1
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Almeida C, Pedro AQ, Tavares APM, Neves MC, Freire MG. Ionic-liquid-based approaches to improve biopharmaceuticals downstream processing and formulation. Front Bioeng Biotechnol 2023; 11:1037436. [PMID: 36824351 PMCID: PMC9941158 DOI: 10.3389/fbioe.2023.1037436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The emergence of biopharmaceuticals, including proteins, nucleic acids, peptides, and vaccines, revolutionized the medical field, contributing to significant advances in the prophylaxis and treatment of chronic and life-threatening diseases. However, biopharmaceuticals manufacturing involves a set of complex upstream and downstream processes, which considerably impact their cost. In particular, despite the efforts made in the last decades to improve the existing technologies, downstream processing still accounts for more than 80% of the total biopharmaceutical production cost. On the other hand, the formulation of biological products must ensure they maintain their therapeutic performance and long-term stability, while preserving their physical and chemical structure. Ionic-liquid (IL)-based approaches arose as a promise alternative, showing the potential to be used in downstream processing to provide increased purity and recovery yield, as well as excipients for the development of stable biopharmaceutical formulations. This manuscript reviews the most important progress achieved in both fields. The work developed is critically discussed and complemented with a SWOT analysis.
Collapse
Affiliation(s)
- Catarina Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Augusto Q. Pedro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
3
|
An Overview on the Recent Advances in Alternative Solvents as Stabilizers of Proteins and Enzymes. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the use of alternative solvents is increasing, namely ionic liquids (ILs) and deep eutectic solvents (DESs) in diverse fields of knowledge, such as biochemistry, chemistry, chemical engineering, biotechnology and biomedicine. Particularly, when compared to traditional solvents, these alternative solvents have great importance for biomolecules due to the enhanced solubility, structure stability and the biological activity of biomolecules, such as protein and enzymes. Thus, in this review article, the recent developments and efforts on the technological developments carried out with ILs and DESs for the stabilization and activation of proteins and enzymes are provided. The most studied IL- and DES-based formulations for proteins and enzymes are discussed and the molecular mechanisms and interactions related to the increased stability promoted by these alternative solvents are disclosed, while emphasizing their main advantages.
Collapse
|
4
|
Guncheva M. Role of ionic liquids on stabilization of therapeutic proteins and model proteins. Protein J 2022; 41:369-380. [PMID: 35661292 DOI: 10.1007/s10930-022-10058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) exhibit potential as excipients to stabilize proteins in solutions. This mini-review is not a detailed reference book on ILs, rather a brief overview of the main achievements published in the literature on their effect on protein aggregation, unfolding, structural and thermal stability, and activity. The main focus of the manuscript is three widely studied groups of ionic liquids: imidazolium-, cholinium- and alkylammonium-based and their effect on the model and therapeutic proteins.
Collapse
Affiliation(s)
- Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, 1113, Sofia, Bulgaria.
| |
Collapse
|
5
|
Imam HT, Krasňan V, Rebroš M, Marr AC. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis. Molecules 2021; 26:4791. [PMID: 34443378 PMCID: PMC8399596 DOI: 10.3390/molecules26164791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures. As the ionic liquid state of the art has progressed, concepts of what can be achieved in biocatalysis using ionic liquids have evolved and more beneficial effects have been discovered. In this review ionic liquids for whole-cell and isolated enzyme biocatalysis will be discussed with an emphasis on the latest developments, and a look to the future.
Collapse
Affiliation(s)
- Hasan Tanvir Imam
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| | - Vladimír Krasňan
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Andrew Craig Marr
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| |
Collapse
|
6
|
Wang ZX, Chen X, Han L, Liu HD, Guo JH, Zhao Y, Sun XL. Generation and application of a monoclonal antibody against the 18-kDa oncosphere antigen of Taenia pisiformis. Exp Parasitol 2021; 224:108096. [PMID: 33741338 DOI: 10.1016/j.exppara.2021.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/12/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022]
Abstract
Taenia pisiformis is a parasite that causes cysticercosis pisiformis, which has acquired economic relevance because of its effects on animal welfare and production. A useful assay for the detection of T. pisiformis is needed for the prevention of cysticercosis pisiformis and control of the parasite. The 18-kDa oncosphere antigen is expressed in the oncosphere of several cysticerci in species of the genus Taenia, including T. pisiformis. This protein plays an important role in tissue invasion and has extensive applications in diagnosis. In this study, the T. pisiformis 18-kDa oncosphere antigen (TPO18) was expressed in soluble form and successfully purified for use in the production of monoclonal antibodies (MAbs) against TPO18. Twenty hybridomas were obtained using ELISA, and the subcloning process identified three positive hybridoma cell lines, which were designated as 4E8, 5G5, and 7E8. MAb 7E8 exhibited the highest titer and had an IgG2b heavy chain and a kappa light chain. Western blot analysis demonstrated that MAb 7E8 reacted with GST-TPO18. Immunohistochemistry showed that TPO18 was widely distributed in the drape and wall of uteri in adults of T. pisiformis adults and in the fibrous layer of the sucker and cyst cavity of T. pisiformis cysticerci. This research will provide a foundation for the development of diagnostic tools and will contribute to a better understanding of the functions of TPO18.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Xi Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Liang Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Huai-Dong Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jun-Hui Guo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Yu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province 730070, People's Republic of China
| | - Xiao-Lin Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China.
| |
Collapse
|
7
|
Deepa PR, Nalini V, Surianarayanan M, Krishnakumar S. Towards safer non-volatile tissue fixatives: Evaluation of choline-based ionic liquids for fixing ocular tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111777. [PMID: 33352431 DOI: 10.1016/j.ecoenv.2020.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Volatile organic chemicals (VOCs) are routinely used for processing biological tissue samples in clinical laboratories. Recognizing their serious health and environmental impacts, a few non-volatile green solvents (choline based ionic liquids, ILs) were evaluated as tissue fixatives here. Microscopic evaluation of histo-morphology, fixation and staining quality, and macromolecular integrity (DNA and proteins) were assessed in human eye tissues (sclera, choroid, retinal layers and retinal pigmented epithelium, eyelid and orbit) after IL-fixation. Formalin-fixed tissues were used as standard reference. Microscopic examination revealed favorable histomorphology, tissue fixation and staining characteristics in most tissues immersed in ILs. Time taken to fix, and stability over a period of time (24 h, 48 h, 1 week, 1 month) was also recorded. Electrophoretic analysis revealed stability of cellular proteins and nucleic acids in IL-fixed scleral tissues. Heterogeneity in tissue fixation property relative to the type of ocular tissue, duration of fixation and storage, warrant further design and optimization of ILs to fix biological tissues. The simple cholinium salts based ILs tested here show favorable potential for tissue fixation application, and as an alternative approach to the use of VOCs, towards sustainable biomedical practice.
Collapse
Affiliation(s)
- P R Deepa
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani 333 031, Rajasthan, India.
| | - V Nalini
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani 333 031, Rajasthan, India; L&T Department of Ocular Pathology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, 600 006 Chennai, India
| | - M Surianarayanan
- Cell for Industrial Safety and Risk Analysis (CISRA), Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai, India
| | - S Krishnakumar
- L&T Department of Ocular Pathology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, 600 006 Chennai, India.
| |
Collapse
|
8
|
MacFarlane DR, Chong AL, Forsyth M, Kar M, Vijayaraghavan R, Somers A, Pringle JM. New dimensions in salt-solvent mixtures: a 4th evolution of ionic liquids. Faraday Discuss 2019; 206:9-28. [PMID: 29034392 DOI: 10.1039/c7fd00189d] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the field of ionic liquids (ILs) it has long been of fundamental interest to examine the transition from salt-in-solvent behaviour to pure liquid-salt behaviour, in terms of structures and properties. At the same time, a variety of applications have beneficially employed IL-solvent mixtures as media that offer an optimal set of properties. Their properties in many cases can be other than as expected on the basis of simple mixing concepts. Instead, they can reflect the distinct structural and interaction changes that occur as the mixture passes through the various stages from pure coulombic medium, to "plasticised" coulombic medium, into a meso-region where distinct molecular and ionic domains can co-exist. Such domains can persist to quite a high dilution into the salt-in-solvent regime and their presence manifests itself in a number of important synergistic interaction effects in diverse areas such as membrane transport and corrosion protection. Similarly, the use of ionic liquids in synthetic processes where there is a significant volume fraction of molecular species present can produce a variety of distinct and unexpected effects. The range of these salt-solvent mixtures is considerably broader than just those based on ionic liquids, since there is only minor value in the pure salt being a liquid at the outset. In other words, the extensive families of organic and metal salts become candidates for study and use. Our perspective then is of an evolution of ionic liquids into a broader field of fundamental phenomena and applications. This can draw on an even larger family of tuneable salts that exhibit an exciting combination of properties when mixed with molecular liquids.
Collapse
Affiliation(s)
- Douglas R MacFarlane
- School of Chemistry, The Australian Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic 3800, Australia.
| | - Alison L Chong
- School of Chemistry, The Australian Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic 3800, Australia.
| | - Maria Forsyth
- Institute for Frontier Materials, The Australian Centre of Excellence for Electromaterials Science Deakin University, Melbourne, Australia.
| | - Mega Kar
- School of Chemistry, The Australian Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic 3800, Australia.
| | - R Vijayaraghavan
- School of Chemistry, The Australian Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic 3800, Australia.
| | - Anthony Somers
- Institute for Frontier Materials, The Australian Centre of Excellence for Electromaterials Science Deakin University, Melbourne, Australia.
| | - Jennifer M Pringle
- Institute for Frontier Materials, The Australian Centre of Excellence for Electromaterials Science Deakin University, Melbourne, Australia.
| |
Collapse
|
9
|
Reslan M, Ranganathan V, Macfarlane DR, Kayser V. Choline ionic liquid enhances the stability of Herceptin® (trastuzumab). Chem Commun (Camb) 2018; 54:10622-10625. [PMID: 30177986 DOI: 10.1039/c8cc06397d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the effect of an emerging biocompatible ionic liquid, choline dihydrogen phosphate (CDHP), on the stability of high-concentration formulations of Herceptin® (trastuzumab). Our results show that CDHP significantly suppresses unfolding and aggregation of trastuzumab, demonstrating great promise as an additive in the development of stable therapeutic antibody formulations.
Collapse
Affiliation(s)
- Mouhamad Reslan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, 2006, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
10
|
Reslan M, Kayser V. Ionic liquids as biocompatible stabilizers of proteins. Biophys Rev 2018; 10:781-793. [PMID: 29511969 DOI: 10.1007/s12551-018-0407-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Ionic liquids (ILs) have recently emerged as versatile solvents and additives in the field of biotechnology, particularly as stabilizers of proteins and enzymes. Of interest to the biotechnology industry is the formulation of stable biopharmaceuticals, therapeutic proteins, and vaccines which have revolutionized the treatment of many diseases including debilitating conditions such as cancers and auto-immune diseases. The stabilization of therapeutic proteins is typically achieved using additives that prevent unfolding and aggregation of these proteins during manufacture, transport, and long-term storage. To determine if ILs could be used in the formulation of stable therapeutic proteins, a thorough understanding of the effects of ILs on protein stability is needed, as well as understanding the toxicity of ILs on humans, and other considerations for formulation development such as viscosity and osmolality. In this review, we summarize recent developments on the stabilization of proteins and enzymes using ILs, with emphasis on identifying biocompatible ILs that may be suitable for the formulation of stable biopharmaceuticals in the future.
Collapse
Affiliation(s)
- Mouhamad Reslan
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Veysel Kayser
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
11
|
Bisht M, Mondal D, Pereira MM, Freire MG, Venkatesu P, Coutinho JAP. Long-term protein packaging in bio-ionic liquids: Improved catalytic activity and enhanced stability of cytochrome C against multiple stresses. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2017; 19:4900-4911. [PMID: 30271272 PMCID: PMC6157724 DOI: 10.1039/c7gc02011b] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There is a considerable interest in the use of structurally stable and catalytically active enzymes, such as cytochrome C (Cyt C), in the pharmaceutical and fine chemical industries. However, harsh process conditions, such as temperature, pH, and presence of organic solvents, are the major barriers to the effective use of enzymes in biocatalysis. Herein, we demonstrate the suitability of bio-based ionic liquids (ILs) formed by the cholinium cation and dicarboxylate-based anions as potential media for enzymes, in which remarkable enhanced activity and improved stability of Cyt C against multiple stresses were obtained. Among the several bio-ILs studied, an exceptionally high catalytic activity (> 50-fold) of Cyt C was observed in aqueous solutions of cholinium glutarate ([Ch][Glu]; 1g/mL) as compared to the commonly used phosphate buffer solutions (pH 7.2), and > 25-fold as compared to aqueous solutions of cholinium dihydrogen phosphate ([Ch][Dhp]; 0.5g/mL) -the best known IL for long term stability of Cyt C. The catalytic activity of the enzyme in presence of bio-ILs was retained against several external stimulus, such as chemical denaturants (H2O2 and GuHCl), and temperatures up to 120 °C. The observed enzyme activity is in agreement with its structural stability, as confirmed by UV-Vis, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopies. Taking advantage of the multi-ionization states of di/tri-carboxylic acids, the pH was switched from acidic to basic by the addition of the corresponding carboxylic acid and choline hydroxide, respectively. The activity was found to be maximum at a 1:1 ratio of [Ch][carboxylate], with a pH in the range from 3 to 5.5. Moreover, it was found that the bio-ILs studied herein protect the enzyme against protease digestion and allow long-term storage (at least for 21 weeks) at room temperature. An attempt by molecular docking was also made to better understand the efficacy of the investigated bio-ILs towards the enhanced activity and long term stability of Cyt C. The results showed that dicarboxylates anions interact with the active site's amino acids of the enzyme through H-bonding and electrostatic interactions, which are responsible for the observed enhancement of the catalytic activity. Finally, it is demonstrated that Cyt C can be successfully recovered from the aqueous solution of bio-ILs and reused without compromising its yield, structural integrity and catalytic activity, thereby overcoming the major limitations in the use of IL-protein systems in biocatalysis.
Collapse
Affiliation(s)
- Meena Bisht
- Department of Chemistry, University of Delhi, Delhi – 110 007, India
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Dibyendu Mondal
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Matheus M. Pereira
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Mara G. Freire
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - P. Venkatesu
- Department of Chemistry, University of Delhi, Delhi – 110 007, India
| | - J. A. P. Coutinho
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
12
|
Bansal R, Dhawan S, Chattopadhyay S, Maurya GP, Haridas V, Rathore AS. Peptide Dendrons as Thermal-Stability Amplifiers for Immunoglobulin G1 Monoclonal Antibody Biotherapeutics. Bioconjug Chem 2017; 28:2549-2559. [DOI: 10.1021/acs.bioconjchem.7b00389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rohit Bansal
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sameer Dhawan
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Soumili Chattopadhyay
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Govind P. Maurya
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V. Haridas
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S. Rathore
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
13
|
Gadilohar BL, Shankarling GS. Choline based ionic liquids and their applications in organic transformation. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.136] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Fujita K, Sanada M, Ohno H. Sugar chain-binding specificity and native folding state of lectins preserved in hydrated ionic liquids. Chem Commun (Camb) 2015; 51:10883-6. [PMID: 26055529 DOI: 10.1039/c5cc03142g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lectins, dissolved and stored in hydrated cholinium dihydrogen phosphate, maintained recognition and binding affinity to specific sugar chains even after thermal treatment or long-term storage.
Collapse
Affiliation(s)
- Kyoko Fujita
- Department of Biotechnology and Life Science
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
- Functional Ionic Liquid Laboratories (FILL)
| | - Miki Sanada
- Department of Biotechnology and Life Science
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Hiroyuki Ohno
- Department of Biotechnology and Life Science
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
- Functional Ionic Liquid Laboratories (FILL)
| |
Collapse
|