1
|
Sheet PS, Park S, Nguyen AT, George S, Maier C, Koley D. Triple-function carbon-based Ca 2+ ion-selective pH ring microelectrode to study real-time bacteria-mediated hydroxyapatite corrosion. Anal Chim Acta 2024; 1321:343042. [PMID: 39155097 PMCID: PMC11540006 DOI: 10.1016/j.aca.2024.343042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The local pH change mediated by the pathogenic bacterial species Streptococcus mutans plays a significant role in the corrosion of hydroxyapatite (HA) present in the tooth in the dynamic oral cavity. The acid produced by the bacteria decreases the local pH and releases Ca2+ ions from the HA. We studied the bacteria-mediated demineralization of HA by scanning electrochemical microscopy (SECM) after growing S. mutans biofilm on HA for 7 days. RESULTS We notably developed a triple-function SECM-compatible tip that could be positioned above the biofilm. It can also measure the pH and [Ca2+] change simultaneously above the biofilm-HA substrate. The triple-function SECM tip is a combination of a potentiometric pH sensor deposited with iridium oxide and a dual-function carbon-based Ca2+ ion-selective membrane electrode with a slope of 67 mV/pH and 34.3 mV/log [Ca2+], respectively. The distance-controlled triple-function SECM tip monitored real-time pH and [Ca2+] changes 30 μm above the S. mutans biofilm. The high temporal resolution pH data demonstrated that after approximately 20 min of sucrose addition, S. mutans started to produce acid to titrate the solution buffer, causing a pH change from 7.2 to 6.5 for HA and from 7.2 to 5 for the glass substrate. We observed that, after 30 min of acid production, ∼300 μM of Ca2+ ions were increased at pH 6.5 above the biofilm surface as a result of the pH change in the local microenvironment. After the release of Ca2+ from HA, the pH environment again shifted toward the neutral side, from 6.5 to 7.2. Therefore, precipitation of Ca2+ happens at the top of the biofilm, thus corroding the HA from underneath. For a glass substrate, in contrast, no Ca2+ ions were released, and the pH did not change back to 7.2. We were able to observe the dynamics of the HA demineralization-remineralization process simultaneously with our newly developed triple-function SECM tip or microprobe. SIGNIFICANCE This technique could notably advance the study of similar complex processes, such as bacteria-mediated corrosion in biomedical and environmental contexts.
Collapse
Affiliation(s)
- Partha S Sheet
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Suji Park
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Anh Tuan Nguyen
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Sneha George
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Claudia Maier
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331.
| |
Collapse
|
2
|
Liu Y, Zhang J, Li Y, Zhao Y, Kuermanbayi S, Zhuang J, Zhang H, Xu F, Li F. Matrix stiffness-dependent microglia activation in response to inflammatory cues: in situ investigation by scanning electrochemical microscopy. Chem Sci 2023; 15:171-184. [PMID: 38131065 PMCID: PMC10732011 DOI: 10.1039/d3sc03504b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Microglia play a crucial role in maintaining the homeostasis of the central nervous system (CNS) by sensing and responding to mechanical and inflammatory cues in their microenvironment. However, the interplay between mechanical and inflammatory cues in regulating microglia activation remains elusive. In this work, we constructed in vitro mechanical-inflammatory coupled microenvironment models of microglia by culturing BV2 cells (a murine microglial cell line) on polyacrylamide gels with tunable stiffness and incorporating a lipopolysaccharide (LPS) to mimic the physiological and pathological microenvironment of microglia in the hippocampus. Through characterization of activation-related proteins, cytokines, and reactive oxygen species (ROS) levels, we observed that the LPS treatment induced microglia on a stiff matrix to exhibit overexpression of NOX2, higher levels of ROS and inflammatory factors compared to those on a soft matrix. Additionally, using scanning electrochemical microscopy (SECM), we performed in situ characterization and discovered that microglia on a stiff matrix promoted extracellular ROS production, leading to a disruption in their redox balance and increased susceptibility to LPS-induced ROS production. Furthermore, the respiratory activity and migration behavior of microglia were closely associated with their activation process, with the stiff matrix-LPS-induced microglia demonstrating the most pronounced changes in respiratory activity and migration ability. This work represents the first in situ and dynamic monitoring of microglia activation state alterations under a mechanical-inflammatory coupled microenvironment using SECM. Our findings shed light on matrix stiffness-dependent activation of microglia in response to an inflammatory microenvironment, providing valuable insights into the mechanisms underlying neuroinflammatory processes in the CNS.
Collapse
Affiliation(s)
- Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yabei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
- School of Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shuake Kuermanbayi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an 710061 P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
3
|
Koley D. Electrochemical sensors for oral biofilm-biomaterials interface characterization: A review. Mol Oral Microbiol 2022; 37:292-298. [PMID: 36300593 PMCID: PMC9759506 DOI: 10.1111/omi.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
Important processes related to the interaction of the oral microbiome with the tooth surface happen directly at the interface. For example, the chemical microenvironment that exists at the interface of microbial biofilms and the native tooth structure is directly involved in caries development. Consequentially, a critical understanding of this interface and its chemical microenvironment would provide novel avenues in caries prevention, including secondary caries that often occurs at the interface of the dental biofilm, tooth structure, and dental material. Electrochemical sensors are a unique quantitative tool and have the inherent advantages of miniaturization, stability, and selectivity. That makes the electrochemical sensors ideal tools for studying these critical biofilm microenvironments with high precision. This review highlights the development and applications of several novel electrochemical sensors such as pH, Ca2+ , and hydrogen peroxide sensors as scanning electrochemical microscope probes in addition to flexible pH wire sensors for real-time bacterial biofilm-dental surface and dental materials interface studies.
Collapse
Affiliation(s)
- Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Development of a Versatile, Low-Cost Electrochemical System to Study Biofilm Redox Activity at the Micron Scale. Appl Environ Microbiol 2022; 88:e0043422. [PMID: 35758758 PMCID: PMC9328185 DOI: 10.1128/aem.00434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spatially resolving chemical landscapes surrounding microbial communities can provide insight into chemical interactions that dictate cellular physiology. Electrochemical techniques provide an attractive option for studying these interactions due to their robustness and high sensitivity. Unfortunately, commercial electrochemical platforms that are capable of measuring chemical activity on the micron scale are often expensive and do not easily perform multiple scanning techniques. Here, we report development of an inexpensive electrochemical system that features a combined micromanipulator and potentiostat component capable of scanning surfaces while measuring molecular concentrations or redox profiles. We validate this experimental platform for biological use with a two-species biofilm model composed of the oral bacterial pathogen Aggregatibacter actinomycetemcomitans and the oral commensal Streptococcus gordonii. We measure consumption of H2O2 by A. actinomycetemcomitans biofilms temporally and spatially, providing new insights into how A. actinomycetemcomitans responds to this S. gordonii-produced metabolite. We advance our platform to spatially measure redox activity above biofilms. Our analysis supports that redox activity surrounding biofilms is species specific, and the region immediately above an S. gordonii biofilm is highly oxidized compared to that above an A. actinomycetemcomitans biofilm. This work provides description and validation of a versatile, quantitative framework for studying bacterial redox-mediated physiology in an integrated and easily adaptable experimental platform. IMPORTANCE Scanning electrochemical probe microscopy methods can provide information of the chemical environment along a spatial surface with micron-scale resolution. These methods often require expensive instruments that perform optimized and highly sensitive niche techniques. Here, we describe a novel system that combines a micromanipulator that scans micron-sized electrodes across the surface of bacterial biofilms and a potentiostat, which performs various electrochemical techniques. This platform allows for spatial measurement of chemical gradients above live bacteria in real time, and as proof of concept, we utilize this setup to map H2O2 detoxification above an oral pathogen biofilm. We increased the versatility of this platform further by mapping redox potentials of biofilms in real time on the micron scale. Together, this system provides a technical framework for studying chemical interactions among microbes.
Collapse
|
5
|
Jayathilake NM, Koley D. Glucose Microsensor with Covalently Immobilized Glucose Oxidase for Probing Bacterial Glucose Uptake by Scanning Electrochemical Microscopy. Anal Chem 2020; 92:3589-3597. [PMID: 32000487 DOI: 10.1021/acs.analchem.9b04284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have developed a new dual-tip glucose sensing scanning electrochemical microcopy (SECM) probe by covalently immobilizing the glucose oxidase (GOD) enzyme onto an ultramicro electrode (UME) to measure the local glucose consumption of Streptococcus mutans (S. mutans) biofilms. GOD was immobilized on a novel enzyme immobilization matrix of functionalized multiwalled carbon nanotubes (f-MWCNTs) and 1-butyl-4-methylpyridinium hexafluorophosphate (ionic liquid/IL) packed into the etched Pt UME. The highly selective GOD-based SECM tip showed a high current density of 94.44 (±18.55) μA·mM-1·cm-2 from 0.10 to 1.0 mM at 37 °C as a result of the synergetic effects of f-MWCNTs and ionic liquid. The detection limit of the new 25 μm diameter glucose sensor is 10.0 μM with a linear range up to 4.0 mM. The sensor was successfully used to quantify the rate of glucose consumption of S. mutans biofilms in the presence of sucrose. S. mutans catabolizes both glucose and sucrose, producing lactic acid, reducing the local pH, and causing dental caries. With sucrose, S. mutans produces exopolysaccharides to enhance bacterial adhesion on the tooth surface; subsequent lactic acid production reduces the local pH, resulting in dental caries. Because of the high selectivity of the sensor, we were able to quantify glucose consumption in the presence of sucrose. S. mutans preferentially consumed sucrose in a mixed diet of both sucrose and glucose. Furthermore, using this unique fast-response (∼2 s) glucose sensor, we were for the first time able to map the distribution of the glucose consumption profile in the local environment of S. mutans biofilm. These findings provide insight into how the fast-growing S. mutans creates nutrient-depleted regions that affect the survival and metabolic behavior of other bacterial species within oral biofilm.
Collapse
Affiliation(s)
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Okumura S, Hirano Y, Maki Y, Komatsu Y. Analysis of time-course drug response in rat cardiomyocytes cultured on a pattern of islands. Analyst 2019; 143:4083-4089. [PMID: 30083681 DOI: 10.1039/c8an01033a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously reported the kinetics analysis of cardiomyocyte beating using scanning electrochemical microscopy (SECM). In this study, a stage-top incubator and a capillary micropipette (MP) for delivering drugs were assembled with an SECM instrument, and the responses of rat cardiomyocytes were analyzed under a culture environment after drug stimulation. When adenosine triphosphate (ATP) was delivered to synchronously beating cardiomyocytes, the beating acceleration effect of ATP was counteracted by the synchronously beating network in the culture dish. In contrast, cardiomyocytes cultured on a pattern of islands in a culture dish showed fluctuations in the duration of beating upon the addition of ATP. We also examined the effect of the cardiotoxic agent astemizole on cardiomyocytes and successfully detected motion fluctuations. Therefore, drug stimulation via MPs and beating measurement by SECM are effective routes for the evaluation of drug candidates through the analysis of time-course beating motion fluctuations of the cardiomyocytes.
Collapse
|
7
|
Darch SE, Koley D. Quantifying microbial chatter: scanning electrochemical microscopy as a tool to study interactions in biofilms. Proc Math Phys Eng Sci 2018; 474:20180405. [PMID: 30602930 DOI: 10.1098/rspa.2018.0405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Bacteria are often found in their natural habitats as spatially organized biofilm communities. While it is clear from recent work that the ability to organize into precise spatial structures is important for fitness of microbial communities, a significant gap exists in our understanding regarding the mechanisms bacteria use to adopt such physical distributions. Bacteria are highly social organisms that interact, and it is these interactions that have been proposed to be critical for establishing spatially structured communities. A primary means by which bacteria interact is via small, diffusible molecules including dedicated signals and metabolic by-products; however, quantitatively monitoring the production of these molecules in time and space with the micron-scale resolution required has been challenging. In this perspective, scanning electrochemical microscopy (SECM) is discussed as a powerful tool to study microbe-microbe interactions through the detection of small redox-active molecules. We highlight SECM as a means to quantify and spatially resolve the chemical mediators of bacterial interactions and begin to elucidate the mechanisms used by bacteria to regulate the emergent properties of biofilms.
Collapse
Affiliation(s)
- Sophie E Darch
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
8
|
Affiliation(s)
- Sonja M. Weiz
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
- Material Systems for Nanoelectronics; Chemnitz University of Technology; Reichenhainer Straße 70 09107 Chemnitz Germany
| |
Collapse
|
9
|
Joshi VS, Kreth J, Koley D. Pt-Decorated MWCNTs-Ionic Liquid Composite-Based Hydrogen Peroxide Sensor To Study Microbial Metabolism Using Scanning Electrochemical Microscopy. Anal Chem 2017; 89:7709-7718. [PMID: 28613833 PMCID: PMC6261441 DOI: 10.1021/acs.analchem.7b01677] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen peroxide (H2O2) is a highly relevant metabolite in many biological processes, including the oral microbiome. To study this metabolite, we developed a 25 μm diameter, highly sensitive, nonenzymatic H2O2 sensor with a detection limit of 250 nM and a broad linear range of 250 nM to 7 mM. The sensor used the synergistic activity of the catalytically active Pt nanoparticles on a high surface area multiwalled carbon nanotube and conducting ionic liquid matrix to achieve high sensitivity (2.4 ± 0.24 mA cm-2 mM-1) for H2O2 oxidation. The unique composite allowed us to miniaturize the sensor and couple it with a Pt electrode (25 μm diameter each) for use as a dual scanning electrochemical microscopy probe. We could detect 65 ± 10 μM H2O2 produced by Streptococcus gordonii (Sg) in a simulated biofilm at 50 μm above its surface in the presence of 1 mM glucose and artificial saliva solution (pH 7.2 at 37 °C). Because of its high stability and low detection limit, the sensor showed a promising chemical image of H2O2 produced by Sg biofilms. We were also able to detect 30 μM H2O2 at 50 μm above the biofilm in the presence of the H2O2-decomposing salivary lactoperoxidase and thiocyanate, which would not otherwise be possible using an existing H2O2 assay. Thus, this sensor can potentially find applications in the study of other important biological processes in a complex matrix where circumstances demand a low detection limit in a compact space.
Collapse
Affiliation(s)
- Vrushali S Joshi
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR USA
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Harris D, Ummadi JG, Thurber AR, Allau Y, Verba C, Colwell F, Torres ME, Koley D. Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm. Analyst 2016; 141:2887-95. [DOI: 10.1039/c6an00007j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical and morphological mapping of live bacterial assisted calcium carbonate precipitation using scanning electrochemical microscope (SECM).
Collapse
Affiliation(s)
- Dustin Harris
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | | | - Andrew R. Thurber
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Yvan Allau
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Circe Verba
- Department of Energy
- National Energy Technology Laboratory
- Albany
- USA
| | - Frederick Colwell
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Marta E. Torres
- College of Earth
- Ocean and Atmospheric Sciences
- Oregon State University
- Corvallis
- USA
| | - Dipankar Koley
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| |
Collapse
|