1
|
García JF, Reguera D, Valls A, Aviñó A, Dominguez A, Eritja R, Gargallo R. Detection of pyrimidine-rich DNA sequences based on the formation of parallel and antiparallel triplex DNA and fluorescent silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122752. [PMID: 37084680 DOI: 10.1016/j.saa.2023.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this work, the use of DNA-stabilized fluorescent silver nanoclusters for the detection of target pyrimidine-rich DNA sequences by formation of parallel and antiparallel triplex structures is studied by molecular fluorescence spectroscopy. In the case of parallel triplexes, the probe DNA fragments are Watson-Crick stabilized hairpins, and whereas in the case of antiparallel triplexes, the probe fragments are reverse-Hoogsteen clamps. In all cases, the formation of the triplex structures has been assessed by means of polyacrylamide gel electrophoresis, circular dichroism, and molecular fluorescence spectroscopies, as well as multivariate data analysis methods. The results have shown that it is possible the detection of pyrimidine-rich sequences with an acceptable selectivity by using the approach based on the formation of antiparallel triplex structures.
Collapse
Affiliation(s)
- Juan Fernando García
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - David Reguera
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Andrea Valls
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Arnau Dominguez
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
2
|
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. Logic-Gated Proximity Aptasensing for Cell-Surface Real-Time Monitoring of Apoptosis. Angew Chem Int Ed Engl 2021; 60:20858-20864. [PMID: 34309152 DOI: 10.1002/anie.202106651] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/15/2022]
Abstract
In nature, intact apoptotic cells release ATP as a signaling molecule to trigger prompt phagocytic clearance, even at the earliest stage of apoptosis. Inspired by this, here we introduce a straightforward strategy for real-time monitoring ATP exocytosis and drug-stimulated apoptosis in the cancer cell surroundings. Triplex-boosted G-quadruplexes (tb-G4s) responding to cell environmental factors (H+ and K+ ) are engineered to construct a DNA logic-gated nanoplatform for proximity ATP aptasensing on the cell surface. It enables the real-time monitoring of cell apoptosis by capturing released endogenous ATP during chemotherapy drug stimulation, providing a sensitive approach for dynamically evaluating drug-induced apoptosis and therapeutic efficacy.
Collapse
Affiliation(s)
- Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. Logic‐Gated Proximity Aptasensing for Cell‐Surface Real‐Time Monitoring of Apoptosis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Zheng
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Qiwei Wang
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Lin Shi
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Pai Peng
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Lili Shi
- Department of Chemistry Anhui University 111 Jiulong Road Hefei Anhui 230601 China
| | - Tao Li
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
4
|
Xu S, Jiang L, Wang J, Gao Y, Luo X. Ratiometric Multicolor Analysis of Intracellular MicroRNA Using a Chain Hybrid Substitution-Triggered Self-Assembly of Silver Nanocluster-Based Label-Free Sensing Platform. ACS APPLIED MATERIALS & INTERFACES 2020; 12:373-379. [PMID: 31840494 DOI: 10.1021/acsami.9b19709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A simple and label-free sensing platform with low background based on the chain-displacement triggered self-assembly of Ag NCs was developed for ratiometric visual analysis of intracellular miRNA-21. Based on this sensitively ratiometric sensing approach, a picomole limit detection for miRNA-21 can be obtained. Most importantly, compared with the traditional single base mismatch detection method, our proposed method can realize single base mismatch detection according to the remarkable fluorescence color conversion, rather than simple fluorescence intensity change, which can obviously improve the accuracy and reliability. In addition, successful multicolor real-time monitoring of intracellular miRNA-21 makes the probe a potential candidate for miRNA-21 inhibiting drug screening. Furthermore, MCF-7, HeLa, and normal L02 cells can also be visually differentiated according to the fluorescence color by using the label-free sensing platform, showing its potential prospect in target visual analysis.
Collapse
Affiliation(s)
- Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Liping Jiang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Jun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yuhuan Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
5
|
Bao X, Liu J, Zheng Q, Pei W, Yang Y, Dai Y, Tu T. Visual recognition of melamine in milk via selective metallo-hydrogel formation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Feng B, Wang K, Yang Y, Wang G, Zhang H, Liu Y, Jiang K. Ultrasensitive recognition of AP sites in DNA at the single-cell level: one molecular rotor sequentially self-regulated to form multiple different stable conformations. Chem Sci 2019; 10:10373-10380. [PMID: 32110326 PMCID: PMC6988597 DOI: 10.1039/c9sc04140k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/20/2019] [Indexed: 01/22/2023] Open
Abstract
The AP site is a primary form of DNA damage. Its presence alters the genetic structure and eventually causes malignant diseases. AP sites generally present a high-speed dynamic change in the DNA sequence. Thus, precisely recognizing AP sites is difficult, especially at the single-cell level. To address this issue, we provide a broad-spectrum strategy to design a group of molecular rotors, that is, a series of nonfluorescent 2-(4-vinylbenzylidene)malononitrile derivatives (BMN-Fluors), which constantly display molecular rotation in a free state. Interestingly, after activating the relevant specific-recognition reaction (i.e., hydrolysis reaction of benzylidenemalononitrile) only in the AP-site cavity within a short time (approximately 300 s), each of these molecules can be fixed into this cavity and can sequentially self-regulate to form different stable conformations in accordance with the cavity size. The different stable conformations possess various HOMO-LUMO energy gaps in their excited state. This condition enables the AP site to emit different fluorescence signals at various wavelengths. Given the different self-regulation abilities of the conformations, the series of molecules, BMN-Fluors, can emit different types of signals, including an "OFF-ON" single-channel signal, a "ratio" double-channel signal, and even a precise multichannel signal. Among the BMN-Fluors derivatives, d1-BMN can sequentially self-regulate to form five stable conformations, thereby resulting in the emission of a five-channel signal for different AP sites in situ. Thus, d1-BMN can be used as a probe to ultrasensitively recognize the AP site with precise fluorescent signals at the single-cell level. This design strategy can be generalized to develop additional single-channel to multichannel signal probes to recognize other specific sites in DNA sequences in living organisms.
Collapse
Affiliation(s)
- Beidou Feng
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Kui Wang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Yonggang Yang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Ge Wang
- Xinxiang Medical University , Xinxiang 453000 , P. R. China
| | - Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Yufang Liu
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Kai Jiang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| |
Collapse
|
7
|
Feng B, Wang K, Liu J, Mao G, Cui J, Xuan X, Jiang K, Zhang H. Ultrasensitive Apurinic/Apyrimidinic Site-Specific Ratio Fluorescent Rotor for Real-Time Highly Selective Evaluation of mtDNA Oxidative Damage in Living Cells. Anal Chem 2019; 91:13962-13969. [PMID: 31580062 DOI: 10.1021/acs.analchem.9b03494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The unrepaired apurinic/apyrimidinic site (AP site) in mitochondrial DNA (mtDNA) promotes misincorporation of nucleotides and further causes serious damage for the living organism. Thus, accurate quantitative detection of AP sites in mtDNA in a rapid, highly sensitive, and highly selective fashion is important for the real-time evaluation of mtDNA oxidative damage. In this study, a targeting mtDNA ultrasensitive AP site-specific fluorescent rotor (BTBM-CN2) was designed by the strategy of molecular conformation torsion adjustment ratio fluorescent signal. The specific recognition reaction is activated when it encountered AP sites in mtDNA within 20 s, and BTBM-CN2 presented a "turn-on" red fluorescence signal at 598 nm. Then, about 100 s later, BTBM-CN2 emitted a new green fluorescence signal at 480 nm, which is mainly due to the activation of the rate-limiting reaction. With increasing numbers of AP sites (1-40 in 1 × 105 bp of mtDNA), the fluorescence emission at 598 nm decreased gradually, and the new emission at 480 nm increased. Intracellular experiments indicated that BTBM-CN2 could detect AP sites in mtDNA in a rapid and quantitative fashion with high selectivity and ultrasensitivity. On the basis of the emergence of the fluorescence signal at 480 nm and its signal strength, the cell whose mtDNA was damaged could be screened by flow cytometry and its degree of damage could be evaluated in real time by comet assay. Hence, the rotor may have potential applications varying from accurate and ultrasensitive detection of AP sites to the real-time evaluation of the oxidative damage in living cells.
Collapse
|
8
|
Xu L, Li D, Jiang B, Xiang Y, Yuan R. Melamine-Mediated Base Mismatch for Label-Free and Amplified Sensitive Fluorescent Detection of Melamine in Milk. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01465-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Conical nanofluidic channel for selective quantitation of melamine in combination with β-cyclodextrin and a single-walled carbon nanotube. Biosens Bioelectron 2019; 127:200-206. [DOI: 10.1016/j.bios.2018.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Target-switched triplex nanotweezer and synergic fluorophore translocation for highly selective melamine assay. Mikrochim Acta 2018; 186:42. [PMID: 30569196 DOI: 10.1007/s00604-018-3134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
This paper describes a triplex DNA nanotweezer to specifically capture melamine (MEL). The triplex-forming oligonucleotide (TFO) arm can be switched from the open state to the closed state once MEL binds to the abasic site (AP site) in duplex via the bifacial hydrogen bonding with thymines. Following this nanotweezer operation, the AP site-bound fluorophore is translocated to the terminal triplet to subsequently light up the nanotweezer. The TFO arm is found to be pivotal for permitting the AP site binding. The synergic processes of target competition and fluorophore translocation support a high selectivity for the MEL assay even against the inherent adenosine and the MEL hydrolysis products. Chelerythrine is employed as the fluorescent probe. The detection limit of MEL was estimated to be about 140 nM assuming a signal-to-noise ratio of 3. It was applied to the determination of MEL in spiked milk samples without any separation procedure. Conceivably, this method opens a new avenue towards highly selective triplex-based sensors by making use of other commercially available DNA modifications for recognizing other analytes. Graphical abstract Schematic presentation of a triplex nanotweezer with an open-to-close conversion upon the abasic site binding of melamine. The assay is based on a synergic fluorophore translocation. The corresponding duplex otherwise shows no binding with melamine. Chelerythrine (CHE) with a yellow-green emission peaking at 544 nm is employed as the fluorescent probe.
Collapse
|
11
|
Walsh S, El-Sagheer AH, Brown T. Fluorogenic thiazole orange TOTFO probes stabilise parallel DNA triplexes at pH 7 and above. Chem Sci 2018; 9:7681-7687. [PMID: 30393529 PMCID: PMC6182420 DOI: 10.1039/c8sc02418a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
The instability of DNA triplexes particularly at neutral pH and above severely limits their applications. Here, we demonstrate that the introduction of a thiazole orange (TO) intercalator onto a thymine nucleobase in triplex forming oligonucleotides (TFOs) resolves this problem. The stabilising effects are additive; multiple TO units produce nanomolar duplex binding and triplex stability can surpass that of the underlying duplex. In one example, a TFO containing three TO units increased the triplex melting temperature at pH 7 by a remarkable 50 °C relative to the unmodified triplex. Notably, TO intercalation promotes TFO binding to target sequences other than pure polypurine tracts by the use of 5-(1-propynyl)cytosine (pC) against C:G inversions. By overcoming the instability of triplexes across a broad range of pH and sequence contexts, these very simple 'TOTFO' probes could expand triplex applications into many areas including diagnostics and cell imaging.
Collapse
Affiliation(s)
- Sarah Walsh
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
- ATDBio Ltd. , Oxford Science Park , Oxford , UK
| | - Afaf Helmy El-Sagheer
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
- Chemistry Branch , Department of Science and Mathematics , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
| |
Collapse
|
12
|
Leng X, Tu Y, Wu Y, Wang Y, Liu S, Pei Q, Cui X, Huang J. Exonuclease III-aided recycling amplification of proximity ligation assay using thymine-melamine-thymine triplex structure for ultrasensitive fluorometric determination of melamine. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Li H, Somerson J, Xia F, Plaxco KW. Electrochemical DNA-Based Sensors for Molecular Quality Control: Continuous, Real-Time Melamine Detection in Flowing Whole Milk. Anal Chem 2018; 90:10641-10645. [PMID: 30141321 PMCID: PMC6555152 DOI: 10.1021/acs.analchem.8b01993] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability to monitor specific molecules in real-time directly in a flowing sample stream and in a manner that does not adulterate that stream could greatly augment quality control in, for example, food processing and pharmaceutical manufacturing. Because they are continuous, reagentless, and able to work directly in complex samples, electrochemical DNA-based (E-DNA) sensors, a modular and, thus, general sensing platform, are promising candidates to fill this role. In support, we describe here an E-DNA sensor supporting the continuous, real-time measurement of melamine in flowing milk. Using target-driven DNA triplex formation to generate an electrochemical output, the sensor responds to rising and falling melamine concentration in seconds without contaminating the product stream. The continuous, autonomous, real-time operation of sensors such as this could provide unprecedented safety, convenience, and cost-effectiveness relative to the batch processes historically employed in molecular quality control.
Collapse
Affiliation(s)
- Hui Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jacob Somerson
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Nguyen TH, Nguyen TD, Ly NH, Kwak CH, Huh YS, Joo SW. On-site detection of sub-mg/kg melamine mixed in powdered infant formula and chocolate using sharp-edged gold nanostar substrates. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1017-1026. [DOI: 10.1080/19440049.2018.1466399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thi Ha Nguyen
- Department of Information Communication, Materials, Chemistry Convergence Technology, Soongsil University, Seoul, Republic of Korea
- Department of Chemistry, Soongsil University, Seoul, Republic of Korea
| | - Thanh Danh Nguyen
- Department of Information Communication, Materials, Chemistry Convergence Technology, Soongsil University, Seoul, Republic of Korea
- Department of Chemistry, Soongsil University, Seoul, Republic of Korea
| | - Nguyen Hoang Ly
- Department of Chemistry, Soongsil University, Seoul, Republic of Korea
| | | | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon Republic of Korea
| | - Sang-Woo Joo
- Department of Information Communication, Materials, Chemistry Convergence Technology, Soongsil University, Seoul, Republic of Korea
- Department of Chemistry, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Liu X, Xu N, Gai P, Li F. Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine. Talanta 2018; 185:352-358. [PMID: 29759211 DOI: 10.1016/j.talanta.2018.03.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/11/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Since melamine is a strong hazard to human health, the development of new methods for highly sensitive detection of melamine is highly desirable. Herein, a novel fluorescent biosensing strategy was designed for sensitive and selective melamine assay based on the recognition ability of abasic (AP) site in triplex towards melamine and signal amplification by Mg2+-dependent DNAzyme. In this strategy, the melamine-induced formation of triplex DNA was employed to trigger the strand displacement reaction (SDR). The SDR process converted the specific target recognition into the release and activation of Mg2+-dependent DNAzyme, which could catalyze the cleavage of fluorophore/quencher labeled DNA substrate (FQ), resulting in a significantly increased fluorescent signal. Under the optimal conditions, the fluorescent signal has a linear relationship with the logarithm of the melamine concentration in a wide range of 0.005-50 μM. The detection limit was estimated to be 0.9 nM (0.1ppb), which is sufficiently sensitive for practical application. Furthermore, this strategy exhibits high selectivity against other potential interfering substances, and the practical application of this strategy for milk samples reveals that the proposed strategy works well for melamine assay in real samples. Therefore, this strategy presents a new method for the sensitive melamine assay and holds great promise for sensing applications in the environment and the food safety field.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ningning Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Key Laboratory of Applied Mycology of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China.
| |
Collapse
|
16
|
Han X, Qin Z, Zhao M, Song J, Qu F, Qu F, Kong RM. Convenient and sensitive colorimetric detection of melamine in dairy products based on Cu(ii)-H2O2-3,3′,5,5′-tetramethylbenzidine system. RSC Adv 2018; 8:34877-34882. [PMID: 35547033 PMCID: PMC9087323 DOI: 10.1039/c8ra07167e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
The illegal adulteration of melamine in dairy products for false protein content increase is a strong hazard to human health. Herein, a simple and sensitive colorimetric method was developed for the quantification of melamine in dairy products based on a Cu2+-hydrogen peroxide (H2O2)-3,3′,5,5′-tetramethylbenzidine (TMB) system. In this strategy, Cu2+ exhibits peroxidase-like activity and can catalyze the oxidation of TMB to oxidized TMB (oxTMB) in the presence of H2O2 with a blue colour change of the solution. However, the presence of melamine quickly interacts with H2O2 leading to the consumption of H2O2 and thus strongly hinders the oxidation of TMB. Under the optimal conditions, the absorbance change of oxTMB has a linear response to the concentration of melamine from 1 to 100 μM with a detection limit of 0.5 μM for melamine. The proposed method has many merits including more simplicity, good selectivity, and more cost-effectiveness without using any nanomaterials. The method was further successfully applied to detect melamine in dairy products including milk and infant formula powder. Convenient and sensitive colorimetric detection of melamine in dairy products based on a Cu(ii)-H2O2-3,3′,5,5′-tetramethylbenzidine system was reported.![]()
Collapse
Affiliation(s)
- Xue Han
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Zhixin Qin
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Mengyao Zhao
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Jiajia Song
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Fei Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| |
Collapse
|
17
|
Ge L, Sun X, Hong Q, Li F. Ratiometric Catalyzed-Assembly of NanoCluster Beacons: A Nonenzymatic Approach for Amplified DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32089-32096. [PMID: 28849916 DOI: 10.1021/acsami.7b09034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a novel fluorescent transformation phenomenon of oligonucleotide-encapsulated silver nanoclusters (AgNCs) was demonstrated, in which green-emissive AgNCs effectively transformed to red-emissive AgNCs when placed in close proximity to a special DNA fragment (denoted as convertor here). Taking advantage of a catalyzed-hairpin-assembly (CHA) amplification strategy, we rationally and compatibly engineered a simple and sensitive AgNC-based fluorescent signal amplification strategy through the ratiometric catalyzed-assembly (RCA) of green-emissive NanoCluster Beacon (NCB) with a convertor modified DNA hairpin to induce the template transformation circularly. The proposed ratiometric fluorescent biosensing platform based on RCA-amplified NCB (RCA-NCB) emits intense green fluorescence in the absence of target DNA and will undergo consecutively fluorescent signal transformation from green emission to red emission upon exposure to its target DNA. The ratiometric adaptation of the NCB to CHA circuit advances their general usability as biosensing platform with great improvements in detection sensitivity. By measuring the fluorescence intensity ratio of the red emission and green emission, the proposed RCA-NCB platform exhibits sensitive and accurate analytical performance toward Werner Syndrome-relevant gene, the proof-of-concept target in this work. A low detection limit down to the pM level was achieved, which is lower than most of the reported AgNC-based fluorescent DNA biosensors, making the proposed RCA-NCB biosensing strategy appealing in amplifying the ratiometric fluorescent signal for sensitive DNA detection. Moreover, our proposed RCA-NCB platform shows good recovery toward the target DNA in real human serum samples, illustrating their potential promise for clinical and imaging applications in the future.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Ximei Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Qing Hong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| |
Collapse
|
18
|
Liu X, Song M, Li F. Triplex DNA-based Bioanalytical Platform for Highly Sensitive Homogeneous Electrochemical Detection of Melamine. Sci Rep 2017; 7:4490. [PMID: 28674450 PMCID: PMC5495805 DOI: 10.1038/s41598-017-04812-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
Melamine detection has attracted much attention since the discovery of the damage of melamine to human health. Herein, we have developed a sensitive homogeneous electroanalytical platform for melamine detection, which is relied on the formation of triplex molecular beacon integrated with exonuclease III (Exo III)-mediated signal amplification. The formation of triplex molecular beacon was triggered by the recognition and incorporation of melamine to the abasic (AP) site contained in the triplex stem. The stem of the triplex molecular beacon was designed to have a protruding double-strand DNA, which can be recognized and hydrolyzed by Exo III for releasing methylene blue (MB)-labeled mononucleotide. These released MB molecules exhibit high diffusivity toward indium tin oxide electrode with negative charge, thus producing a significantly increased electrochemical response. Taking advantages of the high binding affinity of the DNA triplex structure containing AP sites towards melamine and the unique features of Exo III, this sensing platform is capable for sensitive and selective melamine assay with a detection limit as low as 8.7 nM. Furthermore, this strategy shows good applicability for melamine assay in real samples. Therefore, this strategy broadens the application of triplex DNA and presents a new method for sensitive detection of melamine.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengmeng Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
19
|
Hu H, Zhang J, Ding Y, Zhang X, Xu K, Hou X, Wu P. Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine. Anal Chem 2017; 89:5101-5106. [DOI: 10.1021/acs.analchem.7b00666] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | | | | | | |
Collapse
|
20
|
Li J, Si L, Bao J, Wang Z, Dai Z. Fluorescence Regulation of Poly(thymine)-Templated Copper Nanoparticles via an Enzyme-Triggered Reaction toward Sensitive and Selective Detection of Alkaline Phosphatase. Anal Chem 2017; 89:3681-3686. [DOI: 10.1021/acs.analchem.6b05112] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junyao Li
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials and Jiangsu Key Laboratory
of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People’s Republic of China
| | - Ling Si
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials and Jiangsu Key Laboratory
of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People’s Republic of China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials and Jiangsu Key Laboratory
of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People’s Republic of China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials and Jiangsu Key Laboratory
of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People’s Republic of China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials and Jiangsu Key Laboratory
of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
21
|
Zhou W, Dong S. A new AgNC fluorescence regulation mechanism caused by coiled DNA and its applications in constructing molecular beacons with low background and large signal enhancement. Chem Commun (Camb) 2017; 53:12290-12293. [DOI: 10.1039/c7cc06872g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A AgNC fluorescence interference strategy caused by a coiled DNA sequence (A) and its applications in target DNA detection (B).
Collapse
Affiliation(s)
- Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
22
|
Farzan VM, Markelov ML, Skoblov AY, Shipulin GA, Zatsepin TS. Specificity of SNP detection with molecular beacons is improved by stem and loop separation with spacers. Analyst 2017; 142:945-950. [DOI: 10.1039/c6an02441f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dissection of stem and loop regions in molecular beacons by nucleotide or non-nucleotide linkers minimizes nonspecific recognition in SNP discrimination.
Collapse
Affiliation(s)
- Valentina M. Farzan
- Skolkovo Institute of Science and Technology
- 3 Nobel Street
- Innovation Center “Skolkovo”
- 143026 Skolkovo
- Russia
| | | | | | | | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology
- 3 Nobel Street
- Innovation Center “Skolkovo”
- 143026 Skolkovo
- Russia
| |
Collapse
|
23
|
Fu C, Liu C, Li Y, Guo Y, Luo F, Wang P, Guo L, Qiu B, Lin Z. Homogeneous Electrochemical Biosensor for Melamine Based on DNA Triplex Structure and Exonuclease III-Assisted Recycling Amplification. Anal Chem 2016; 88:10176-10182. [DOI: 10.1021/acs.analchem.6b02753] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | | | - Peilong Wang
- Key
Laboratory of Agrifood Safety and Quality, Ministry of Agriculture,
Institute of Quality Standards and Testing Technology for Agro-products, China Agricultural Academy of Science, Beijing 100081, People’s Republic of China
| | | | | | | |
Collapse
|
24
|
Recent Progresses in Nanobiosensing for Food Safety Analysis. SENSORS 2016; 16:s16071118. [PMID: 27447636 PMCID: PMC4970161 DOI: 10.3390/s16071118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.
Collapse
|
25
|
Zhou F, Feng B, Yu H, Wang D, Wang T, Liu J, Meng Q, Wang S, Zhang P, Zhang Z, Li Y. Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics 2016; 6:679-87. [PMID: 27022415 PMCID: PMC4805662 DOI: 10.7150/thno.14556] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
Theranostic nanomedicine has emerged as a promising modality for cancer diagnosis and treatment. In this study, we report the fabrication of fluorescence gold nanoclusters (GNC) conjugated with a cisplatin prodrug and folic acid (FA) (FA-GNC-Pt) for fluorescence imaging and targeted chemotherapy of breast cancer. The physio-chemical properties of FA-GNC-Pt nanoparticles are thoroughly characterized by fluorescence/UV-Vis spectroscopic measurement, particle size and zeta-potential examination. We find that FA-modification significantly accelerated the cellular uptake and increased the cytotoxicity of GNC-Pt nanoparticles in murine 4T1 breast cancer cells. Fluorescence imaging in vivo using 4T1 tumor bearing nude mouse model shows that FA-GNC-Pt nanoparticles selectively accumulate in the orthotopic 4T1 tumor and generate strong fluorescence signal due to the tumor targeting effect of FA. Moreover, we demonstrate that FA-GNC-Pt nanoparticles significantly inhibit the growth and lung metastasis of the orthotopically implanted 4T1 breast tumors. All these data imply a good potential of the GNC-based theranostic nanoplatform for fluorescence tumor imaging and cancer therapy.
Collapse
|
26
|
Pramanik S, Bhalla V, Kumar M. Hexaphenylbenzene-Stabilized Luminescent Silver Nanoclusters: A Potential Catalytic System for the Cycloaddition of Terminal Alkynes with Isocyanides. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22786-22795. [PMID: 26420310 DOI: 10.1021/acsami.5b04377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A hexaphenylbenzene (HPB)-based derivative bearing thiol groups has been designed and synthesized that undergoes aggregation-induced emission enhancement in mixed aqueous media to form rodlike fluorescent aggregates. These rodlike aggregates behave as a "not quenched" probe for the detection of silver ions and further act as reactors and stabilizers for reducing-agent-free preparation of blue luminescent silver nanoclusters at room temperature. The utilization of fluorescent supramolecular aggregates for the preparation of Ag NCs in mixed aqueous media is unprecedented in the literature. Moreover, the wet chemical method that we are reporting in the present paper for the preparation of luminescent silver nanoclusters is better than the other methods reported in the literature. Further, these in situ generated Ag NCs showed exceptional catalytic activity in the preparation of pyrroles involving cocyclization of isocyanides and terminal alkynes. Interestingly, the catalytic efficiency of in situ generated Ag NCs was found to be better than the other catalytic systems reported in the literature.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University , Amritsar 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University , Amritsar 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University , Amritsar 143005, Punjab, India
| |
Collapse
|
27
|
Wang Y, Zhang J, Zhu L, Lu L, Feng C, Wang F, Xu Z, Zhang W. Activation of Mg2+-dependent DNAzymes based on AP site-containing triplex for specific melamine recognition. Analyst 2015; 140:7508-12. [DOI: 10.1039/c5an01515d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel strategy for melamine recognition based on melamine binding-triggered triplex formation and DNAzyme activity regulation was developed.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Junying Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Linling Zhu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Linlin Lu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Chongchong Feng
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Fengyang Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| |
Collapse
|