1
|
Mandal P, Roy S, Karmakar M, Bhatta SR, Ghosh CC, Thakur A, Parui PP. Determination of divalent metal ion-regulated proton concentration and polarity at the interface of anionic phospholipid membranes. SOFT MATTER 2024; 20:7646-7656. [PMID: 39291663 DOI: 10.1039/d4sm00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We studied the influence of trace quantities of divalent metal ions (M2+: Ca2+, Mg2+, and Zn2+) on proton concentration (-log[H+], designated as pH') and polarity at the interface of anionic PG-phospholipid membranes comprising saturated and unsaturated acrylic chains. A spiro-rhodamine-6G-gallic acid (RGG) pH-probe was synthesized to monitor the interfacial pH' of large unilamellar vesicles (LUVs) at a physiologically appropriate bulk pH (6.0-7.5). 1H-NMR spectroscopy and fluorescence microscopy showed that RGG interacted with the LUV interface. The pH-dependent equilibrium between the spiro-closed and spiro-open forms of RGG at the interface from the bulk phase was compared using fluorescence spectra to obtain interfacial pH'. Interfacial dielectric constant (κ) was estimated using a porphyrin-based polarity-probe (GPP) that exhibits a κ-induced equilibrium between monomeric and oligomeric forms. M2+ interaction decreased LUV interfacial κ from ∼67 to 61, regardless of lipid/M2+ types. Fluorescence spectral and microscopic analysis revealed that low Ca2+ and Mg2+ amounts (M2+/lipid = 1 : 20 for unsaturated DOPG and POPG and ∼1 : 10 for saturated DMPG lipids), but not Zn2+, decreased LUV interfacial acidity from pH' ∼3.8 to 4.4 at bulk pH 7.0. Although membrane surface charges are normally responsible for pH' deviation from the bulk to the interface, they cannot explain M2+-mediated interfacial pH' increase since there is little change in surface charges up to a low M2+/lipid ratio of <1/10. M2+-induced tight lipid headgroup packing and the resulting increased surface rigidity inhibit interfacial H+/H2O penetration, reducing interfacial acidity and polarity. Our findings revealed that in certain cases, essential M2+ ion-induced bio-membrane reactivity can be attributed to the influence of interfacial pH'/polarity.
Collapse
Affiliation(s)
- Pratima Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Snigdha Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Manisha Karmakar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | | | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | |
Collapse
|
2
|
Interface-sensitized prodrug nanoaggregate as an effective in situ antitumor vaccine. Eur J Pharm Sci 2021; 164:105910. [PMID: 34133986 DOI: 10.1016/j.ejps.2021.105910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023]
Abstract
In situ antitumor vaccines have been widely explored as an effective strategy to inhibit tumor growth by stimulating antitumor immune responses. Herein, we reported a simple and effective in situ antitumor vaccine, which was prepared by co-assembling cationic lipids (DOTAP) with the disulfide bond-linked lipid-drug conjugates of camptothecin and resiquimod. The resulting vaccine had a rod-sharped morphology with nanoscale sizes (average hydrodynamic diameter of ∼163.7 nm) and positively-charged interfaces (zeta potential ∼ +36.2 mV). The interfacial cationization of nanoaggregate resulted in 1000 folds faster redox-responsive drug release than that of unmodified ones, which induced a much more potent in vivo antitumor immune by accelerating the glutathione-responsive drug release at the tumor site. Such cationic lipid-drug nanoaggregates displayed many benefits, such as high co-loading capacity, simple preparation process, and wide applicability, which would serve as a promising new approach to design effective in situ antitumor vaccines.
Collapse
|
3
|
Zheng Y, Lei J, Li Q, Jin X, Li Q, Li Y. Interfacial cationization to quicken redox-responsive drug release. Chem Commun (Camb) 2021; 57:2943-2946. [DOI: 10.1039/d1cc00156f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interfacial cationization increases redox-responsiveness of nanocarriers to accelerate intracellular drug release by generating and adsorbing ionized thiols at interfaces.
Collapse
Affiliation(s)
- Yaxin Zheng
- School of Pharmacy
- Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs
- Chengdu Medical College
- Chengdu
- China
| | - Jie Lei
- School of Pharmacy
- Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs
- Chengdu Medical College
- Chengdu
- China
| | - Qi Li
- School of Pharmacy
- Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs
- Chengdu Medical College
- Chengdu
- China
| | - Xuan Jin
- School of Pharmacy
- Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs
- Chengdu Medical College
- Chengdu
- China
| | - Qingyuan Li
- School of Pharmacy
- Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs
- Chengdu Medical College
- Chengdu
- China
| | - Yang Li
- Department of Pharmaceutics
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| |
Collapse
|
4
|
Zhang Q, Shu J, Zhang Y, Xu Z, Yue J, Liu X, Xu B, Chen Z, Jiang W. Structures and esterolytic reactivity of novel binuclear copper(ii) complexes with reduced l-serine Schiff bases as mimic carboxylesterases. Dalton Trans 2020; 49:10261-10269. [PMID: 32672259 DOI: 10.1039/d0dt01823f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel binuclear copper(ii) complexes with reduced l-serine Schiff bases were synthesized and their structures were analyzed with single-crystal X-ray diffraction and DFT calculations. The crystal data revealed that all of these binuclear complexes are chiral. Both 5-halogenated (bromo- and chloro-) binuclear complexes exhibit right-handed helix structural character. Interestingly, the 5-methyl-containing analogue has a two-dimensional pore structure. In this paper, the esterolysis reactivity of the as-prepared complexes shows that in the hydrolysis of p-nitrophenyl acetate (PNPA) these three complexes provide 26, 18, 40-fold rate acceleration as compared to the spontaneous hydrolysis of PNPA at pH 7.0, respectively. Under selected conditions, in excess buffered aqueous solution a rate enhancement by three orders of magnitude was observed for the catalytic hydrolysis of another carboxylic ester, p-nitrophenyl picolinate (PNPP). These complexes efficiently promoted PNPP hydrolysis in a micellar solution of cetyltrimethylammonium bromide (CTAB), giving rise to a rate enhancement in excess of four orders of magnitude, which is approximately 2.0-3.2 times higher than that in the buffer.
Collapse
Affiliation(s)
- Qin Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan Zigong 643000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sarkar Y, Roy S, Majumder R, Das S, Bhalani DV, Ray A, Jewrajka SK, Parui PP. Protonation-induced pH increase at the triblock copolymer micelle interface for transient membrane permeability at neutral pH. SOFT MATTER 2020; 16:798-809. [PMID: 31834342 DOI: 10.1039/c9sm01002e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Achieving controlled membrane permeability using pH-responsive block copolymers is crucial for selective intercellular uptake. We have shown that the pH at the triblock-copolymer micelle interface as compared to its bulk pH can help regulate membrane permeability. The pH-dependent acid/base equilibriums of two different interface-interacting pH probes were determined in order to measure the interfacial pH for a pH-responsive triblock copolymer (TBP) micelle under a wide range of bulk pH (4.5-9.0). According to 1H NMR studies, both pH probes provided interfacial pH at a similar interfacial depth. We revealed that the protonation of the amine moiety at the micelle interface and the subsequent formation of a positive charge caused the interface to become relatively less acidic than that of the bulk as well as an increase in the bulk-to-interfacial pH deviation (ΔpH) from ∼0.9 to 1.9 with bulk pH reducing from 8.0 to 4.5. From the ΔpH vs. interface and bulk pH plots, the apparent and intrinsic protonations or positive charge formation pKa values for the micelle were estimated to be ∼7.3 and 6.0, respectively. When the TBP micelle interacted with an anionic large unilamellar vesicle (LUV) of a binary lipid (neutral and anionic) system at the bulk pH of 7.0, fluorescence leakage studies revealed that the pH increase at the micelle interface from that of the LUV interface (pH ∼ 5.5) made the micelle interface partially protonated/cationic, thereby exhibiting transient membrane permeability. Although the increasing interface protonation causes the interface to become relatively less acidic than the bulk at any bulk pH below 6.5, the pH increase at the micelle interface may not be sufficiently large to maintain the threshold for the amine-protonated condition for effecting transient leakage and therefore, a continuous leakage was observed due to the slow disruption of the lipid bilayer.
Collapse
Affiliation(s)
- Yeasmin Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Parui PP, Sarakar Y, Majumder R, Das S, Yang H, Yasuhara K, Hirota S. Determination of proton concentration at cardiolipin-containing membrane interfaces and its relation with the peroxidase activity of cytochrome c. Chem Sci 2019; 10:9140-9151. [PMID: 31827756 PMCID: PMC6889831 DOI: 10.1039/c9sc02993a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/03/2019] [Indexed: 01/04/2023] Open
Abstract
The activities of biomolecules are affected by the proton concentrations at biological membranes. Here, we succeeded in evaluating the interface proton concentration (-log[H+] defined as pH') of cardiolipin (CL)-enriched membrane models of the inner mitochondrial membrane (IMM) using a spiro-rhodamine-glucose molecule (RHG). According to fluorescence microscopy and 1H-NMR studies, RHG interacted with the Stern layer of the membrane. The acid/base equilibrium of RHG between its protonated open form (o-RHG) and deprotonated closed spiro-form (c-RHG) at the membrane interface was monitored with UV-vis absorption and fluorescence spectra. The interface pH' of 25% cardiolipin (CL)-containing large unilamellar vesicles (LUVs), which possess similar lipid properties to those of the IMM, was estimated to be ∼3.9, when the bulk pH was similar to the mitochondrial intermembrane space pH (6.8). However, for the membranes containing mono-anionic lipids, the interface pH' was estimated to be ∼5.3 at bulk pH 6.8, indicating that the local negative charges of the lipid headgroups in the lipid membranes are responsible for the deviation of the interface pH' from the bulk pH. The peroxidase activity of cyt c increased 5-7 fold upon lowering the pH to 3.9-4.3 or adding CL-containing (10-25% of total lipids) LUVs compared to that at bulk pH 6.8, indicating that the pH' decrease at the IMM interface from the bulk pH enhances the peroxidase activity of cyt c. The peroxidase activity of cyt c at the membrane interface of tetraoleoyl CL (TOCL)-enriched (50% of total lipids) LUVs was higher than that estimated from the interface pH', while the peroxidase activity was similar to that estimated from the interface pH' for tetramyristoyl CL (TMCL)-enriched LUVs, supporting the hypothesis that when interacting with TOCL (not TMCL), cyt c opens the heme crevice to substrates. The present simple methodology allows us to estimate the interface proton concentrations of complex biological membranes.
Collapse
Affiliation(s)
- Partha Pratim Parui
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| | - Yeasmin Sarakar
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
| | - Rini Majumder
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
| | - Sanju Das
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
- Department of Chemistry , Maulana Azad College , Kolkata 700013 , India
| | - Hongxu Yang
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| | - Kazuma Yasuhara
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| | - Shun Hirota
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| |
Collapse
|
7
|
Parui PP, Ray A, Das S, Sarkar Y, Paul T, Roy S, Majumder R, Bandyopadhyay J. Glutathione-selective “off–on” fluorescence response by a probe-displaced modified ligand for its detection in biological domains. NEW J CHEM 2019. [DOI: 10.1039/c8nj05784b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glutathione-induced oxidation of benzylic-alcohol into the formyl moiety in the ligand displaced from the Cu(ii)-complex exhibits in vitro and in vivo “off–on” fluorescence responses.
Collapse
Affiliation(s)
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolakta 700013
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Tanaya Paul
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| | - Snigdha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Rini Majumder
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Jaya Bandyopadhyay
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| |
Collapse
|
8
|
Sarkar Y, Majumder R, Das S, Ray A, Parui PP. Detection of Curvature-Radius-Dependent Interfacial pH/Polarity for Amphiphilic Self-Assemblies: Positive versus Negative Curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6271-6284. [PMID: 29268016 DOI: 10.1021/acs.langmuir.7b03888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is possible that a defined curvature at the membrane interface controls its pH/polarity to exhibit specific bioactivity. By utilizing an interface-interacting spiro-rhodamine pH probe and the Schiff base polarity probe, we have shown that the pH deviation from the bulk phase to the interface (ΔpH)/interfacial dielectric constant (κ(i)) for amphiphilic self-assemblies can be regulated by the curvature geometry (positive/negative) and its radius. According to 1H NMR and fluorescence anisotropy investigations, the probes selectively interact with an anionic interfacial Stern layer. The ΔpH/κ(i) values for the Stern layer are estimated by UV-vis absorption and fluorescence studies. For the anionic sodium bis-2-ethylhexyl-sulfosuccinate (AOT) inverted micellar (IM) negative interface, the highly restricted water and proton penetration into the Stern layer owing to tight surfactant packing or a reduced water-exposed headgroup area may be responsible for the much lower ΔpH ≈ -0.45 and κ(i) ≈ 28 in comparison to ∼-2.35 and ∼44, respectively, for the anionic sodium dodecyl sulfate (SDS) micellar positive interface with a close similar Stern layer. With increasing AOT IM water-pool radius (1.7-9.5 nm) or [water]/[AOT] ratio ( w0) (8.0-43.0), the ΔpH and κ(i) increase maximally up to ∼-1.22 and ∼45, respectively, due to a greater water-exposed headgroup area. However, the unchanged ΔpH ≈ -0.65 and κ(i) ≈ 53.0 within radii ∼3.5-8.0 nm for the positive interface of a mixed Triton X-100 (TX-100)/SDS (4:1) micelle justify its packing flexibility. Interestingly, the continuously increasing ΔpH trend for IM up to its largest possible water-pool radius of ∼9.5 nm may rationalize the increase in ΔpH (∼-1.4 to -1.6) with the change in the curvature radii (∼15 to 50 nm) for sodium 1,2-dimyristoyl- sn-glycero-3-phosphorylglycerol (DMPG)/1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) (2:1) large unilamellar vesicles (LUV) owing to its negative interface. Whereas, similar to the micellar positive interface, the unchanged ΔpH at the positive LUV interface was confirmed by fluorescence microscopic studies with giant unilamellar vesicles of identical lipids composition. The present study offers a unique and simple method of monitoring the curvature-radius-dependent interfacial pH/polarity for biologically related membranes.
Collapse
Affiliation(s)
- Yeasmin Sarkar
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Rini Majumder
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Sanju Das
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
- Department of Chemistry , Maulana Azad College , Kolkata 700013 , India
| | - Ambarish Ray
- Department of Chemistry , Maulana Azad College , Kolkata 700013 , India
| | | |
Collapse
|
9
|
Majumder R, Sarkar Y, Das S, Ray A, Parui PP. Interfacial pH and polarity detection of amphiphilic self-assemblies using a single Schiff-base molecule. NEW J CHEM 2017. [DOI: 10.1039/c7nj01222e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial pH and polarity for different amphiphilic self-assemblies are estimated at a similar interfacial depth utilizing a unique Schiff-base molecule containing two identical phenol-conjugated-imine moieties.
Collapse
Affiliation(s)
- Rini Majumder
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolkata 700013
- India
| | | |
Collapse
|
10
|
Majumder R, Sarkar Y, Das S, Jewrajka SK, Ray A, Parui PP. A ratiometric solvent polarity sensing Schiff base molecule for estimating the interfacial polarity of versatile amphiphilic self-assemblies. Analyst 2016; 141:3246-50. [DOI: 10.1039/c6an00582a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple interfacial polarity detection method for versatile self-assemblies is introduced for the first time by exploiting the polarity induced interconversion between nonionic and zwitterionic forms of Schiff base molecule (PMP).
Collapse
Affiliation(s)
- Rini Majumder
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Suresh K. Jewrajka
- Reverse Osmosis Division
- CSIR-Central Salt & Marine Chemicals Research Institute
- Gujarat-364002
- India
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolkata 700013
- India
| | | |
Collapse
|