1
|
Wang Z, Liu X, Zhang X, Zhang H, Zhao Y, Li Y, Yu H, He G. Realizing one-step two-electron transfer of naphthalene diimides via a regional charge buffering strategy for aqueous organic redox flow batteries. MATERIALS HORIZONS 2024; 11:1283-1293. [PMID: 38165892 DOI: 10.1039/d3mh01485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Naphthalene diimide derivatives show great potential for application in neutral aqueous organic redox flow batteries (AORFBs) due to their highly conjugated molecular structure and stable two-electron storage capacity. However, the two-electron redox process of naphthalene diimides typically occurs via two separate steps with the transfer of one electron per step ("two-step two-electron" transfer process), which leads to an inevitable loss of voltage and energy. Herein, we report a novel regional charge buffering strategy that utilizes the core-substituted electron-donating group to adjust the redox properties of naphthalene diimides, realizing two electron transfer via a single-step redox process ("one-step two-electron" transfer process). The symmetrical battery testing of NDI-DEtOH revealed exceptional intrinsic stability lasting for 11 days with a daily decay rate of only 0.11%. Meanwhile, AORFBs with NDI-DMe/FcNCl and NDI-DEtOH/FcNCl exhibited a remarkable 40% improvement in peak power density at 50% state of charge (SOC) in comparison to NDI/FcNCl-based AORFBs. In addition, the battery's energy efficiency has increased by 24%, resulting in much more stable output power and significantly improved energy efficiency. These results are of great significance to practical applications of AORFBs.
Collapse
Affiliation(s)
- Zengrong Wang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xu Liu
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xuri Zhang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Heng Zhang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Yujie Zhao
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Yawen Li
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Haiyan Yu
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Gang He
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
- Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, China
- Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
2
|
Suganthi S, Alexander A, Pillai AS, Enoch IVMV, Yousuf S. Naphtholylimino-tether on β-cyclodextrin: Selective G-quadruplex DNA binding. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Manoli F, Doria F, Colombo G, Zambelli B, Freccero M, Manet I. The Binding Pocket at the Interface of Multimeric Telomere G-quadruplexes: Myth or Reality? Chemistry 2021; 27:11707-11720. [PMID: 34152657 PMCID: PMC8456957 DOI: 10.1002/chem.202101486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/23/2023]
Abstract
Human telomeric DNA with hundreds of repeats of the 5'-TTAGGG-3' motif plays a crucial role in several biological processes. It folds into G-quadruplex (G4) structures and features a pocket at the interface of two contiguous G4 blocks. Up to now no structural NMR and crystallographic data are available for ligands interacting with contiguous G4s. Naphthalene diimide monomers and dyads were investigated as ligands of a dimeric G4 of human telomeric DNA comparing the results with those of the model monomeric G4. Time-resolved fluorescence, circular dichroism, isothermal titration calorimetry and molecular modeling were used to elucidate binding features. Ligand fluorescence lifetime and induced circular dichroism unveiled occupancy of the binding site at the interface. Thermodynamic parameters confirmed the hypothesis as they remarkably change for the dyad complexes of the monomeric and dimeric telomeric G4. The bi-functional ligand structure of the dyads is a fundamental requisite for binding at the G4 interface as only the dyads engage in complexes with 1 : 1 stoichiometry, lodging in the pocket at the interface and establishing multiple interactions with the DNA skeleton. In the absence of NMR and crystallographic data, our study affords important proofs of binding at the interface pocket and clues on the role played by the ligand structure.
Collapse
Affiliation(s)
- Francesco Manoli
- Institute for Organic Synthesis and Photoreactivity (ISOF)National Research Council (CNR)Via P. Gobetti 10140129BolognaItaly
| | - Filippo Doria
- Department of ChemistryUniversity of PaviaV. le Taramelli 1027100PaviaItaly
| | - Giorgio Colombo
- Department of ChemistryUniversity of PaviaV. le Taramelli 1027100PaviaItaly
| | - Barbara Zambelli
- Department of Pharmacy and BiotechnologyUniversity of BolognaV. le Fanin 4040127BolognaItaly
| | - Mauro Freccero
- Department of ChemistryUniversity of PaviaV. le Taramelli 1027100PaviaItaly
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF)National Research Council (CNR)Via P. Gobetti 10140129BolognaItaly
| |
Collapse
|
4
|
Gayen K, Paul S, Hazra S, Banerjee A. Solvent-Directed Transformation of the Self-assembly and Optical Property of a Peptide-Appended Core-Substituted Naphthelenediimide and Selective Detection of Nitrite Ions in an Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9577-9587. [PMID: 34319747 DOI: 10.1021/acs.langmuir.1c01486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study vividly displays the different self-assembling behavior and consequent tuning of the fluorescence property of a peptide-appended core-substituted naphthalenediimide (N1) in the aliphatic hydrocarbon solvents (n-hexane/n-decane/methyl cyclohexane) and in an aqueous medium within micelles. The N1 is highly fluorescent in the monomeric state and self-aggregates in a hydrocarbon solvent, exhibiting "H-type" or "face-to-face" stacking as indicated by a blue shift of absorption maxima in the UV-vis spectrum. In the H-aggregated state, the fluorescence emission of N1 changes to green from the yellow emission obtained in the monomeric state. In the presence of a micelle-forming surfactant, cetyl trimethylammonium bromide (CTAB), the N1 is found to be dispersed in a water medium. Interestingly, upon encapsulation of N1 into the micelle, the molecule alters its self-assembling pattern and optical property compared to its behavior in the hydrocarbon solvent. The N1 exhibits "edge-to-edge" stacking or J aggregates inside the micelle as indicated by the UV-vis spectroscopic study, which shows a red shift of the absorption maxima compared to that in the monomeric state. The fluorescence emission also differs in the water medium with the NDI derivative exhibiting red emission. FT-IR studies reveal that all amide NHs of N1 are hydrogen-bonded within the micelle (in the J-aggregated state), whereas both non-bonding and hydrogen-bonding amide NHs are present in the H-aggregated state. This is a wonderful example of solvent-mediated transformation of the aggregation pattern (from H to J) and solvatochromism of emission over a wide range from green in the H-aggregated state to yellow in the monomeric state and orangish-red in the J-aggregated state. Moreover, the J aggregate has been successfully utilized for selective and sensitive detection of nitrite ions in water even in the presence of other common anions (NO3-, SO42-, HSO4-, CO32-, and Cl-).
Collapse
Affiliation(s)
- Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subir Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
6
|
Pirota V, Platella C, Musumeci D, Benassi A, Amato J, Pagano B, Colombo G, Freccero M, Doria F, Montesarchio D. On the binding of naphthalene diimides to a human telomeric G-quadruplex multimer model. Int J Biol Macromol 2020; 166:1320-1334. [PMID: 33166559 DOI: 10.1016/j.ijbiomac.2020.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
To selectively target telomeric G-quadruplex (G4) DNA, monomeric and dimeric naphthalene diimides (NDIs) were investigated as binders of multimeric G4 structures able to discriminate duplex DNA. These NDIs were analysed by the affinity chromatography-based screening G4-CPG (G-quadruplex on Controlled Pore Glass), using the sequence d[AGGG(TTAGGG)7] (tel46), folding into two consecutive G4s, as model of the human telomeric G4 multimer. In parallel, a telomeric G4 monomer (tel26) and a duplex structure (ds27) were used as controls. According to G4-CPG screening, NDI-5 proved to be the best ligand in terms of dimeric G4 vs. duplex DNA selectivity and was analysed by circular dichroism (CD), gel electrophoresis, isothermal titration calorimetry (ITC) and fluorescence spectroscopy in its interactions with tel46. NDI-5 strongly binds and stabilizes tel46 G4, favouring a hybrid folding in K+-containing buffer. Under these conditions, the binding process comprises a first event involving three molecules of NDI-5 and a second one in which other six molecules bind to the DNA. In a metal cation-free system, NDI-5 induces tel46 G4 folding, as indicated by CD and PAGE, favouring an antiparallel structuring. Docking simulations showed that NDI-5 can effectively bind to the pocket between two G4 units, representing a promising ligand for multimeric G4s.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
7
|
Tassinari M, Zuffo M, Nadai M, Pirota V, Sevilla Montalvo AC, Doria F, Freccero M, Richter SN. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res 2020; 48:4627-4642. [PMID: 32282912 PMCID: PMC7229848 DOI: 10.1093/nar/gkaa186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting of G-quadruplexes, non-canonical conformations that form in G-rich regions of nucleic acids, has been proposed as a novel therapeutic strategy toward several diseases, including cancer and infections. The unavailability of highly selective molecules targeting a G-quadruplex of choice has hampered relevant applications. Herein, we describe a novel approach, based on naphthalene diimide (NDI)-peptide nucleic acid (PNA) conjugates, taking advantage of the cooperative interaction of the NDI with the G-quadruplex structure and hybridization of the PNA with the flanking region upstream or downstream the targeted G-quadruplex. By biophysical and biomolecular assays, we show that the NDI-PNA conjugates are able to specifically recognize the G-quadruplex of choice within the HIV-1 LTR region, consisting of overlapping and therefore mutually exclusive G-quadruplexes. Additionally, the conjugates can induce and stabilize the least populated G-quadruplex at the expenses of the more stable ones. The general and straightforward design and synthesis, which readily apply to any G4 target of choice, together with both the red-fluorescent emission and the possibility to introduce cellular localization signals, make the novel conjugates available to selectively control G-quadruplex folding over a wide range of applications.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Michela Zuffo
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | | | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
8
|
Li S, Zhang Y, Tian J, Xu W. Luminescent DNAzyme and universal blocking linker Super Polymerase Chain Reaction visual biosensor for the detection of Salmonella. Food Chem 2020; 324:126859. [DOI: 10.1016/j.foodchem.2020.126859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
|
9
|
Gayen K, Basu K, Nandi N, Sundar Das K, Hermida-Merino D, Hamley IW, Banerjee A. A Self-Assembled Peptide-Appended Naphthalene Diimide: A Fluorescent Switch for Sensing Acid and Base Vapors. Chempluschem 2020; 84:1673-1680. [PMID: 31943879 DOI: 10.1002/cplu.201900577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Indexed: 01/30/2023]
Abstract
A histidine-containing bola-amphiphilic molecule (NDIP) containing a peptide-appended naphthalenediimide (NDI) forms fluorescent hydrogels in phosphate buffer and organogels with benzenoid solvents. These gels were characterized by several spectroscopic and microscopic techniques including FT-IR, HR-TEM, powder X-ray diffraction and small-angle X-ray scattering, UV-Vis and fluorescence studies. The gelator molecule exhibits no significant fluorescence in the xerogel state, while it shows a significant fluorescence (bright cyan) in the presence of volatile organic/inorganic acid vapors; this cyan color vanishes in presence of base (ammonia vapors). A reusable paper-strip-based method based on this self-assembled fluorescent material can be used to easily detect hazardous volatile acid and base vapors with the naked eye.
Collapse
Affiliation(s)
- Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | - Nibedita Nandi
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| |
Collapse
|
10
|
Trifunctionalized Naphthalene Diimides and Dimeric Analogues as G-Quadruplex-Targeting Anticancer Agents Selected by Affinity Chromatography. Int J Mol Sci 2020; 21:ijms21061964. [PMID: 32183038 PMCID: PMC7139804 DOI: 10.3390/ijms21061964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
A focused library of newly designed monomeric and dimeric naphthalene diimides (NDIs) was analyzed in its ability to recognize specific G-quadruplex (G4) structures discriminating duplex DNA. The best G4 ligands—according to an affinity chromatography-based screening method named G4-CPG—were tested on human cancer and healthy cells, inducing DNA damage at telomeres, and in parallel, showing selective antiproliferative activity on HeLa cancer cells with IC50 values in the low nanomolar range. CD and fluorescence spectroscopy studies allowed detailed investigation of the interaction in solution with different G4 and duplex DNA models of the most promising NDI of the series, as determined by combining the biophysical and biological assays’ data.
Collapse
|
11
|
Praikaew P, Maniam S, Charoenpanich A, Sirirak J, Promarak V, Langford SJ, Wanichacheva N. Water-soluble Cu2+-fluorescent sensor based on core-substituted naphthalene diimide and its application in drinking water analysis and live cell imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Zuffo M, Guédin A, Leriche ED, Doria F, Pirota V, Gabelica V, Mergny JL, Freccero M. More is not always better: finding the right trade-off between affinity and selectivity of a G-quadruplex ligand. Nucleic Acids Res 2019; 46:e115. [PMID: 29986058 PMCID: PMC6212845 DOI: 10.1093/nar/gky607] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
Guanine-rich nucleic acid sequences can fold into four-stranded G-quadruplex (G4) structures. Despite growing evidence for their biological significance, considerable work still needs to be done to detail their cellular occurrence and functions. Herein, we describe an optimized core-extended naphthalene diimide (cex-NDI) to be exploited as a G4 light-up sensor. The sensing mechanism relies on the shift of the aggregate-monomer equilibrium towards the bright monomeric state upon G4 binding. In contrast with the majority of other ligands, this novel cex-NDI is able to discriminate among G4s with different topologies, with a remarkable fluorescent response for the parallel ones. We investigate this sensing by means of biophysical methods, comparing the lead compound to a non-selective analogue. We demonstrate that mitigating the affinity of the binding core for G4s results in an increased selectivity and sensitivity of the fluorescent response. This is achieved by replacing positively charged substituents with diethylene glycol (DEG) side chains. Remarkably, the limit of detection values obtained for parallel G4s are more than one order of magnitude lower than those of the parallel-selective ligand N-methyl mesoporphyrin IX (NMM). Interestingly, the classical fluorescent intercalator displacement (FID) assay failed to reveal binding of cex-NDI to G4 because of the presence a ternary complex (G4-TO-cex-NDI) revealed by electrospray-MS. Our study thus provides a rational basis to design or modify existent scaffolds to redirect the binding preference of G4 ligands.
Collapse
Affiliation(s)
- Michela Zuffo
- Dipartimento di Chimica, Università di Pavia, Pavia 27100, Italy
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac 33607, France
| | - Emma-Dune Leriche
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac 33607, France
| | - Filippo Doria
- Dipartimento di Chimica, Università di Pavia, Pavia 27100, Italy
| | - Valentina Pirota
- Dipartimento di Chimica, Università di Pavia, Pavia 27100, Italy
| | - Valérie Gabelica
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac 33607, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac 33607, France.,Institute of Biophysics, AS CR, Brno 61265, Czech Republic
| | - Mauro Freccero
- Dipartimento di Chimica, Università di Pavia, Pavia 27100, Italy
| |
Collapse
|
13
|
Doria F, Salvati E, Pompili L, Pirota V, D'Angelo C, Manoli F, Nadai M, Richter SN, Biroccio A, Manet I, Freccero M. Dyads of G‐Quadruplex Ligands Triggering DNA Damage Response and Tumour Cell Growth Inhibition at Subnanomolar Concentration. Chemistry 2019; 25:11085-11097. [DOI: 10.1002/chem.201900766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Filippo Doria
- Department of ChemistryUniversity of Pavia V. le Taramelli 10 27100 Pavia Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic UnitIRCCS Regina Elena National Cancer Institute Via Elio Chianes 53 00144 Rome Italy
- Present address: Institute of Molecular Biology and Pathology (IBPM)National Research Council (CNR) Via degli Apuli 4 00185 Rome Italy
| | - Luca Pompili
- Oncogenomic and Epigenetic UnitIRCCS Regina Elena National Cancer Institute Via Elio Chianes 53 00144 Rome Italy
| | - Valentina Pirota
- Department of ChemistryUniversity of Pavia V. le Taramelli 10 27100 Pavia Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic UnitIRCCS Regina Elena National Cancer Institute Via Elio Chianes 53 00144 Rome Italy
| | - Francesco Manoli
- Institute for Organic Synthesis and Photoreactivity (ISOF)National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Matteo Nadai
- Department of Molecular MedicineUniversity of Padua Via Gabelli 63 35121 Padua Italy
| | - Sara N. Richter
- Department of Molecular MedicineUniversity of Padua Via Gabelli 63 35121 Padua Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic UnitIRCCS Regina Elena National Cancer Institute Via Elio Chianes 53 00144 Rome Italy
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF)National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Mauro Freccero
- Department of ChemistryUniversity of Pavia V. le Taramelli 10 27100 Pavia Italy
| |
Collapse
|
14
|
Zhang J, Ma H. Synthesis, Characterization, and Crystal Structures of Imides Condensed with p-Phenylamino(Phenyl) Amine and Fluorescence Property. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1873. [PMID: 31185634 PMCID: PMC6600954 DOI: 10.3390/ma12111873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
A series of aromatic diimide and monoimide compounds condensed with p-phenylamino(phenyl)amine were synthesized and confirmed by Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 Nuclear Magnetic Resonance (13C NMR), Fourier Transform Infrared Spectroscopy (FT-IR), Elemental Analysis (EA), and High Resolution Mass Spectroscopy (HRMS). Meanwhile, single crystal X-ray diffraction showed the existence of intermolecular N···O hydrogen bonds, which affected the thermal stabilities of corresponding compounds by the support of Thermalgravimetric Analysis (TGA) curves. The steady-state UV-vis absorption peaks of synthetic compounds 1-6 appeared in the range of 220-380 nm. Fluorescence emission spectra showed peaks in the range of 290-420 nm. Meanwhile, deep-blue or violet-blue emissions for 2, 4, and 5 in THF under excitations of 254 nm and 365 nm, respectively, were observed at room temperature in air. Furthermore, Differential pulse voltammetry (DPV) and cyclic voltammogram CV were conducted within -1.5-+1.5 V to show quasi-reversible behavior for conjugated compounds and irreversible behavior for less conjugated ones.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
15
|
Chen K, Zhao J, Li X, Gurzadyan GG. Anthracene–Naphthalenediimide Compact Electron Donor/Acceptor Dyads: Electronic Coupling, Electron Transfer, and Intersystem Crossing. J Phys Chem A 2019; 123:2503-2516. [PMID: 30860843 DOI: 10.1021/acs.jpca.8b11828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kepeng Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
- School of Chemistry and Chemical Engineering and Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Xiaoxin Li
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Gagik G. Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
| |
Collapse
|
16
|
Zuffo M, Stucchi A, Campos-Salinas J, Cabello-Donayre M, Martínez-García M, Belmonte-Reche E, Pérez-Victoria J, Mergny J, Freccero M, Morales J, Doria F. Carbohydrate-naphthalene diimide conjugates as potential antiparasitic drugs: Synthesis, evaluation and structure-activity studies. Eur J Med Chem 2019; 163:54-66. [DOI: 10.1016/j.ejmech.2018.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
|
17
|
Naphthalene Diimides as Multimodal G-Quadruplex-Selective Ligands. Molecules 2019; 24:molecules24030426. [PMID: 30682828 PMCID: PMC6384834 DOI: 10.3390/molecules24030426] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 02/03/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acids structures that can form in guanine-rich sequences. Following the observation that G-quadruplexes are particularly abundant in genomic regions related to cancer, such as telomeres and oncogenes promoters, several G-quadruplex-binding molecules have been developed for therapeutic purposes. Among them, naphthalene diimide derivatives have reported versatility, consistent selectivity and high affinity toward the G-quadruplex structures. In this review, we present the chemical features, synthesis and peculiar optoelectronic properties (absorption, emission, redox) that make naphtalene diimides so versatile for biomedical applications. We present the latest developments on naphthalene diimides as G-quadruplex ligands, focusing on their ability to bind G-quadruplexes at telomeres and oncogene promoters with consequent anticancer activity. Their different binding modes (reversible versus irreversible/covalent) towards G-quadruplexes and their additional use as antimicrobial agents are also presented and discussed.
Collapse
|
18
|
Kumari B, Yadav A, Pany SP, Pradeepkumar PI, Kanvah S. Cationic red emitting fluorophore: A light up NIR fluorescent probe for G4-DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:128-136. [PMID: 30529810 DOI: 10.1016/j.jphotobiol.2018.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 01/23/2023]
Abstract
Guanine (G) quadruplexes (G4) are nucleic acid secondary structures formed by G-rich sequences, commonly found in human telomeric and oncogene-promoter regions, have emerged as targets for regulation of multiple biological processes. Considering their importance, targeting the G-quadruplex structure with small molecular binders is extremely pertinent. In this work, red emitting water soluble fluorophores bearing push-pull substituents were synthesized and examined for their interaction with human telomeric G4 and duplex (ds) -DNAs. The presence of a strong electron donating (dimethylamino) and electron withdrawing (cationic pyridinium) groups linked through a conjugated double bond helps in water solubility and enabling the emission in the near IR region (>700-nm). Binding of this cationic dye to the G4-DNA yields multiple-fold emission enhancement (~70 fold with G4-DNA vs. ~7 fold with ds-DNA) along with hypsochromic wavelength shifts (35 nm with G4-DNA and 8 nm with ds-DNA). The remarkable emission changes, ~2-4 fold enhanced binding efficiency noted with the antiparallel conformation of G4-DNA indicates preferential selectivity over ds-DNA. The molecular docking and dynamics studies of the ligands with duplex and G4-DNA were performed, and they provide insights into the mode of binding of these dyes with G4-DNA and supplement the experimental observations.
Collapse
Affiliation(s)
- Beena Kumari
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382 355, India
| | - Akanksha Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Sushree P Pany
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382 355, India.
| |
Collapse
|
19
|
Yang C, Hu R, Li Q, Li S, Xiang J, Guo X, Wang S, Zeng Y, Li Y, Yang G. Visualization of Parallel G-Quadruplexes in Cells with a Series of New Developed Bis(4-aminobenzylidene)acetone Derivatives. ACS OMEGA 2018; 3:10487-10492. [PMID: 30320244 PMCID: PMC6173478 DOI: 10.1021/acsomega.8b01190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplexes (G4s) are unique four-stranded nucleic acid secondary structures formed by G-rich nucleic acid sequences which are prevalent in gene promoter and telomere regions and deemed to play essential roles in many biological and pathological processes. Although attentions to G4s have been paid for nearly 40 years, G4 selectivity and its topology discrimination in cells is still pending. Small fluorescence molecules are emerging as a versatile tool of interrogation of cellular features in vivo. Herein, a new class of bis(4-aminobenzylidene)acetone derivatives GD1, GD2, and GD3 with excellent environment-sensitive emission properties were developed and used for fluorescent detection of G4s. Among them, compound GD3 owning four methoxy groups presented preferable capability of lighting up parallel G4s with a strong red-emission enhancement. The photophysical property of GD3 was systematically investigated to elucidate the turn-on mechanism of GD3 toward parallel G4 structures, which reveal that the binding-induced polarity change of the microenvironment around GD3 together with the fluorophore conformational confinement affected the molecular intramolecular charge-transfer state and resulted the enhanced emission. G4s staining with GD3 in fixed cells was further applied, demonstrating GD3 a promising probe with the ability to visualize the distribution of G4 structures in biological processes. In general, this study provides a new potential scaffold-bis(4-aminobenzylidene)acetone-for design of G4-selective fluorescence probes.
Collapse
Affiliation(s)
- Chenlin Yang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hu
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Li
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuang Li
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Xiang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xudong Guo
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangqing Wang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zeng
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Yang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Ramani P, Cauteruccio S, Licandro E, Baldoli C. Synthesis of luminescent 2,3-diphenylmaleimide-labelled peptide nucleic acid oligomers. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Doria F, Nadai M, Zuffo M, Perrone R, Freccero M, Richter SN. A red-NIR fluorescent dye detecting nuclear DNA G-quadruplexes: in vitro analysis and cell imaging. Chem Commun (Camb) 2018; 53:2268-2271. [PMID: 28149992 PMCID: PMC5471928 DOI: 10.1039/c6cc08492c] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Light-up of nuclear G-quadruplex DNA in cells by an aggregating and red/NIR emitting dye.
Aggregation, red-NIR emission and light-up upon nucleic acid G-quadruplex binding have been investigated for a prototype core-extended naphthalene diimide, which is capable of fast cellular entry and nucleolar localization. Both high-level colocalization with an anti-G-quadruplex antibody and nucleolin displacement reveal that the compound targets and thus makes visible nuclear DNA G-quadruplexes.
Collapse
Affiliation(s)
- F Doria
- Dept. of Chemistry, University of Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| | - M Nadai
- Dept. of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| | - M Zuffo
- Dept. of Chemistry, University of Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| | - R Perrone
- Dept. of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| | - M Freccero
- Dept. of Chemistry, University of Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| | - S N Richter
- Dept. of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
22
|
Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández‐Lodeiro J, Fernández‐Lodeiro A, Djafari J, Capelo JL, Lodeiro C. Green and Red Fluorescent Dyes for Translational Applications in Imaging and Sensing Analytes: A Dual-Color Flag. ChemistryOpen 2018; 7:9-52. [PMID: 29318095 PMCID: PMC5754553 DOI: 10.1002/open.201700135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 01/17/2023] Open
Abstract
Red and green are two of the most-preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune-staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most-relevant results on the use of red and green fluorescent dyes in the fields of bio-, chemo- and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron-dipyrromethene (BODIPY), 7-nitobenz-2-oxa-1,3-diazole-4-yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P-oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed.
Collapse
Affiliation(s)
- Elisabete Oliveira
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Emilia Bértolo
- Biomolecular Research GroupSchool of Human and Life SciencesCanterbury Christ Church UniversityCanterburyCT1 1QUUK
| | - Cristina Núñez
- Research UnitHospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS)27003LugoSpain
| | - Viviane Pilla
- Instituto de FísicaUniversidade Federal de Uberlândia-UFUAv. João Naves de Ávila 2121Uberlândia, MG38400-902Brazil
| | - Hugo M. Santos
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Javier Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Adrian Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Jamila Djafari
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - José Luis Capelo
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Carlos Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| |
Collapse
|
23
|
Jarosova P, Paroulek P, Rajecky M, Rajecka V, Taborska E, Eritja R, Aviñó A, Mazzini S, Gargallo R, Taborsky P. Naturally occurring quaternary benzo[c]phenanthridine alkaloids selectively stabilize G-quadruplexes. Phys Chem Chem Phys 2018; 20:21772-21782. [DOI: 10.1039/c8cp02681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the interaction of six natural benzo[c]phenanthridine alkaloids (macarpine, sanguilutine, sanguirubine, chelerythrine, sanguinarine and chelirubine) with parallel and antiparallel G-quadruplex DNA structures was studied.
Collapse
Affiliation(s)
- Petra Jarosova
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Petr Paroulek
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Michal Rajecky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | | | - Eva Taborska
- Faculty of Medicine
- Masaryk University
- Brno 62500
- Czech Republic
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Stefania Mazzini
- Department of Food
- Environmental and Nutritional Sciences (DEFENS)
- Section of Chemical and Biomolecular Sciences
- University of Milan
- Milan 20133
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Petr Taborsky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| |
Collapse
|
24
|
Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev 2018; 47:1098-1131. [DOI: 10.1039/c7cs00774d] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our review presents the recent progress on far-red fluorescent probes of canonical and non-canonical nucleic acid (NA) structures, critically discusses the design principles, applications, limitations and outline the future prospects of developing newer probes with target-specificity for different NA structures.
Collapse
Affiliation(s)
- Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Sumon Pratihar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
25
|
Hangarge RV, La DD, Boguslavsky M, Jones LA, Kim YS, Bhosale SV. An Aza‐12‐crown‐4 Ether‐Substituted Naphthalene Diimide Chemosensor for the Detection of Lithium Ion. ChemistrySelect 2017. [DOI: 10.1002/slct.201702085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rahul V. Hangarge
- School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Duong Duc La
- School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Miron Boguslavsky
- School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Lathe A. Jones
- School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science RMIT University GPO Box 2476 Melbourne 3001 Victoria Australia
| | - Yong Shin Kim
- Department of Applied Chemistry Hanyang University Ansan 15588, Republic of Korea
| | | |
Collapse
|
26
|
Grande V, Doria F, Freccero M, Würthner F. An Aggregating Amphiphilic Squaraine: A Light-up Probe That Discriminates Parallel G-Quadruplexes. Angew Chem Int Ed Engl 2017; 56:7520-7524. [DOI: 10.1002/anie.201702096] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| | - Filippo Doria
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Mauro Freccero
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
27
|
Grande V, Doria F, Freccero M, Würthner F. An Aggregating Amphiphilic Squaraine: A Light-up Probe That Discriminates Parallel G-Quadruplexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| | - Filippo Doria
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Mauro Freccero
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
28
|
Valetti S, Wankar J, Ericson MB, Feiler A, Manet I. Mesoporous silica particles as a lipophilic drug vehicle investigated by fluorescence lifetime imaging. J Mater Chem B 2017; 5:3201-3211. [PMID: 32263718 DOI: 10.1039/c7tb00198c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three types of new label-free fluorescent mesoporous silica micro- and nanoparticles were prepared by controlled thermal decomposition of carboamino groups linked on the surface without compromising the drug loading capacity of the silica particles. Clofazimine, a lipophilic antibiotic drug with excellent in vitro activity against mycobacterium tuberculosis, was encapsulated inside these fluorescent particles to obtain multifunctional drug carriers of interest in the field of theranostics. The morphological features together with the photophysical properties of both powders and aqueous suspensions are described. The photophysical properties seem to be independent of the mesoporosity features but correlate with the residual carboamino functionalization. The particles are endowed with emission in the visible region and have fluorescence lifetimes of up to 9.0 ns that can be easily discriminated from intrinsic biological fluorescence. Furthermore, their fluorescence lifetime offers a promising tool to follow the release of the encapsulated drug which is not possible by means of simple fluorescence intensity. We report here a novel attractive theranostic platform enabling monitoring of drug release in biological environments by means of fluorescence lifetime.
Collapse
|
29
|
Lee S, Miao F, Phan H, Herng TS, Ding J, Wu J, Kim D. Radical and Diradical Formation in Naphthalene Diimides through Simple Chemical Oxidation. Chemphyschem 2017; 18:591-595. [DOI: 10.1002/cphc.201700015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Sangsu Lee
- Department of Chemistry and Spectroscopy, Laboratory for Functional π-Electronic Systems; Yonsei University; Seoul 03722 Korea
| | - Fang Miao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Hoa Phan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Tun Seng Herng
- Department of Materials Science & Engineering; National University of Singapore; 119260 Singapore Singapore
| | - Jun Ding
- Department of Materials Science & Engineering; National University of Singapore; 119260 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Dongho Kim
- Department of Chemistry and Spectroscopy, Laboratory for Functional π-Electronic Systems; Yonsei University; Seoul 03722 Korea
| |
Collapse
|
30
|
Arévalo-Ruiz M, Doria F, Belmonte-Reche E, De Rache A, Campos-Salinas J, Lucas R, Falomir E, Carda M, Pérez-Victoria JM, Mergny JL, Freccero M, Morales JC. Synthesis, Binding Properties, and Differences in Cell Uptake of G-Quadruplex Ligands Based on Carbohydrate Naphthalene Diimide Conjugates. Chemistry 2017; 23:2157-2164. [PMID: 27925323 DOI: 10.1002/chem.201604886] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/06/2022]
Abstract
The G-quadruplexes (G4s) are currently being explored as therapeutic targets in cancer and other pathologies. Six carbohydrate naphthalene diimide conjugates (carb-NDIs) have been synthesized as G4 ligands to investigate their potential selectivity in G4 binding and cell penetration. Carb-NDIs have shown certain selectivity for G4 structures against DNA duplexes, but different sugar moieties do not induce a preference for a specific G4 topology. Interestingly, when monosaccharides were attached through a short ethylene linker to the NDI scaffold, their cellular uptake was two- to threefold more efficient than that when the sugar was directly attached through its anomeric position. Moreover, a correlation between more efficient cell uptake of these carb-NDIs and their higher toxicity in cancerous cell lines has been observed. Carb-NDIs seem to be mainly translocated into cancer cells through glucose transporters (GLUT), of which GLUT4 plays a major role.
Collapse
Affiliation(s)
- Matilde Arévalo-Ruiz
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Efres Belmonte-Reche
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Aurore De Rache
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Jenny Campos-Salinas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Ricardo Lucas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - José María Pérez-Victoria
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Jean-Louis Mergny
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| |
Collapse
|
31
|
Li ZQ, Liao TC, Dong C, Yang JW, Chen XJ, Liu L, Luo Y, Liang YY, Chen WH, Zhou CQ. Specifically targeting mixed-type dimeric G-quadruplexes using berberine dimers. Org Biomol Chem 2017; 15:10221-10229. [DOI: 10.1039/c7ob02326j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Berberine dimer (1a) with the shortest polyether linker demonstrates highest binding affinity, selectivity and thermal stabilization towards mixed-type dimeric quadruplexes.
Collapse
|
32
|
Zuffo M, Doria F, Botti S, Bergamaschi G, Freccero M. G-quadruplex fluorescence sensing by core-extended naphthalene diimides. Biochim Biophys Acta Gen Subj 2016; 1861:1303-1311. [PMID: 27902935 DOI: 10.1016/j.bbagen.2016.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Fluorescent sensing of G-quadruplex nucleic acids (G4s) is an effective strategy to elucidate their role in vitro and in vivo. Small molecule ligands have often been exploited, producing an emission light up upon binding. Naphthalene diimides (NDIs), although potent G4 binders exhibiting red-NIR fluorophores, have only been marginally exploited, as they are usually quenched upon binding. Contrary, aggregating core-extended naphthalene diimides (cex-NDIs) proved to be effective probes. METHODS We prepared a library of eighteen cex-NDIs by organic synthesis, characterising their aggregation-dependent absorption and emission properties. Absorption and emission titrations, fluorescent intercalator displacement assay (FID) and circular dichroism (CD) analysis were performed to elucidate their behavior as G4 fluorescent sensors, selectivity and binding mode. RESULTS cex-NDIs aggregate under aqueous solvents and as a result, their fluorescence is mostly quenched under physiological conditions. Upon G4 binding, they disaggregate into binding monomers, producing a fluorescent light-up with anti-parallel and hybrid G4s. Contrary, with parallel G4s a light-off was recorded. For the formers a groove-like interaction was inferred by ICD signals, while for the latter an end-stacking interaction mode was hypothesized by G4-FID data. CONCLUSIONS cex-NDIs G4 sensing mechanism works via a induced disaggregation. The emission response depends on the G4 topology, which dictates the prevailing -groove or end-stacking- binding mode. GENERAL SIGNIFICANCE This study highlights the potential of cex-NDIs as G4 fluorescent probes. Besides being readily synthesized and conveniently emitting above 600nm, they light-up upon binding to anti-parallel and hybrid G4, complementing a number of other probes' selectivity for the parallel topology. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Michela Zuffo
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| | - Filippo Doria
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| | - Silvia Botti
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| | - Greta Bergamaschi
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| | - Mauro Freccero
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
33
|
Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chem Rev 2016; 116:11685-11796. [DOI: 10.1021/acs.chemrev.6b00160] [Citation(s) in RCA: 557] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohammad Al Kobaisi
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sidhanath V. Bhosale
- Polymers
and Functional Materials Division, CSIR-Indian Institute of Chemical Technology
, Hyderabad, Telangana-500007, India
| | - Kay Latham
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Aaron M. Raynor
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sheshanath V. Bhosale
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| |
Collapse
|
34
|
Chauhan A, Paladhi S, Debnath M, Dash J. Selective recognition of c-MYC G-quadruplex DNA using prolinamide derivatives. Org Biomol Chem 2016; 14:5761-7. [DOI: 10.1039/c6ob00177g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the design, synthesis, biophysical and biological evaluation of triazole containing prolinamide derivatives as selectivec-MYCG-quadruplex binding ligands.
Collapse
Affiliation(s)
- Ajay Chauhan
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Sushovan Paladhi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| | - Manish Debnath
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Jyotirmayee Dash
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| |
Collapse
|
35
|
Salvati E, Doria F, Manoli F, D'Angelo C, Biroccio A, Freccero M, Manet I. A bimodal fluorescent and photocytotoxic naphthalene diimide for theranostic applications. Org Biomol Chem 2016; 14:7238-49. [DOI: 10.1039/c6ob00987e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the bimodal activity of a water-soluble tetracationic naphthalene diimide as red light emitter for fluorescence imaging, including fluorescence-lifetime imaging, and singlet oxygen photosensitizer, inducing photocytotoxicity in cancer cells.
Collapse
Affiliation(s)
- Erica Salvati
- Oncogenomic and Epigenetic Unit
- Regina Elena National Cancer Institute
- 53 Rome
- Italy
| | - Filippo Doria
- Dipartimento di Chimica
- Università di Pavia
- 27100 Pavia
- Italy
| | - Francesco Manoli
- Istituto per la Sintesi Organica e la Fotoreattività
- Consiglio Nazionale delle Ricerche
- 40129 Bologna
- Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit
- Regina Elena National Cancer Institute
- 53 Rome
- Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit
- Regina Elena National Cancer Institute
- 53 Rome
- Italy
| | - Mauro Freccero
- Dipartimento di Chimica
- Università di Pavia
- 27100 Pavia
- Italy
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività
- Consiglio Nazionale delle Ricerche
- 40129 Bologna
- Italy
| |
Collapse
|
36
|
Chen X, Wang J, Jiang G, Zu G, Liu M, Zhou L, Pei R. The development of a light-up red-emitting fluorescent probe based on a G-quadruplex specific cyanine dye. RSC Adv 2016. [DOI: 10.1039/c6ra11152a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyanine dye-dimethylindole red containing an anionic propylsulfonate substituent and an extending polymethine chain was found to behave as a highly specific red-emitting G-quadruplex probe, especially for parallel G-quadruplex c-myc.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jine Wang
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Guimei Jiang
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Guangyue Zu
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Min Liu
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Lu Zhou
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
37
|
Perrone R, Doria F, Butovskaya E, Frasson I, Botti S, Scalabrin M, Lago S, Grande V, Nadai M, Freccero M, Richter SN. Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes. J Med Chem 2015; 58:9639-52. [PMID: 26599611 PMCID: PMC4690987 DOI: 10.1021/acs.jmedchem.5b01283] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
We have previously reported that
stabilization of the G-quadruplex
structures in the HIV-1 long terminal repeat (LTR) promoter suppresses
viral transcription. Here we sought to develop new G-quadruplex ligands
to be exploited as antiviral compounds by enhancing binding toward
the viral G-quadruplex structures. We synthesized naphthalene diimide
derivatives with a lateral expansion of the aromatic core. The new
compounds were able to bind/stabilize the G-quadruplex to a high extent,
and some of them displayed clear-cut selectivity toward the viral
G-quadruplexes with respect to the human telomeric G-quadruplexes.
This feature translated into low nanomolar anti-HIV-1 activity toward
two viral strains and encouraging selectivity indexes. The selectivity
depended on specific recognition of LTR loop residues; the mechanism
of action was ascribed to inhibition of LTR promoter activity in cells.
This is the first example of G-quadruplex ligands that show increased
selectivity toward the viral G-quadruplexes and display remarkable
antiviral activity.
Collapse
Affiliation(s)
- Rosalba Perrone
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia , V.le Taramelli 10, 27100 Pavia, Italy
| | - Elena Butovskaya
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Silvia Botti
- Department of Chemistry, University of Pavia , V.le Taramelli 10, 27100 Pavia, Italy
| | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Sara Lago
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Vincenzo Grande
- Department of Chemistry, University of Pavia , V.le Taramelli 10, 27100 Pavia, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia , V.le Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
38
|
Zuffo M, Doria F, Spalluto V, Ladame S, Freccero M. Red/NIR G-Quadruplex Sensing, Harvesting Blue Light by a Coumarin-Naphthalene Diimide Dyad. Chemistry 2015; 21:17596-600. [DOI: 10.1002/chem.201503020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/09/2015] [Indexed: 12/22/2022]
|
39
|
Switch-on fluorescence scheme for antibiotics based on a magnetic composite probe with aptamer and hemin/G-quadruplex coimmobilized nano-Pt-luminol as signal tracer. Talanta 2015; 147:296-301. [PMID: 26592610 DOI: 10.1016/j.talanta.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 11/22/2022]
Abstract
A selective and facile fluorescence "switch-on" scheme is developed to detect antibiotics residues in food, using chloramphenicol (CAP) as model, based on a novel magnetic aptamer probe (aptamer-Pt-luminol nanocomposite labeled with hemin/G-quadruplex). Firstly, the composite probe is prepared through the immuno-reactions between the capture beads (anti-dsDNA antibody labeled on magnetic Dynabeads) and the nanotracer (nano-Pt-luminol labeled with double-strand aptamer, as ds-Apt, and hemin/G-quadruplex). When the composite probe is mixed with CAP, the aptamer preferentially reacted with CAP to decompose the double-strand aptamer to ssDNA, which cannot be recognized by the anti-dsDNA antibody on the capture probes. Thus, after magnetic separation, the nanotracer can be released into the supernatant. Because the hemin/G-quadruplex and PtNPs in nanotracer can catalyze luminol-H2O2 system to emit fluorescence. Thus a dual-amplified "switch-on" signal appeared, of which intensity is proportional to the concentration of CAP between 0.001 and 100ng mL(-1) with detection limit of 0.0005ng mL(-1) (S/N=3). Besides, our method has good selectivity and was employed for CAP detection in real milk samples. The results agree well with those from conventional gas chromatograph-mass spectrometer (GC-MS). The switch-on signal is produced by one-step substitution reaction between aptamer in nanotracer and target. When the analyte is changed, the probe can be refabricated only by changing the corresponding aptamer. Thus, all features above prove our strategy to be a facile, feasible and selective method in antibiotics screening for food safety.
Collapse
|
40
|
A Selective G-Quadruplex DNA-Stabilizing Ligand Based on a Cyclic Naphthalene Diimide Derivative. Molecules 2015; 20:10963-79. [PMID: 26076114 PMCID: PMC6272171 DOI: 10.3390/molecules200610963] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 02/02/2023] Open
Abstract
A cyclic naphthalene diimide (cyclic NDI, 1), carrying a benzene moiety as linker chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or thrombin-binding aptamer (TBA) studied based on UV-VIS and circular dichroism (CD) spectroscopic techniques, thermal melting temperature measurement, and FRET-melting assay. The circular dichroism spectra showed that 1 induced the formation of different types of G-quadruplex DNA structure. Compound 1 bound to these G-quadruplexes with affinities in the range of 106–107 M−1 order and a 2:1 stoichiometry. Compound 1 showed 270-fold higher selectivity for a-core than dsDNA with a preferable a-core binding than a-coreTT, c-kit, c-myc and TBA in the presence of K+, which is supported by thermal melting studies. The FRET-melting assay also showed that 1 bound preferentially to human telomeric DNA. Compound 1 showed potent inhibition against telomerase activity with an IC50 value of 0.9 μM and preferable binding to G-quadruplexes DNA than our previously published cyclic NDI derivative 3 carrying a benzene moiety as longer linker chain.
Collapse
|