence of the probe (with excitation/emission peaks at 420/675 nm) decreases as concentrations of Fe(III) increase from 0.5 to 100 μM. The limit of detection is 98 nM in the fluorometric mode. The assay was applied to the determination of Fe(III) in fetal bovine serum samples. Graphical abstract Schematic presentation of the synthesis and application of lanthanide-porphyrin based coordination polymer for ferric ion detection in colorimetric and fluorometric dual modes.
Collapse
Affiliation(s)
- Xi Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao Distric, Tianjin, 300130, China.,School of Environment Science & Engineering, Hebei University of Science and Technology, 70 Yuhua Rd, Shijiazhuang, 050018, Hebei, China
| | - Yuru Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao Distric, Tianjin, 300130, China
| | - Xiuxiu Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao Distric, Tianjin, 300130, China
| | - Binyuan Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao Distric, Tianjin, 300130, China
| | - Yang Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao Distric, Tianjin, 300130, China.
| | - Yige Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao Distric, Tianjin, 300130, China.
| |
Collapse
|
24
|
Gao Y, Jiao Y, Zhang H, Lu W, Liu Y, Han H, Gong X, Li L, Shuang S, Dong C. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor. J Mater Chem B 2019; 7:5502-5509. [DOI: 10.1039/c9tb01203f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, an easy and effective ratiometric fluorescent nanoprobe for the selective detection of Pb2+ and pyrophosphate (PPi) was developed based on label-free carbon dots (CDs).
Collapse
Affiliation(s)
- Yifang Gao
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Yuan Jiao
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Huilin Zhang
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Wenjing Lu
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Yang Liu
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Hui Han
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Xiaojuan Gong
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Lei Li
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
- Department of Chemical & Petroleum Engineering
| | - Shaomin Shuang
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Chuan Dong
- Department Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| |
Collapse
|
25
|
Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. C — JOURNAL OF CARBON RESEARCH 2018. [DOI: 10.3390/c4040067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon dots (CDs) are an emerging family of nanosystems displaying a range of fascinating properties. Broadly speaking, they can be described as small, surface-functionalized carbonaceous nanoparticles characterized by an intense and tunable fluorescence, a marked sensitivity to the environment and a range of interesting photochemical properties. CDs are currently the subject of very intense research, motivated by their possible applications in many fields, including bioimaging, solar energy harvesting, nanosensing, light-emitting devices and photocatalyis. This review covers the latest advancements in the field of CDs, with a focus on the fundamental understanding of their key photophysical behaviour, which is still very debated. The photoluminescence mechanism, the origin of their peculiar fluorescence tunability, and their photo-chemical interactions with coupled systems are discussed in light of the latest developments in the field, such as the most recent results obtained by femtosecond time-resolved experiments, which have led to important steps forward in the fundamental understanding of CDs. The optical response of CDs appears to stem from a very complex interplay between the electronic states related to the core structure and those introduced by surface functionalization. In addition, the structure of CD energy levels and the electronic dynamics triggered by photo-excitation finely depend on the microscopic structure of any specific sub-type of CD. On the other hand, this remarkable variability makes CDs extremely versatile, a key benefit in view of their very wide range of applications.
Collapse
|
26
|
Chan KK, Yap SHK, Yong KT. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. NANO-MICRO LETTERS 2018; 10:72. [PMID: 30417004 PMCID: PMC6208800 DOI: 10.1007/s40820-018-0223-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
27
|
Zhao H, Cao Y, Zhang Y, Zhou Y, Zhao G, Pu L. Study of the Zn
II
Complexes of 1,1′‐Binaphthyl‐Based Schiff Bases: Fluorescent Detection of Thiocyanate. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Haihang Zhao
- College of Chemical Engineering Sichuan University 610065 Chengdu P. R. China
| | - Yuan Cao
- College of Chemical Engineering Sichuan University 610065 Chengdu P. R. China
| | - Yanjing Zhang
- College of Chemical Engineering Sichuan University 610065 Chengdu P. R. China
| | - Yangyang Zhou
- College of Chemical Engineering Sichuan University 610065 Chengdu P. R. China
| | - Gang Zhao
- College of Chemical Engineering Sichuan University 610065 Chengdu P. R. China
| | - Lin Pu
- Department of Chemistry University of Virginia 22904 Charlottesville Virginia USA
| |
Collapse
|
28
|
Wang Y, Liang Z, Su Z, Zhang K, Ren J, Sun R, Wang X. All-Biomass Fluorescent Hydrogels Based on Biomass Carbon Dots and Alginate/Nanocellulose for Biosensing. ACS APPLIED BIO MATERIALS 2018; 1:1398-1407. [DOI: 10.1021/acsabm.8b00348] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuyuan Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zicheng Liang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiping Su
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Zhang
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen, Büsgenweg 4, 37077 Göttingen, Germany
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Runcang Sun
- Centre for Lignocellulose Science and Engineering and Liaoning Key Laboratory Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Wang F, Sun J, Lu Y, Zhang X, Song P, Liu Y. Dispersion-aggregation-dispersion colorimetric detection for mercury ions based on an assembly of gold nanoparticles and carbon nanodots. Analyst 2018; 143:4741-4746. [PMID: 30191928 DOI: 10.1039/c8an00999f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury is a common heavy metal element in natural systems and is highly toxic to the human body. Herein, a novel colorimetric detection of Hg2+ ions is proposed based on the aggregation of gold nanoparticles (AuNPs) induced by carbon quantum dots (CDs) with the assistance of glutathione (GSH). In this sensing system, the AuNP/CDs composite forms through Au-N bonds. Simultaneously, the color of the solution turns from wine red to blue. The well-dispersed AuNPs can be restored after the addition of GSH, because GSH competes with CDs to bind onto the surface of AuNPs and protect AuNPs from aggregation. In the presence of Hg2+ ions, GSH can chelate with Hg2+ to form a complex, which subsequently enables CDs to facilitate the aggregation of the AuNPs again. Therefore, according to the red-to-blue color change, a colorimetric sensor is established for the sensitive and selective detection of Hg2+ with a detection limit of 7.5 nM. Moreover, this sensor is successfully used to detect Hg2+ spiked in environmental water. This very simple and cost-effective strategy will promote the development of a colorimetric sensor for the determination of other metal ions in biological and environmental fields.
Collapse
Affiliation(s)
- Feiyang Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Jingwei Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xunxue Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Panshu Song
- National Institute of Metrology China, Beisanhuan East Rd. 18, Beijing, 100029, P. R. China
| | - Yueying Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| |
Collapse
|
30
|
Ponnaiah SK, Prakash P, Vellaichamy B, Paulmony T, Selvanathan R. Picomolar-level electrochemical detection of thiocyanate in the saliva samples of smokers and non-smokers of tobacco using carbon dots doped Fe3O4 nanocomposite embedded on g-C3N4 nanosheets. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Roy D, Majhi K, Mondal MK, Saha SK, Sinha S, Chowdhury P. Silicon Quantum Dot-Based Fluorescent Probe: Synthesis Characterization and Recognition of Thiocyanate in Human Blood. ACS OMEGA 2018; 3:7613-7620. [PMID: 30087919 PMCID: PMC6068596 DOI: 10.1021/acsomega.8b00844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Allylamine-functionalized silicon quantum dots (ASQDs) of high photostability are synthesized by a robust inverse micelle method to use the material as a fluorescent probe for selective recognition of thiocyanate (a biomarker of a smoker and a nonsmoker). The synthesized ASQDs were characterized by absorption, emission, and Fourier transform infrared spectroscopy. Surface morphology is studied by transmission electron microscopy and dynamic light scattering. The synthesized material exhibits desirable fluorescence behavior with a high quantum yield. A selective and accurate (up to 10-10 M) method of sensing of thiocyanate anion is developed based on fluorescence amplification and quenching of ASQDs. The sensing mechanism is investigated and interpreted with a crystal clear mechanistic approach through the modified Stern-Volmer plot. The developed material and the method is applied to recognize the anion in the human blood sample for identification of the degree of smoking. The material deserves high potentiality in the field of bio-medical science.
Collapse
Affiliation(s)
- Debiprasad Roy
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Koushik Majhi
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Maloy Kr. Mondal
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Swadhin Kr. Saha
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Subrata Sinha
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Pranesh Chowdhury
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| |
Collapse
|
32
|
Li C, Hai J, Li S, Wang B, Yang Z. Luminescent magnetic nanoparticles encapsulated in MOFs for highly selective and sensitive detection of ClO -/SCN - and anti-counterfeiting. NANOSCALE 2018; 10:8667-8676. [PMID: 29700546 DOI: 10.1039/c8nr01487f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well-known that ClO- and SCN- can cause adverse effects on the environment and organisms; therefore, development of new strategies for detecting ClO- and SCN-, especially in water, are highly desirable. Here, we present luminous Eu(iii) complex-functionalized Fe3O4 nanoparticles encapsulated into zeolitic imidazolate framework materials (nano-ZIF-8) and successfully employ this nano-MOF as a fluorescence probe for selective and sensitive detection of ClO- and SCN-. The introduction of ClO- into nano-ZIF-8 solution induced a significant decrease in the characteristic fluorescence emission of Eu3+ at 613 nm. However, strong fluorescence emission was again observed when SCN- was successively injected into the prepared nano-ZIF-8-ClO-. Thus, a novel fluorescence system for simultaneous detection of free ClO- and SCN- was established. On the basis of the superior adsorption performance of nano-MOF materials, free residual ClO- and SCN- in water was rapidly, sensitively and selectively detected with a detection limit of 0.133 nM and 0.204 nM, respectively. Moreover, nano-ZIF-8 was successfully used for monitoring the concentration levels of ClO- and SCN- in specimens of tap water and Yellow River water. Furthermore, the reversibility and regeneration of nano-ZIF-8 in sensing ClO- and SCN- is advantageous for applications of nano-ZIF-8 in solid-state sensing and anti-counterfeiting. As far as we know, this is the first time that nano-MOFs have been used as a selective fluorescence probe for ClO-/SCN- detection and anti-counterfeiting.
Collapse
Affiliation(s)
- Chaorui Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P.R. China.
| | | | | | | | | |
Collapse
|
33
|
Borghei YS, Hosseini M, Ganjali MR, Ju H. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Mikrochim Acta 2018; 185:286. [DOI: 10.1007/s00604-018-2825-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/29/2018] [Indexed: 12/26/2022]
|
34
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Wang C, Tan R, Chen D. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Talanta 2018; 182:363-370. [PMID: 29501165 DOI: 10.1016/j.talanta.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 02/04/2018] [Indexed: 12/14/2022]
Abstract
In this paper, a FRET (Forster resonance energy transfer) based fluorescence method was developed for the quickly detection of ochratoxin A (OTA) in agricultural products (e.g., flour and beer). A highly fluorescent nitrogen doped carbon dots (CD) were served as energy donor, the DNA and MCH (6-mercapto-1-hexanol) modified Ag nanoparticles were served as energy acceptor in the FRET system. OTA can be detected in a concentration range between 10 and 5000 nM, the limit of detection is 8.7 nM. This method has three advantages: (1) an enhanced fluorescent intensity can be acquired by utilizing the nitrogen doped CD synthesized by one-step approach without sophisticated modification of nanoparticles; (2) OTA detection was accomplished quickly (less than 30 min) by using MCH as assistant molecule; (3) an extended OTA detection linear range was acquired, which may facilitate the OTA detection in real agricultural samples, and is helpful for solving food safety problems.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Rong Tan
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dan Chen
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
36
|
Deka K, Das DK. Nickelhexacyanoferrate-Modified Glassy Carbon Electrode as a Voltammetric and Electrochemical Impedance Spectroscopic Sensor for Thiocyanate Ion. ChemistrySelect 2018. [DOI: 10.1002/slct.201701691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kangkana Deka
- Department of Chemistry; Gauhati University; Guwahati, Assam Inidia 781014, +919864273744
| | - Diganta K. Das
- Department of Chemistry; Gauhati University; Guwahati, Assam Inidia 781014, +919864273744
| |
Collapse
|
37
|
Gao Y, Jiao Y, Lu W, Liu Y, Han H, Gong X, Xian M, Shuang S, Dong C. Carbon dots with red emission as a fluorescent and colorimeteric dual-readout probe for the detection of chromium(vi) and cysteine and its logic gate operation. J Mater Chem B 2018; 6:6099-6107. [DOI: 10.1039/c8tb01580e] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A schematic illustration for assaying Cr(vi) and Cys activity by CDs with both fluorescent and colorimetric readouts.
Collapse
Affiliation(s)
- Yifang Gao
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Yuan Jiao
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Wenjing Lu
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Yang Liu
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Hui Han
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Xiaojuan Gong
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Ming Xian
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Shaomin Shuang
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Chuan Dong
- Department Institute of Environmental Science
- and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| |
Collapse
|
38
|
Peng CF, Pan N, Zhi-Juan Q, Wei XL, Shao G. Colorimetric detection of thiocyanate based on inhibiting the catalytic activity of cystine-capped core-shell Au@Pt nanocatalysts. Talanta 2017; 175:114-120. [DOI: 10.1016/j.talanta.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/20/2017] [Accepted: 06/02/2017] [Indexed: 11/24/2022]
|
39
|
Lv S, Li Y, Zhang K, Lin Z, Tang D. Carbon Dots/g-C 3N 4 Nanoheterostructures-Based Signal-Generation Tags for Photoelectrochemical Immunoassay of Cancer Biomarkers Coupling with Copper Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38336-38343. [PMID: 29028294 DOI: 10.1021/acsami.7b13272] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A class of 0-dimensional/2-dimensional (0D/2D) nanoheterostructures based on carbon quantum dots (CQDs) and graphitic carbon nitride (g-C3N4) was designed as the signal-generation tags for the sensitive photoelectrochemical (PEC) immunoassay of prostate-specific antigen (PSA) coupling with the copper nanoclusters (CuNCs). Combination of CQDs with g-C3N4 promoted the photoexcited electron/hole separation and largely increased the photocurrents of the nanoheterostructures. Initially, a sandwich-type immunoreaction was carried out on monoclonal anti-PSA antibody-coated microplate by using PSA aptamer linked with CuNCs as the tracer. Accompanying the immunocomplex, the carried CuNCs were dissolved under acidic conditions. The as-released copper ions from the CuNCs could be captured onto the CQDs/g-C3N4 nanoheterostructures via the amino-group on the CQD surface as well as the -NHx (x = 1, 2, 3) of g-C3N4 nanosheets. The strong coordination of the Lewis basic sites on the CQDs/g-C3N4 with Cu2+ decreased the photocurrent of the nanoheterostructures. Under optimal conditions, CQDs/g-C3N4 nanoheterostructures displayed good photocurrent responses for the detection of PSA within the dynamic linear range of 0.02-100 ng mL-1 and a limit of detection (LOD) of 5.0 pg mL-1. This method was also evaluated for quantitative screening of human PSA serum specimens by using the referenced electrochemiluminescent enzyme-linked immunoassay (ECL-ELIA) and gave good matched results between two methods. Additionally, this system was beneficial to explore the charge-separation and photoinduced electron transfer mechanism in the photoelectrochemical sensing protocols.
Collapse
Affiliation(s)
- Shuzhen Lv
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Yi Li
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Kangyao Zhang
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Zhenzhen Lin
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| |
Collapse
|
40
|
|
41
|
Shen X, Xu L, Zhu W, Li B, Hong J, Zhou X. A turn-on fluorescence aptasensor based on carbon dots for sensitive detection of adenosine. NEW J CHEM 2017. [DOI: 10.1039/c7nj02384g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel turn-on fluorescence aptasensor was designed for adenosine detection based on FRET from ssDNA-CDs to aptamer-AuNPs.
Collapse
Affiliation(s)
- Xin Shen
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Lei Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Wanying Zhu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Bingzhi Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Junli Hong
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Xuemin Zhou
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| |
Collapse
|
42
|
Zaruba S, Vishnikin AB, Škrlíková J, Diuzheva A, Ozimaničová I, Gavazov K, Andruch V. A two-in-one device for online monitoring of direct immersion single-drop microextraction: an optical probe as both microdrop holder and measuring cell. RSC Adv 2017. [DOI: 10.1039/c7ra02326j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For the first time an optical probe is proposed as the microdrop holder and simultaneously the measuring cell in a direct immersion single-drop microextraction (DI-SDME) procedure.
Collapse
Affiliation(s)
- Serhii Zaruba
- Department of Analytical Chemistry
- Faculty of Chemistry
- Oles Honchar Dnipropetrovsk National University
- Dnipro
- Ukraine
| | - Andriy B. Vishnikin
- Department of Analytical Chemistry
- Faculty of Chemistry
- Oles Honchar Dnipropetrovsk National University
- Dnipro
- Ukraine
| | - Jana Škrlíková
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| | - Alina Diuzheva
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| | - Ivana Ozimaničová
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| | - Kiril Gavazov
- Faculty of Chemistry
- University of Plovdiv Paisii Hilendarski
- Plovdiv 4000
- Bulgaria
- Faculty of Pharmacy
| | - Vasil Andruch
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| |
Collapse
|
43
|
One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging. J Colloid Interface Sci 2017; 485:167-174. [DOI: 10.1016/j.jcis.2016.09.040] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022]
|
44
|
Xu Y, Chen X, Chai R, Xing C, Li H, Yin XB. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection. NANOSCALE 2016; 8:13414-21. [PMID: 27346713 DOI: 10.1039/c6nr03129c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn(2+), and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging.
Collapse
Affiliation(s)
- Yang Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | | | | | | | | | | |
Collapse
|
45
|
Rawat KA, Singhal RK, Kailasa SK. Colorimetric and fluorescence “turn-on” methods for the sensitive detection of bromelain using carbon dots functionalized gold nanoparticles as a dual probe. RSC Adv 2016. [DOI: 10.1039/c6ra01575a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbon dots were functionalized on the surfaces of gold nanoparticles for the colorimetric and fluorescence detection of bromelain. The limit of detection for bromelain was 18.9 nM and 0.52 nM using UV-visible and fluorescence spectroscopy, respectively.
Collapse
Affiliation(s)
- Karuna A. Rawat
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat – 395007
- India
| | | | - Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat – 395007
- India
| |
Collapse
|
46
|
Zhao D, Chen C, Sun J, Yang X. Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst 2016; 141:3280-8. [DOI: 10.1039/c6an00514d] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dual-readout (colorimetric and fluorometric) protocol based on AgNPs and fluorescent CD, amenable to rapid, ultrasensitive assay of AChE activity and its inhibitors.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chuanxia Chen
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|