1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Sahandi Zangabad P, Abousalman Rezvani Z, Tong Z, Esser L, Vasani RB, Voelcker NH. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides. ACS APPLIED BIO MATERIALS 2023; 6:3532-3554. [PMID: 37294445 DOI: 10.1021/acsabm.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.
Collapse
Affiliation(s)
- Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Zahra Abousalman Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Grondek JF, Huffman K, Lee EJ, Cavichini M, Warter A, P Kalaw FG, Heinke A, Fan R, Cheng L, Sailor MJ, Freeman WR. Effective treatment of retinal neovascular leakage with fusogenic porous silicon nanoparticles delivering VEGF-siRNA. Nanomedicine (Lond) 2022; 17:2089-2108. [PMID: 36748946 PMCID: PMC10031552 DOI: 10.2217/nnm-2022-0255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Aim: To evaluate an intravitreally injected nanoparticle platform designed to deliver VEGF-A siRNA to inhibit retinal neovascular leakage as a new treatment for proliferative diabetic retinopathy and diabetic macular edema. Materials & methods: Fusogenic lipid-coated porous silicon nanoparticles loaded with VEGF-A siRNA, and pendant neovascular integrin-homing iRGD, were evaluated for efficacy by intravitreal injection in a rabbit model of retinal neovascularization. Results: For 12 weeks post-treatment, a reduction in vascular leakage was observed for treated diseased eyes versus control eyes (p = 0.0137), with a corresponding reduction in vitreous VEGF-A. Conclusion: Fusogenic lipid-coated porous silicon nanoparticles siRNA delivery provides persistent knockdown of VEGF-A and reduced leakage in a rabbit model of retinal neovascularization as a potential new intraocular therapeutic.
Collapse
Affiliation(s)
- Joel F Grondek
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Kristyn Huffman
- Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Ella Jiyoon Lee
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Melina Cavichini
- Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Alexandra Warter
- Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Fritz Gerald P Kalaw
- Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Anna Heinke
- Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Ruhan Fan
- Materials Science & Engineering, University of California, San Diego, CA 92093, USA
| | - Lingyun Cheng
- Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Michael J Sailor
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
- Materials Science & Engineering, University of California, San Diego, CA 92093, USA
| | - William R Freeman
- Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
5
|
Thomson MJ, Biswas S, Tsakirpaloglou N, Septiningsih EM. Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. Int J Mol Sci 2022; 23:ijms23126565. [PMID: 35743007 PMCID: PMC9223900 DOI: 10.3390/ijms23126565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in molecular technologies over the past few decades, such as high-throughput DNA marker genotyping, have provided more powerful plant breeding approaches, including marker-assisted selection and genomic selection. At the same time, massive investments in plant genetics and genomics, led by whole genome sequencing, have led to greater knowledge of genes and genetic pathways across plant genomes. However, there remains a gap between approaches focused on forward genetics, which start with a phenotype to map a mutant locus or QTL with the goal of cloning the causal gene, and approaches using reverse genetics, which start with large-scale sequence data and work back to the gene function. The recent establishment of efficient CRISPR-Cas-based gene editing promises to bridge this gap and provide a rapid method to functionally validate genes and alleles identified through studies of natural variation. CRISPR-Cas techniques can be used to knock out single or multiple genes, precisely modify genes through base and prime editing, and replace alleles. Moreover, technologies such as protoplast isolation, in planta transformation, and the use of developmental regulatory genes promise to enable high-throughput gene editing to accelerate crop improvement.
Collapse
|
6
|
Xu J, Song J, Xiao M, Wang C, Zhang Q, Yuan X, Tian S. RUNX1 (RUNX family transcription factor 1), a target of microRNA miR-128-3p, promotes temozolomide resistance in glioblastoma multiform by upregulating multidrug resistance-associated protein 1 (MRP1). Bioengineered 2021; 12:11768-11781. [PMID: 34895074 PMCID: PMC8810036 DOI: 10.1080/21655979.2021.2009976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiform (GBM) is the most frequent type of malignant brain tumor with a poor prognosis. After optimal surgery, radiotherapy plus temozolomide (TMZ) is the standard treatment for GBM patients. However, the development of TMZ resistance limits its efficacy in GBM management. Runt Related Transcription Factor 1 (RUNX1) and microRNAs have been implicated in drug resistance of TMZ in GBM. In this study, we revealed the underlying mechanism of TMZ resistance and identified miR-128-3p/RUNX1 axis as a novel target for TMZ resistance in GBM. RUNX1 expression was significantly upregulated in GBM tissues as compared to normal tissues, and its expression was even higher in recurrent GBM tissues and TMZ-resistant GBM cells. RUNX1 depletion inhibited the viability, proliferation, migration, invasion and TMZ resistance of GBM cells, which could be rescued by RUNX1 overexpression. We further identified miR-128-3p as a tumor-suppressor whose overexpression restored the sensitivity of TMZ in GBM cells. miR-128-3p negatively regulated RUNX1 and subsequently downregulated multidrug resistance-associated protein 1 (MRP1). Together, the present study indicates that RUNX1 confers TMZ resistance in GBM by upregulating MRP1, which is negatively regulated by miR-128-3p. Targeting miR-128-3p/RUNX1/MRP1 axis provides a potential strategy to overcome TMZ resistance in GBM.
Collapse
Affiliation(s)
- Jianglong Xu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jia Song
- School of Basic Medicine, Hebei University, Baoding, China
| | - Menglin Xiao
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Changsheng Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Qisong Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiaoye Yuan
- School of Basic Medicine, Hebei University, Baoding, China
| | - Shaohui Tian
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
7
|
Shao J, Wan J, Zhang F, Zhang L. Construction of Hyaluronic Acid-CeO₂ Conjugated Composite Nanoparticles and Their Activity Efficiency in Diabetic Retinopathy Alleviation. J Biomed Nanotechnol 2021; 17:2219-2225. [PMID: 34906282 DOI: 10.1166/jbn.2021.3190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed an effective nanoparticle-biomaterial in alleviating diabetic retinopathy (DR), hyaluronic acid (HA)-CeO₂, composed mainly of CeO₂ and HA. To demonstrate its anti-DR capacity, retinal cells from a B6/J mouse model were used to compare the efficiency of PEI-CeO₂ and HA-CeO₂. We investigated the transport performance, histolysis, immune cell infiltration, angiogenesis, and hyperemia induced by the transport system. The structural integrity, microvascular apoptosis, and superoxide and peroxide concentrations in the retina were measured to evaluate the clinical efficacy of CeO₂. The infiltration efficiency of HA-CeO₂ was higher than that of PEI-CeO₂. Lower levels of foreign body reaction were evident for HA-CeO₂ with less histolysis, immune cell infiltration, angiogenesis, and hyperemia. The clinical efficacy of HA-CeO₂ in terms of preservation of retinal structure and lowering of microvascular apoptosis and superoxide and peroxide concentrations was superior to those of PEI-CP. HA-CeO₂ was shown to have significant antioxidation and anti-vascular injury capacity in a mouse model, and may be a potential compound nanodrug for DR treatment in the future.
Collapse
Affiliation(s)
- Jingzhi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Jingjing Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| |
Collapse
|
8
|
Tieu T, Wei Y, Cifuentes‐Rius A, Voelcker NH. Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Terence Tieu
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
| | - Yingkai Wei
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Anna Cifuentes‐Rius
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Nicolas H. Voelcker
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
- Melbourne Centre for Nanofabrication 151 Wellington Road Victorian Node of the Australian National Fabrication Facility Clayton VIC 3168 Australia
| |
Collapse
|
9
|
Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, Jung KH. Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:663849. [PMID: 34122485 PMCID: PMC8194497 DOI: 10.3389/fpls.2021.663849] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/26/2021] [Indexed: 05/05/2023]
Abstract
Agriculture is an important source of human food. However, current agricultural practices need modernizing and strengthening to fulfill the increasing food requirements of the growing worldwide population. Genome editing (GE) technology has been used to produce plants with improved yields and nutritional value as well as with higher resilience to herbicides, insects, and diseases. Several GE tools have been developed recently, including clustered regularly interspaced short palindromic repeats (CRISPR) with nucleases, a customizable and successful method. The main steps of the GE process involve introducing transgenes or CRISPR into plants via specific gene delivery systems. However, GE tools have certain limitations, including time-consuming and complicated protocols, potential tissue damage, DNA incorporation in the host genome, and low transformation efficiency. To overcome these issues, nanotechnology has emerged as a groundbreaking and modern technique. Nanoparticle-mediated gene delivery is superior to conventional biomolecular approaches because it enhances the transformation efficiency for both temporal (transient) and permanent (stable) genetic modifications in various plant species. However, with the discoveries of various advanced technologies, certain challenges in developing a short-term breeding strategy in plants remain. Thus, in this review, nanobased delivery systems and plant genetic engineering challenges are discussed in detail. Moreover, we have suggested an effective method to hasten crop improvement programs by combining current technologies, such as speed breeding and CRISPR/Cas, with nanotechnology. The overall aim of this review is to provide a detailed overview of nanotechnology-based CRISPR techniques for plant transformation and suggest applications for possible crop enhancement.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
| | - Tahir Mahmood
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | | | | | | | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
10
|
Tieu T, Wojnilowicz M, Huda P, Thurecht KJ, Thissen H, Voelcker NH, Cifuentes-Rius A. Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin. Biomater Sci 2021; 9:133-147. [DOI: 10.1039/d0bm01335h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeted delivery of chemotherapeutics to cancer cells has the potential to yield high drug concentrations in cancer cells while minimizing any unwanted side effects.
Collapse
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
- Clayton
- Australia
| | - Pie Huda
- Centre for Advanced Imaging
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- University of Queensland
- Brisbane
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- University of Queensland
- Brisbane
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
- Clayton
- Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
11
|
Huang H, Yuan S, Ma Z, Ji P, Ma X, Wu Z, Qi X. Genetic recombination of poly(l-lysine) functionalized apoferritin nanocages that resemble viral capsid nanometer-sized platforms for gene therapy. Biomater Sci 2020; 8:1759-1770. [PMID: 32010909 DOI: 10.1039/c9bm01822k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Currently, bioengineered apoferritin nanocages with flexible protein shells and functionalized modifications have become an attractive approach for efficient anti-tumor therapy. Here, we modified the N-terminus of H-chain subunits in apoferritin with different amounts of lysine via genetic recombination to obtain a poly(l-lysine) modified H-chain apoferritin (nL-HFn) nanocage for siRNA delivery and gene therapy. To achieve excellent cellular affinity and uptake, the nanocarriers were internalized through transferrin receptor-mediated endocytosis, then escaped from the endosome for cytoplasmic transport. Compared with natural apoferritin, the siRNA-loaded genetic recombination NPs modified with lysine exhibit stronger RNA-interference and antitumor efficiency both in vitro and in 4T1 tumor model mice. Therefore, bioengineered apoferritin nanocages modified with lysine might be a promising platform for nucleic acid drug delivery.
Collapse
Affiliation(s)
- Haiqin Huang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Shirui Yuan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhuo Ma
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Ji
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaonan Ma
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Zuidema JM, Bertucci A, Kang J, Sailor MJ, Ricci F. Hybrid polymer/porous silicon nanofibers for loading and sustained release of synthetic DNA-based responsive devices. NANOSCALE 2020; 12:2333-2339. [PMID: 31930266 DOI: 10.1039/c9nr08474f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic DNA-based oligonucleotides are loaded into porous silicon nanoparticles (pSiNPs) and incorporated into nanofibers of poly(lactide-co-glycolide) (PLGA), poly-l-lactic acid (PLA), or polycaprolactone (PCL). The resulting hybrid nanofibers are characterized for their ability to release the functional oligonucleotide payload under physiologic conditions. Under temperature and pH conditions mimicking physiological values, the PLGA-based nanofibers release >80% of their DNA cargo within 5 days, whereas the PLA and PCL-based fibers require 15 days to release >80% of their cargo. The quantity of DNA released scales with the quantity of DNA-loaded pSiNPs embedded in the nanofibers; mass loadings of between 2.4 and 9.1% (based on mass of DNA-pSiNP construct relative to mass of polymer composite) are investigated. When a responsive DNA-based nanodevice (i.e. molecular beacon) is used as a payload, it retains its functionality during the release period, independent of the polymer used for the formation of the nanofibers.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| | - Alessandro Bertucci
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA. and Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Jinyoung Kang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA. and Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
13
|
Hasanzadeh Kafshgari M, Goldmann WH. Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine. NANO-MICRO LETTERS 2020; 12:22. [PMID: 34138062 PMCID: PMC7770757 DOI: 10.1007/s40820-019-0362-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/08/2019] [Indexed: 05/02/2023]
Abstract
Titanium dioxide (TiO2) nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications. TiO2 nanostructures promise to improve current theranostic strategies by leveraging the enhanced quantum confinement, thermal conversion, specific surface area, and surface activity. This review highlights certain important aspects of fabrication strategies, which are employed to generate multifunctional TiO2 nanostructures, while outlining post-fabrication techniques with an emphasis on their suitability for nanomedicine. The biodistribution, toxicity, biocompatibility, cellular adhesion, and endocytosis of these nanostructures, when exposed to biological microenvironments, are examined in regard to their geometry, size, and surface chemistry. The final section focuses on recent biomedical applications of TiO2 nanostructures, specifically evaluating therapeutic delivery, photodynamic and sonodynamic therapy, bioimaging, biosensing, tissue regeneration, as well as chronic wound healing.
Collapse
Affiliation(s)
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052, Erlangen, Germany.
| |
Collapse
|
14
|
Kim B, Park JH, Sailor MJ. Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903637. [PMID: 31566258 PMCID: PMC6891135 DOI: 10.1002/adma.201903637] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/12/2019] [Indexed: 05/07/2023]
Abstract
With the recent FDA approval of the first siRNA-derived therapeutic, RNA interference (RNAi)-mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA-mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Bertucci A, Kim KH, Kang J, Zuidema JM, Lee SH, Kwon EJ, Kim D, Howell SB, Ricci F, Ruoslahti E, Jang HJ, Sailor MJ. Tumor-Targeting, MicroRNA-Silencing Porous Silicon Nanoparticles for Ovarian Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23926-23937. [PMID: 31251556 DOI: 10.1021/acsami.9b07980] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silencing of aberrantly expressed microRNAs (miRNAs or miRs) has emerged as one of the strategies for molecular targeted cancer therapeutics. In particular, miR-21 is an oncogenic miRNA overexpressed in many tumors, including ovarian cancer. To achieve efficient administration of anti-miR therapeutics, delivery systems are needed that can ensure local accumulation in the tumor environment, low systemic toxicity, and reduced adverse side effects. In order to develop an improved anti-miR therapeutic agent for the treatment of ovarian cancer, a nanoformulation is engineered that leverages biodegradable porous silicon nanoparticles (pSiNPs) encapsulating an anti-miR-21 locked nucleic acid payload and displaying a tumor-homing peptide for targeted distribution. Targeting efficacy, miR-21 silencing, and anticancer activity are optimized in vitro on a panel of ovarian cancer cell lines, and a formulation of anti-miR-21 in a pSiNP displaying the targeting peptide CGKRK is identified for in vivo evaluation. When this nanoparticulate agent is delivered to mice bearing tumor xenografts, a substantial inhibition of tumor growth is achieved through silencing of miR-21. This study presents the first successful application of tumor-targeted anti-miR porous silicon nanoparticles for the treatment of ovarian cancer in a mouse xenograft model.
Collapse
Affiliation(s)
- Alessandro Bertucci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Rome , 00133 , Italy
| | | | | | | | | | | | | | | | - Francesco Ricci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Rome , 00133 , Italy
| | - Erkki Ruoslahti
- Cancer Center , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , California 92037 , United States
| | | | | |
Collapse
|
16
|
Tieu T, Dhawan S, Haridas V, Butler LM, Thissen H, Cifuentes-Rius A, Voelcker NH. Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22993-23005. [PMID: 31252458 DOI: 10.1021/acsami.9b05577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene silencing by RNA interference is a powerful technology with broad applications. However, this technology has been hampered by the instability of small interfering RNA (siRNA) molecules in physiological conditions and their inefficient delivery into the cytoplasm of target cells. Porous silicon nanoparticles have emerged as a potential delivery vehicle to overcome these limitations-being able to encapsulate RNA molecules within the porous matrix and protect them from degradation. Here, key variables were investigated that influence siRNA loading into porous silicon nanoparticles. The effect of modifying the surface of porous silicon nanoparticles with various amino-functional molecules as well as the effects of salt and chaotropic agents in facilitating siRNA loading was examined. Maximum siRNA loading of 413 μg/(mg of porous silicon nanoparticles) was found when the nanoparticles were modified by a fourth generation polyamidoamine dendrimer. Low concentrations of urea or salt increased loading capacity: an increase in RNA loading by 19% at a concentration of 0.05 M NaCl or 21% at a concentration of 0.25 M urea was observed when compared to loading in water. Lastly, it was demonstrated that dendrimer-functionalized nanocarriers are able to deliver siRNA against ELOVL5, a target for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville Campus, 381 Royal Parade , Parkville , Victoria 3052 , Australia
- CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
| | - Sameer Dhawan
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | - V Haridas
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | - Lisa M Butler
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health , University of Adelaide , Adelaide , South Australia 5005 , Australia
- South Australian Health & Medical Research Institute , Adelaide , South Australia 5001 , Australia
| | - Helmut Thissen
- CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville Campus, 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville Campus, 381 Royal Parade , Parkville , Victoria 3052 , Australia
- CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
- Melbourne Centre for Nanofabrication , Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| |
Collapse
|
17
|
Tieu T, Alba M, Elnathan R, Cifuentes‐Rius A, Voelcker NH. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800095] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Anna Cifuentes‐Rius
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- Prof. N. H. Voelcker Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| |
Collapse
|
18
|
Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703740. [PMID: 29534311 DOI: 10.1002/adma.201703740] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/16/2017] [Indexed: 05/24/2023]
Abstract
In the past two decades, porous silicon (PSi) has attracted increasing attention for its potential biomedical applications. With its controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry, PSi shows significant advantages over conventional drug carriers. Here, an overview of recent progress in the use of PSi in drug delivery and cancer immunotherapy is presented. First, an overview of the fabrication of PSi with various geometric structures is provided, with particular focus on how the unique geometry of PSi facilitates its biomedical applications, especially for drug delivery. Second, surface chemistry and modification of PSi are discussed in relation to the strengthening of its performance in drug delivery and bioimaging. Emerging technologies for engineering PSi-based composites are then summarized. Emerging PSi advances in the context of cancer immunotherapy are also highlighted. Overall, very promising research results encourage further exploration of PSi for biomedical applications, particularly in drug delivery and cancer immunotherapy, and future translation of PSi into clinical applications.
Collapse
Affiliation(s)
- Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
19
|
Tong WY, Alnakhli M, Bhardwaj R, Apostolou S, Sinha S, Fraser C, Kuchel T, Kuss B, Voelcker NH. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J Nanobiotechnology 2018; 16:38. [PMID: 29653579 PMCID: PMC5898074 DOI: 10.1186/s12951-018-0365-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/31/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multidrug resistance-associated protein 1 (MRP1) overexpression plays a major role in chemoresistance in glioblastoma multiforme (GBM) contributing to its notorious deadly nature. Although MRP1-siRNA transfection to GBM in vitro has been shown to sensitise the cells to drug, MRP1 silencing in vivo and the phenotypic influence on the tumour and normal tissues upon MRP1 down-regulation have not been established. Here, porous silicon nanoparticles (pSiNPs) that enable high-capacity loading and delivery of siRNA are applied in vitro and in vivo. RESULT We established pSiNPs with polyethyleneimine (PEI) capping that enables high-capacity loading of siRNA (92 µg of siRNA/mg PEI-pSiNPs), and optimised release profile (70% released between 24 and 48 h). These pSiNPs are biocompatible, and demonstrate cellular uptake and effective knockdown of MRP1 expression in GBM by 30%. Also, siRNA delivery was found to significantly reduce GBM proliferation as an associated effect. This effect is likely mediated by the attenuation of MRP1 transmembrane transport, followed by cell cycle arrest. MRP1 silencing in GBM tumour using MRP1-siRNA loaded pSiNPs was demonstrated in mice (82% reduction at the protein level 48 h post-injection), and it also produced antiproliferative effect in GBM by reducing the population of proliferative cells. These results indicate that in vitro observations are translatable in vivo. No histopathological signs of acute damage were observed in other MRP1-expressing organs despite collateral downregulations. CONCLUSIONS This study proposes the potential of efficient MRP1-siRNA delivery by using PEI-capped pSiNPs in achieving a dual therapeutic role of directly attenuating the growth of GBM while sensitising residual tumour cells to the effects of chemotherapy post-resection.
Collapse
Affiliation(s)
- Wing Yin Tong
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | - Mohammed Alnakhli
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Richa Bhardwaj
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Sinoula Apostolou
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Sougata Sinha
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Cara Fraser
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Bryone Kuss
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia.
| |
Collapse
|
20
|
Zhou Q, Wang Y, Xiang J, Piao Y, Zhou Z, Tang J, Liu X, Shen Y. Stabilized calcium phosphate hybrid nanocomposite using a benzoxaborole-containing polymer for pH-responsive siRNA delivery. Biomater Sci 2018; 6:3178-3188. [DOI: 10.1039/c8bm00575c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we developed a PEG-PBO/siRNA/CaP hybrid nanocomposite with excellent stability and high siRNA loading content for effective pH-responsive siRNA delivery.
Collapse
Affiliation(s)
- Quan Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jiajia Xiang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ying Piao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
21
|
Panek WK, Khan OF, Yu D, Lesniak MS. Multiplexed nanomedicine for brain tumors: nanosized Hercules to tame our Lernaean Hydra inside? Nanomedicine (Lond) 2017; 12:2435-2439. [PMID: 28971724 DOI: 10.2217/nnm-2017-0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wojciech K Panek
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Omar F Khan
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering & Science, Harvard MIT Division of Health Science & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dou Yu
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine (Lond) 2017; 12:2533-2554. [DOI: 10.2217/nnm-2017-0223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive CNS tumor with poor prognosis. Current treatment lacks efficacy indicating that new therapeutic approaches are needed. One of these new approaches is based on the use of nanoparticles (NPs) to deliver different cargos (antitumoral drugs or genetic materials) to tumoral cells. This review covers the signaling pathways altered in GBM cells to understand the rationale behind choosing new therapeutic targets and recent advances in the use of different NPs to deliver to GBM cells, both in vitro and in vivo, different therapeutic molecules. A special focus is placed on the effect of NPs on orthotopic brain tumors since this animal model represents the optimal model for translational purposes.
Collapse
Affiliation(s)
- Pablo Játiva
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Wareing N, Szymanski K, Akkaraju GR, Loni A, Canham LT, Gonzalez-Rodriguez R, Coffer JL. In Vitro Gene Delivery with Large Porous Silicon Nanoparticles Fabricated Using Cost-Effective, Metal-Assisted Chemical Etching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602739. [PMID: 28084695 DOI: 10.1002/smll.201602739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/23/2016] [Indexed: 05/28/2023]
Abstract
The cytocompatibility, cell membrane affinity, and plasmid DNA delivery from surface oxidized, metal-assisted stain-etched mesoporous silicon nanoscale particles (pSiNPs) to human embryonic kidney (HEK293) cells is demonstrated, suggesting the possibility of using such material for targeted transfection and drug delivery.
Collapse
Affiliation(s)
- Nancy Wareing
- Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Kyle Szymanski
- Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Giridhar R Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Armando Loni
- pSiMedica Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3 SZ, UK
| | - Leigh T Canham
- pSiMedica Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3 SZ, UK
| | | | - Jeffery L Coffer
- Department of Chemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| |
Collapse
|
24
|
Li C, Hu J, Li W, Song G, Shen J. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomater Sci 2017; 5:77-88. [DOI: 10.1039/c6bm00449k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hollow mesoporous silica nanospheres (HMSN)-based co-delivery of bortezomib (BTZ) and the tumor suppressor gene p53 was developed for p53 signal impaired NSCLC therapy.
Collapse
Affiliation(s)
- Chun Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Wenyao Li
- School of Material Engineering
- Research & Development Center for Key Technologies of Intelligent Ultra-Intense Laser Processing Equipments
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Guosheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Jia Shen
- State Key Laboratory of Molecular Biology; Institute of Biochemistry and Cell Biology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
- Shanghai 200031
- China
| |
Collapse
|
25
|
Turner CT, Hasanzadeh Kafshgari M, Melville E, Delalat B, Harding F, Mäkilä E, Salonen JJ, Cowin AJ, Voelcker NH. Delivery of Flightless I siRNA from Porous Silicon Nanoparticles Improves Wound Healing in Mice. ACS Biomater Sci Eng 2016; 2:2339-2346. [DOI: 10.1021/acsbiomaterials.6b00550] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Christopher T. Turner
- Regenerative Medicine, Future
Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Morteza Hasanzadeh Kafshgari
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Elizabeth Melville
- Regenerative Medicine, Future
Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Bahman Delalat
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Francis Harding
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Ermei Mäkilä
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jarno J. Salonen
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Allison J. Cowin
- Regenerative Medicine, Future
Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Nicolas H. Voelcker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
26
|
Hao N, Li L, Tang F. Shape matters when engineering mesoporous silica-based nanomedicines. Biomater Sci 2016; 4:575-91. [DOI: 10.1039/c5bm00589b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review introduces various fabrication methods for non-spherical mesoporous silica nanomaterials and the roles of particle shape in nanomedicine applications.
Collapse
Affiliation(s)
- Nanjing Hao
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Laifeng Li
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Fangqiong Tang
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
27
|
Liao W, Li W, Zhang T, Kirberger M, Liu J, Wang P, Chen W, Wang Y. Powering up the molecular therapy of RNA interference by novel nanoparticles. Biomater Sci 2016; 4:1051-61. [DOI: 10.1039/c6bm00204h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With more suitable for disease treatment due to reduced cellular toxicity, higher loading capacity, and better biocompatibility, nanoparticle-based siRNA delivery systems have proved to be more potent, higher specific and less toxic than the traditional drug therapy.
Collapse
Affiliation(s)
- Wenzhen Liao
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
- Department of Food Science and Technology
| | | | - Tiantian Zhang
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
| | | | - Jun Liu
- Department of Food and Bioproduct Sciences
- University of Saskatchewan
- Saskatoon
- Canada
| | - Pei Wang
- Center for Excellence in Post-Harvest Technologies
- North Carolina Agricultural and Technical State University
- North Carolina 28081
- USA
| | - Wei Chen
- Sun Yat-Sen University
- Guangzhou
- China
| | - Yong Wang
- Department of Food Science and Engineering
- Jinan University
- Guangzhou
- China
| |
Collapse
|
28
|
Stojanovic V, Cunin F, Durand JO, Garcia M, Gary-Bobo M. Potential of porous silicon nanoparticles as an emerging platform for cancer theranostics. J Mater Chem B 2016; 4:7050-7059. [DOI: 10.1039/c6tb01829g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, nanoscience is a major part of biomedical research, due to material advances that aid the development of new tools and techniques to replace traditional methods. Here we describe the theranostic potential of multifunctional porous silicon nanoparticles to target, image and treat cancer.
Collapse
Affiliation(s)
- V. Stojanovic
- Institut des Biomolécules Max Mousseron
- UMR5247CNRS-UM
- 34093 Montpellier Cedex 05
- France
| | - F. Cunin
- Institut Charles Gerhardt Montpellier
- UMR5253CNRS-ENSCM-UM
- Ecole Nationale Supérieure de Chimie Montpellier
- 8 rue de l'Ecole Normale
- 34296 Montpellier
| | - J. O. Durand
- Institut Charles Gerhardt Montpellier
- UMR5253CNRS-ENSCM-UM
- Ecole Nationale Supérieure de Chimie Montpellier
- 8 rue de l'Ecole Normale
- 34296 Montpellier
| | - M. Garcia
- Institut des Biomolécules Max Mousseron
- UMR5247CNRS-UM
- 34093 Montpellier Cedex 05
- France
| | - M. Gary-Bobo
- Institut des Biomolécules Max Mousseron
- UMR5247CNRS-UM
- 34093 Montpellier Cedex 05
- France
| |
Collapse
|
29
|
Shi W, Liu X, Wei C, Xu ZJ, Sim SSW, Liu L, Xu C. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles. NANOSCALE 2015; 7:17249-17253. [PMID: 26425826 DOI: 10.1039/c5nr05459a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.
Collapse
Affiliation(s)
- Wei Shi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | | | | | | | | | |
Collapse
|