1
|
Lourenço TC, de Mello LR, Icimoto MY, Bicev RN, Hamley IW, Castelletto V, Nakaie CR, da Silva ER. DNA-templated self-assembly of bradykinin into bioactive nanofibrils. SOFT MATTER 2023. [PMID: 37334565 DOI: 10.1039/d3sm00431g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Bradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils. Fluorescence assays hint that BK is more efficient at displacing minor-groove binders in comparison with base-intercalant dyes, thus, suggesting that interaction with DNA strands is mediated by electrostatic attraction between cationic groups at BK and the high negative electron density of minor-grooves. Our data also revealed an intriguing finding that BK-DNA complexes can induce a limited uptake of nucleotides by HEK-293t cells, which is a feature that has not been previously reported for BK. Moreover, we observed that the complexes retained the native bioactivity of BK, including the ability to modulate Ca2+ response into endothelial HUVEC cells. Overall, the findings presented here demonstrate a promising strategy for the fabrication of fibrillar structures of BK using DNA as a template, which keep bioactivity features of the native peptide and may have implications in the development of nanotherapeutics for hypertension and related disorders.
Collapse
Affiliation(s)
- Thiago C Lourenço
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Marcelo Y Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Renata N Bicev
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | | | - Clovis R Nakaie
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04062-000, Brazil.
| |
Collapse
|
2
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Chen L, Chen Y, Zhang Y, Liu Y. Photo‐Controllable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Chen
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yi Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
4
|
Photo‐Controllable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives. Angew Chem Int Ed Engl 2021; 60:7654-7658. [DOI: 10.1002/anie.202017001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/03/2021] [Indexed: 01/30/2023]
|
5
|
Yao Y, Wei X, Cai Y, Kong X, Chen J, Wu J, Shi Y. Hybrid supramolecular materials constructed from pillar[5]arene based host–guest interactions with photo and redox tunable properties. J Colloid Interface Sci 2018; 525:48-53. [DOI: 10.1016/j.jcis.2018.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
6
|
Li ZY, Chen Y, Wu H, Liu Y. Photoinduced Assembly/Disassembly of Supramolecular Nanoparticle Based on Polycationic Cyclodextrin and Azobenzene-Containing Surfactant. ChemistrySelect 2018. [DOI: 10.1002/slct.201703091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhong-Yi Li
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
| | - Huang Wu
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 China
| |
Collapse
|
7
|
Sun HL, Zhang YM, Chen Y, Liu Y. Polyanionic Cyclodextrin Induced Supramolecular Nanoparticle. Sci Rep 2016; 6:27. [PMID: 28442707 PMCID: PMC5431346 DOI: 10.1038/s41598-016-0026-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Ionizable cyclodextrins have attracted increasing attention in host–guest chemistry and pharmaceutical industry, mainly due to the introduction of favorable electrostatic interactions. The ionizable cyclodextrins could not only enhance its own solubility but also induce oppositely charged guests to form more stable complex. However, the aggregation induced by charged cyclodextrins has rarely been reported. In this work, guided by the concept of molecular-induced aggregation, a series of carboxyl modified cyclodextrins were synthesized via “click” and hydrolysis reaction. Then, UV-vis spectrum was used to investigate the aggregating behaviors induced by these cyclodextrins towards the cationic guest molecules. The results showed that only the hepta-carboxyl-β-cyclodextrin could induce the guest molecules to self-assemble into supramolecular spherical nanoparticles. Meanwhile, it could form stable inclusion complex with amantadine, a drug for anti-Parkinson and antiviral. The assembly behaviors were investigated by dynamic light scattering, scanning electron microscope, atomic force microscope, transmission electron microscope and NMR spectroscopy. The supramolecular nanoparticles induced by hepta-carboxyl-β-CD and its inclusion with amantadine could be used to encapsulate the model drug and achieve its controlled releasing behaviors.
Collapse
Affiliation(s)
- He-Lue Sun
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ying-Ming Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
8
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
9
|
Shi RJ, Chen Y, Hou XF, Liu Y. Effect of head/tail groups on molecular induced aggregation of polycationic cyclodextrin towards anionic surfactants. RSC Adv 2016. [DOI: 10.1039/c5ra28043e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A polycationic cyclodextrin significantly decreased the critical aggregation concentrations of anionic surfactants with different head/tail groups by a factor of 14–467 through the molecular induced aggregation.
Collapse
Affiliation(s)
- Rui-Juan Shi
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Xiao-Fang Hou
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| |
Collapse
|
10
|
Hu P, Chen Y, Li JJ, Liu Y. Construction, Enzyme Response, and Substrate Capacity of a Hyaluronan-Cyclodextrin Supramolecular Assembly. Chem Asian J 2015; 11:505-11. [PMID: 26556213 DOI: 10.1002/asia.201501029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 01/08/2023]
Abstract
A supramolecular assembly was constructed with a cationic cyclodextrin (EICD) and native hyaluronan (HA). The cationic carboxylic ester pendants on HA support hyaluronidase (HAase)-responsive sites and the EICD supports artificial carboxylic esterase responsive sites. Substrate-binding models were investigated by using environment-sensitive fluorescence probes 2-p-toluidino-6-naphthalenesulfoniate sodium (2,6-TNS) and thioflavin T (ThT). On a HA/EICD assembly, EICD was able to bind an anionic substrate and HA and EICD constructed the cationic substrate binding site together. This assembly could be used as a sequential dual-substrate carrier.
Collapse
Affiliation(s)
- Ping Hu
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yong Chen
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China
| | - Jing-Jing Li
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu Liu
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China.
| |
Collapse
|
11
|
Hu P, Chen Y, Liu Y. Hyaluronan/Ru( ii)-cyclodextrin supramolecular assemblies for colorimetric sensor of hyaluronidase activity. RSC Adv 2015. [DOI: 10.1039/c5ra19122j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hyaluronidase-induced colorimetric change was found in a hyaluronan/Ru(ii)-cyclodextrin supramolecular assembly under a laser (532 nm) irradiation.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|