1
|
Gu C, Zhu S, Gu Z. Advances in bismuth utilization for biomedical applications – From a bibliometric perspective. Coord Chem Rev 2024; 517:215988. [DOI: 10.1016/j.ccr.2024.215988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Janisse SE, Fernandez RL, Heffern MC. Characterizing metal-biomolecule interactions by mass spectrometry. Trends Biochem Sci 2023; 48:815-825. [PMID: 37433704 DOI: 10.1016/j.tibs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023]
Abstract
Metal micronutrients are essential for life and exist in a delicate balance to maintain an organism's health. The labile nature of metal-biomolecule interactions clouds the understanding of metal binders and metal-mediated conformational changes that are influential to health and disease. Mass spectrometry (MS)-based methods and technologies have been developed to better understand metal micronutrient dynamics in the intra- and extracellular environment. In this review, we describe the challenges associated with studying labile metals in human biology and highlight MS-based methods for the discovery and study of metal-biomolecule interactions.
Collapse
Affiliation(s)
- Samuel E Janisse
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA
| | - Rebeca L Fernandez
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA
| | - Marie C Heffern
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Yan X, Zhou Y, Li H, Jiang G, Sun H. Metallomics and metalloproteomics. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:53-76. [DOI: 10.1016/b978-0-12-823144-9.00060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Liu J, Li X, Zhu Y, Ge R. Molecular Mechanisms of Bismuth-containing Drugs Against Helicobacter pylori: a Further Update. CURRENT PHARMACOLOGY REPORTS 2022; 9:59-65. [DOI: 10.1007/s40495-022-00305-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/04/2025]
|
5
|
Janisse SE, Sharma VA, Caceres A, Medici V, Heffern MC. Systematic evaluation of Copper(II)-loaded immobilized metal affinity chromatography for selective enrichment of copper-binding species in human serum and plasma. Metallomics 2022; 14:mfac059. [PMID: 35929804 PMCID: PMC9434637 DOI: 10.1093/mtomcs/mfac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022]
Abstract
Copper is essential in a host of biological processes, and disruption of its homeostasis is associated with diseases including neurodegeneration and metabolic disorders. Extracellular copper shifts in its speciation between healthy and disease states, and identifying molecular components involved in these perturbations could widen the panel of biomarkers for copper status. While there have been exciting advances in approaches for studying the extracellular proteome with mass spectrometry-based methods, the typical workflows disrupt metal-protein interactions due to the lability of these bonds either during sample preparation or in gas-phase environments. We sought to develop and apply a workflow to enrich for and identify protein populations with copper-binding propensities in extracellular fluids using an immobilized metal affinity chromatography (IMAC) resin. The strategy was optimized using human serum to allow for maximum quantity and diversity of protein enrichment. Protein populations could be differentiated based on protein load on the resin, likely on account of differences in abundance and affinity. The enrichment workflow was applied to plasma samples from patients with Wilson's disease and protein IDs and differential abundancies relative to healthy subjects were compared to those yielded from a traditional proteomic workflow. While the IMAC workflow preserved differential abundance and protein ID information from the traditional workflow, it identified several additional proteins being differentially abundant including those involved in lipid metabolism, immune system, and antioxidant pathways. Our results suggest the potential for this IMAC workflow to identify new proteins as potential biomarkers in copper-associated disease states.
Collapse
Affiliation(s)
- Samuel E Janisse
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Vibha A Sharma
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Amanda Caceres
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 95817, USA
| | - Marie C Heffern
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun (Camb) 2022; 58:7466-7482. [PMID: 35730442 DOI: 10.1039/d2cc01772e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed over six million lives globally to date. Despite the availability of vaccines, the pandemic still cannot be fully controlled owing to rapid mutation of the virus that renders enhanced transmissibility and antibody evasion. This is thus an unmet need to develop safe and effective therapeutic options for COVID-19, in particular, remedies that can be used at home. Considering the great success of multi-targeted cocktail therapy for the treatment of viral infections, metal-based drugs might represent a unique and new source of antivirals that resemble a cocktail therapy in terms of their mode of actions. In this review, we first summarize the role that metal ions played in SARS-CoV-2 viral replication and pathogenesis, then highlight the chemistry of metal-based strategies in the fight against SARS-CoV-2 infection, including both metal displacement and chelation based approaches. Finally, we outline a perspective and direction on how to design and develop metal-based antivirals for the fight against the current or future coronavirus pandemic.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
7
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
8
|
Kumar S, Vinella D, De Reuse H. Nickel, an essential virulence determinant of Helicobacter pylori: Transport and trafficking pathways and their targeting by bismuth. Adv Microb Physiol 2022; 80:1-33. [PMID: 35489790 DOI: 10.1016/bs.ampbs.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Nickel is required for the pathogenicity of H. pylori. This bacterial pathogen colonizes the stomach of about half of the human population worldwide and is associated with gastric cancer that is responsible for 800,000 deaths per year. H. pylori possesses two nickel-enzymes that are essential for in vivo colonization, a [NiFe] hydrogenase and an abundant urease responsible for resistance to gastric acidity. Because of these two enzymes, survival of H. pylori relies on an important supply of nickel, implying tight control strategies to avoid its toxic accumulation or deprivation. H. pylori possesses original mechanisms for nickel uptake, distribution, storage and trafficking that will be discussed in this review. During evolution, acquisition of nickel transporters and specific nickel-binding proteins has been a decisive event to allow Helicobacter species to become able to colonize the stomach. Accordingly, many of the factors involved in these mechanisms are required for mouse colonization by H. pylori. These mechanisms are controlled at different levels including protein interaction networks, transcriptional, post-transcriptional and post-translational regulation. Bismuth is another metal used in combination with antibiotics to efficiently treat H. pylori infections. Although the precise mode of action of bismuth is unknown, many targets have been identified in H. pylori and there is growing evidence that bismuth interferes with the essential nickel pathways. Understanding the metal pathways will help improve treatments against H. pylori and other pathogens.
Collapse
Affiliation(s)
- Sumith Kumar
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Daniel Vinella
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
9
|
|
10
|
Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021; 50:12037-12069. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | - Philip C Andrews
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
11
|
Korkola NC, Hudson E, Stillman MJ. Structurally restricted Bi(III) metallation of apo-βMT1a: metal-induced tangling. Metallomics 2021; 13:6253221. [PMID: 33899918 DOI: 10.1093/mtomcs/mfab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022]
Abstract
Non-toxic bismuth salts are used in anti-ulcer medications and to protect against nephrotoxicity from anticancer drugs. Bismuth salts also induce metallothionein (MT), a metal-binding protein that lacks a formal secondary structure. We report the impact on the metallation properties of Bi(III) to the 9-cysteine β fragment of MT as a function of cysteine accessibility using electrospray ionization mass spectrometry. At pH 7.4, Bi2βMT formed cooperatively. Cysteine modification shows that each Bi(III) was terminally bound to three cysteinyl thiolates. Non-cooperative Bi(III) binding was observed at pH 2.3, where cysteine accessibility is increased. However, competition from H4EDTA inhibited Bi(III) binding. When GdmCl, a well-known denaturing agent, was used to increase cysteine accessibility of the apoβMT at pH 7.4, a greater fraction of Bi3βMT formed using all nine cysteines. The change in binding profile and equilibrium of Bi2βMT was determined as a function of acidification, which changed as a result of competition with H4EDTA. There was no Bi(III) transfer between Bi2βMT, Cd3βMT, and Zn3βMT. This lack of metal exchange and the resistance towards binding the third Bi(III) suggest a rigidity in the Bi2βMT binding sites that inhibits Bi(III) mobility. These experiments emphasize the conformational control of metallation that results in substantially different metallated products: at pH 7.4 (many cysteines buried) Bi2βMT, whereas at pH 7.4 (all cysteines accessible) enhanced formation of Bi3βMT. These data suggest that the addition of the first two Bi(III) crosslinks the protein, blocking access to the remaining three cysteines for the third Bi(III), as a result of tangle formation.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Elyse Hudson
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| |
Collapse
|
12
|
Bu S, Jiang G, Jiang G, Liu J, Lin X, Shen J, Xiong Y, Duan X, Wang J, Liao X. Antibacterial activity of ruthenium polypyridyl complexes against Staphylococcus aureus and biofilms. J Biol Inorg Chem 2020; 25:747-757. [PMID: 32564223 DOI: 10.1007/s00775-020-01797-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022]
Abstract
There is clearly a need for the development of new classes of antimicrobials to fight against multidrug-resistant bacteria. Here, we designed and synthesized of three ruthenium polypyridyl complexes: [Ru(bpy)2(BTPIP)](ClO4)2 (Ru(II)-1), [Ru(bpy)2(ETPIP)](ClO4)2 (Ru(II)-2) and [Ru(bpy)2(CAPIP)](ClO4)2 (Ru(II)-3) (N-N = bpy = 2,2'-bipyridine), their antimicrobial activities against S. aureus were assessed. The lead complexes of this set, Ru(II)-1(MIC = 0.016 mg/mL), was tested against biofilm. We also investigated whether bacteria can easily develop resistance to Ru(II)-1. The result demonstrated that S. aureus could not easily develop resistance to the ruthenium complexes. In addition, aimed to test whether ruthenium complexes treatment could increase the susceptibility of S. aureus to antibiotics, the synergism between Ru(II)-1 and common antibiotics against S. aureus were investigated using the checkerboard method. Interesting, Ru(II)-1 could increased the susceptibility of S. aureus to some aminoglycoside antibiotics(kanamycin and gentamicin). Finally, in vivo bacterial infection treatment studies were also conducted through murine skin infection model. These results confirmed ruthenium complexes have good antimicrobial activity in vitro and in vivo.
Collapse
Affiliation(s)
- Simeng Bu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Guijuan Jiang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jinyao Liu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiaoli Lin
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jihong Shen
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yanshi Xiong
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xuemin Duan
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jintao Wang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Xiangwen Liao
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
13
|
Wang H, Zhou Y, Xu X, Li H, Sun H. Metalloproteomics in conjunction with other omics for uncovering the mechanism of action of metallodrugs: Mechanism-driven new therapy development. Curr Opin Chem Biol 2020; 55:171-179. [PMID: 32200302 DOI: 10.1016/j.cbpa.2020.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Medicinal inorganic chemistry has been largely stimulated by the clinic success of platinum anticancer drugs. An array of metal-based drugs (e.g. platinum, gold, bismuth, and silver) are currently used clinically for the treatment of various diseases. Integrating multiomics approaches, particularly metalloproteomics, with other biochemical characterizations enables comprehensive understanding of cellular responses of metallodrugs, which in turn will guide the rational design of a new drug and modification of the presently used drugs. This review aims to summarize the recent progress in this area. We will describe the technology platforms and their applications for uncovering the mechanisms of action of metallodrugs, for which remarkable advances have been achieved recently. Moreover, we will also highlight the application of newly generated knowledge for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Ying Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Xiaohan Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| |
Collapse
|
14
|
Wang R, Li H, Ip TKY, Sun H. Bismuth drugs as antimicrobial agents. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Wang Y, Li H, Sun H. Metalloproteomics for Unveiling the Mechanism of Action of Metallodrugs. Inorg Chem 2019; 58:13673-13685. [PMID: 31298530 DOI: 10.1021/acs.inorgchem.9b01199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yuchuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
16
|
Sullivan MP, Morrow SJ, Goldstone DC, Hartinger CG. Gel electrophoresis in combination with laser ablation-inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin. Electrophoresis 2019; 40:2329-2335. [PMID: 31087392 DOI: 10.1002/elps.201900070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022]
Abstract
Cisplatin and its second and third generation analogues are widely used in the treatment of cancer. To study their reactions with proteins, we present a method based on SDS-PAGE separation and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for platinum detection in the reaction between human serum albumin (HSA) and cisplatin. We developed matrix-matched standards of HSA/cisplatin mixtures and used them to quantify the amount of adducts formed at different HSA:cisplatin ratios. We noted that cisplatin incubation with HSA resulted in the formation of higher order HSA n-mers, depending on the amount of cisplatin added. This caused a depletion of the HSA dimer bands, while the majority of HSA was present as the monomer. Inducing the formation of such higher molecular weight species may have an impact on the mode of action of metallodrugs.
Collapse
Affiliation(s)
- Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart J Morrow
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
17
|
Guo Y, Guan C, Wan H, Zhang Z, Li H, Sun H, Xia W. Inactivation of NikR from Helicobacter pylori by a bismuth drug. J Inorg Biochem 2019; 196:110685. [PMID: 30999221 DOI: 10.1016/j.jinorgbio.2019.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/18/2023]
Abstract
The NikR protein is an essential DNA regulator of Helicobacter pylori, a human pathogen, which infects almost half of the world's population. Herein, we comprehensively characterized the interaction of a bismuth drug with Helicobacter pylori NikR. We show that Bi(III) can occupy the high-affinity Ni(II) site of NikR. The highly-conserved residue Cys107 at this site is critical for Bi(III) binding. Importantly, such a binding disassembles physiologically functional NikR tetramer into inactive dimer, leading to abrogation of the DNA-binding capability of NikR. Bi(III)-binding also significantly disturbs regulatory function of Helicobacter pylori NikR in vivo. Therefore, NikR might serve as a potential intracellular target of a bismuth drug.
Collapse
Affiliation(s)
- Yu Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China, 510275
| | - Chujun Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China, 510275
| | - Heiyu Wan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China, 510275
| | - Zhengrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China, 510275
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China, 510275.
| |
Collapse
|
18
|
Chan S, Wang R, Man K, Nicholls J, Li H, Sun H, Chan GCF. A Novel Synthetic Compound, Bismuth Zinc Citrate, Could Potentially Reduce Cisplatin-Induced Toxicity Without Compromising the Anticancer Effect Through Enhanced Expression of Antioxidant Protein. Transl Oncol 2019; 12:788-799. [PMID: 30921749 PMCID: PMC6438849 DOI: 10.1016/j.tranon.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is a common anticancer drug, but it comes with significant nephrotoxicity. Further cisplatin-induced oxidative stress contributes to the pathogenesis of the nephrotoxicity. A new compound, BiZn, can potentially prevent this complication. We verified our postulation by in vitro and in vivo models. From our findings, BiZn did not affect cisplatin-induced cytotoxicity on neuroblastoma cells under both in vitro and in vivo settings. However, BiZn significantly reduced the blood urea nitrogen and creatinine levels in cisplatin-treated mice. Under the lethal dosage of cisplatin, co-treatment of BiZn significantly increased the survival rate. BiZn stimulated antioxidant proteins metallothionein (MT) and glutathione (GSH) generation from kidney cells and minimized cisplatin-induced apoptosis. Knocking down MT-IIA and inhibiting GSH abolished such protection. In conclusion, pretreatment of BiZn decreased cisplatin-induced renal toxicity without affecting its antitumor activity. BiZn-induced antioxidant proteins MT and GSH may contribute to the renal protection effect.
Collapse
Affiliation(s)
- Shing Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong
| | - Runming Wang
- Department of Chemistry, Faculty of Science, The University of Hong Kong
| | - Kwan Man
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong
| | - John Nicholls
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong
| | - Hongyan Li
- Department of Chemistry, Faculty of Science, The University of Hong Kong
| | - Hongzhe Sun
- Department of Chemistry, Faculty of Science, The University of Hong Kong.
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong.
| |
Collapse
|
19
|
Li H, Wang R, Sun H. Systems Approaches for Unveiling the Mechanism of Action of Bismuth Drugs: New Medicinal Applications beyond Helicobacter Pylori Infection. Acc Chem Res 2019; 52:216-227. [PMID: 30596427 DOI: 10.1021/acs.accounts.8b00439] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallodrugs have been widely used as diagnostic and therapeutic agents. Understanding their mechanisms of action may lead to advances in rational drug design. However, to achieve this, diversified approaches are required because of the complexity of metal-biomolecule interactions. Bismuth drugs in combination with antibiotics as a quadruple therapy show excellent success rates in the eradication of Helicobacter pylori, even for antibiotic-resistant strains, and in fact, they have been used in the clinic for decades for the treatment of infection. Understanding the mechanism of action of bismuth drugs may extend their medicinal application beyond the treatment of H. pylori infection. This Account describes several general strategies for mechanistic studies of metallodrugs, including system pharmacology and metalloproteomics approaches. The application of these approaches is exemplified using bismuth drugs. Through a system pharmacology approach, we showed that glutathione- and multidrug-resistance-associated protein 1-mediated self-propelled disposal of bismuth in human cells might explain the selective toxicity of bismuth drugs to H. pylori but not the human host. The development of metalloproteomics has enabled extensive studies of the putative protein targets of metallodrugs with a dynamic range of affinity. Continuous-flow GE-ICP-MS allows simultaneous monitoring of metals and their associated proteins with relatively high affinity on a proteome-wide scale. The fluorescence approach relies on unique M n+-NTA-based fluorescence probes and is particularly applicable for mining those proteins that bind to metals/metallodrugs weakly or transiently. Integration of these methods with quantitative proteomics makes it possible to maximum coverage of bismuth-associated proteins, and the sustained efficacy of bismuth drugs lies in their ability to disrupt multiple biological pathways through binding and functional perturbation of key enzymes. The knowledge acquired by mechanistic studies of bismuth drugs led to the discovery of UreG as a new target for the development of urease inhibitors. The ability of Bi(III) to inhibit metallo-β-lactamase (MBL) activity through displacement of the Zn(II) cofactor renders bismuth drugs new potential as broad-spectrum inhibitors of MBLs. Therefore, bismuth drugs could be repurposed together with clinically used antibiotics as a cotherapy to cope with the current antimicrobial resistance crisis. We anticipate that the methodologies described in this Account are generally applicable for understanding the (patho)physiological roles of metals/metallodrugs. Our mechanism-guided discovery of new druggable targets as well as new medicinal applications of bismuth drugs will inspire researchers in relevant fields to engage in the rational design of drugs and reuse of existing drugs, eventually leading to the development of new effective therapeutics.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
20
|
Han B, Zhang Z, Xie Y, Hu X, Wang H, Xia W, Wang Y, Li H, Wang Y, Sun H. Multi-omics and temporal dynamics profiling reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. Chem Sci 2018; 9:7488-7497. [PMID: 30510674 PMCID: PMC6223348 DOI: 10.1039/c8sc01668b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Integration of multi-omics enables uncovering cellular responses to stimuli or the mechanism of action of a drug at a system level. Bismuth drugs have long been used for the treatment of Helicobacter pylori infection and their antimicrobial activity was attributed to dysfunction of multiple proteins based on previous proteome-wide studies. Herein, we investigated the response of H. pylori to a bismuth drug at transcriptome and metabolome levels. Our multi-omics data together with bioassays comprehensively reveal the impact of bismuth on a diverse array of intracellular pathways, in particular, disruption of central carbon metabolism is systematically evaluated as a primary bismuth-targeting system in H. pylori. Through temporal dynamics profiling, we demonstrate that bismuth initially perturbs the TCA cycle and then urease activity, followed by the induction of oxidative stress and inhibition of energy production, and in the meantime, induces extensive down-regulation in H. pylori metabolome. The present study thus expands our knowledge on the inhibitory actions of bismuth and provides a novel systematic perspective of H. pylori in response to a clinical drug that sheds light on enhanced therapeutic methodologies.
Collapse
Affiliation(s)
- Bingjie Han
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Zhen Zhang
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Yanxuan Xie
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Xuqiao Hu
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Haibo Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Wei Xia
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P. R. China
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Yuchuan Wang
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Hongzhe Sun
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| |
Collapse
|
21
|
Wang R, Lai TP, Gao P, Zhang H, Ho PL, Woo PCY, Ma G, Kao RYT, Li H, Sun H. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat Commun 2018; 9:439. [PMID: 29382822 PMCID: PMC5789847 DOI: 10.1038/s41467-018-02828-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Drug-resistant superbugs pose a huge threat to human health. Infections by Enterobacteriaceae producing metallo-β-lactamases (MBLs), e.g., New Delhi metallo-β-lactamase 1 (NDM-1) are very difficult to treat. Development of effective MBL inhibitors to revive the efficacy of existing antibiotics is highly desirable. However, such inhibitors are not clinically available till now. Here we show that an anti-Helicobacter pylori drug, colloidal bismuth subcitrate (CBS), and related Bi(III) compounds irreversibly inhibit different types of MBLs via the mechanism, with one Bi(III) displacing two Zn(II) ions as revealed by X-ray crystallography, leading to the release of Zn(II) cofactors. CBS restores meropenem (MER) efficacy against MBL-positive bacteria in vitro, and in mice infection model, importantly, also slows down the development of higher-level resistance in NDM-1-positive bacteria. This study demonstrates a high potential of Bi(III) compounds as the first broad-spectrum B1 MBL inhibitors to treat MBL-positive bacterial infection in conjunction with existing carbapenems.
Collapse
Affiliation(s)
- Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Tsz-Pui Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Peng Gao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongmin Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Pak-Leung Ho
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.
| |
Collapse
|
22
|
He X, Liao X, Li H, Xia W, Sun H. Bismuth-Induced Inactivation of Ferric Uptake Regulator from Helicobacter pylori. Inorg Chem 2017; 56:15041-15048. [DOI: 10.1021/acs.inorgchem.7b02380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaojun He
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangwen Liao
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, S.A.R, China
| | - Wei Xia
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongzhe Sun
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, S.A.R, China
| |
Collapse
|
23
|
Wang Y, Hu L, Xu F, Quan Q, Lai YT, Xia W, Yang Y, Chang YY, Yang X, Chai Z, Wang J, Chu IK, Li H, Sun H. Integrative approach for the analysis of the proteome-wide response to bismuth drugs in Helicobacter pylori. Chem Sci 2017. [PMID: 28626571 PMCID: PMC5471454 DOI: 10.1039/c7sc00766c] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An integrative metalloproteomic approach to unveil the role of antimicrobial metals in general using bismuth as an example.
Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that integration of in-house metalloproteomics and quantitative proteomics allows comprehensive uncovering of the bismuth-associated proteomes, including 63 bismuth-binding and 119 bismuth-regulated proteins from Helicobacter pylori, with over 60% being annotated with catalytic functions. Through bioinformatics analysis in combination with bioassays, we demonstrated that bismuth drugs disrupted multiple essential pathways in the pathogen, including ROS defence and pH buffering, by binding and functional perturbation of a number of key enzymes. Moreover, we discovered that HpDnaK may serve as a new target of bismuth drugs to inhibit bacterium-host cell adhesion. The integrative approach we report, herein, provides a novel strategy to unveil the molecular mechanisms of antimicrobial metals against pathogens in general. This study sheds light on the design of new types of antimicrobial agents with multiple targets to tackle the current crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Yuchuan Wang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China . .,School of Chemistry , Sun Yat-sen University , Guangzhou , P. R. China
| | - Ligang Hu
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Feng Xu
- Center for Genome Sciences , The University of Hong Kong , Hong Kong , P. R. China
| | - Quan Quan
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Yau-Tsz Lai
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Wei Xia
- School of Chemistry , Sun Yat-sen University , Guangzhou , P. R. China
| | - Ya Yang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Yuen-Yan Chang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Xinming Yang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Zhifang Chai
- CAS Key Laboratory of Nuclear Analytical Techniques , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing , P. R. China
| | - Junwen Wang
- Center for Genome Sciences , The University of Hong Kong , Hong Kong , P. R. China.,Center for Individualized Medicine , Department of Health Sciences Research , Mayo Clinic , Scottsdale , AZ 85259 , USA.,Department of Biomedical Informatics , Arizona State University , Scottsdale , AZ 85259 , USA
| | - Ivan K Chu
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Hongzhe Sun
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China . .,School of Chemistry , Sun Yat-sen University , Guangzhou , P. R. China
| |
Collapse
|
24
|
Synthesis of polymeric bismuth chlorido hydroxamato complexes; X-ray crystal structure and antibacterial activity of a novel Bi(III) salicylhydroxamato complex. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Chang YY, Cheng T, Yang X, Jin L, Sun H, Li H. Functional disruption of peroxiredoxin by bismuth antiulcer drugs attenuates Helicobacter pylori survival. J Biol Inorg Chem 2017; 22:673-683. [PMID: 28361362 DOI: 10.1007/s00775-017-1452-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 01/26/2023]
Abstract
Bismuth drugs have been used clinically to treat infections from Helicobacter pylori, a pathogen that is strongly related to gastrointestinal diseases even stomach cancer. Despite extensive studies, the mechanisms of action of bismuth drugs are not fully understood. Alkyl hydroperoxide reductase subunit C (AhpC) is the most abundant 2-cysteine peroxiredoxin, crucial for H. pylori survival in the host by defense of oxidative stress. Herein we show that a Bi(III) antiulcer drug (CBS) binds to the highly conserved cysteine residues (Cys49 and Cys169) with a dissociation constant (K d) of Bi(III) to AhpC of 3.0 (±1.0) × 10-24 M. Significantly the interaction of CBS with AhpC disrupts the peroxiredoxin and chaperone activities of the enzyme both in vitro and in bacterial cells, leading to attenuated bacterial survival. Moreover, using a home-made fluorescent probe, we demonstrate that Bi(III) also perturbs AhpC relocation between the cytoplasm and membrane region in decomposing the exogenous ROS. Our study suggests that disruption of redox homeostasis by bismuth drugs via interaction with key enzymes such as AhpC contributes to their antimicrobial activity.
Collapse
Affiliation(s)
- Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.,Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, People's Republic of China
| | - Xinming Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, People's Republic of China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
26
|
Wang Y, Wang H, Li H, Sun H. Application of Metallomics and Metalloproteomics for Understanding the Molecular Mechanisms of Action of Metal-Based Drugs. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:199-222. [DOI: 10.1007/978-3-319-55448-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Chang YY, Li H, Sun H. Immobilized Metal Affinity Chromatography (IMAC) for Metalloproteomics and Phosphoproteomics. INORGANIC AND ORGANOMETALLIC TRANSITION METAL COMPLEXES WITH BIOLOGICAL MOLECULES AND LIVING CELLS 2017:329-353. [DOI: 10.1016/b978-0-12-803814-7.00009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Xia W. Competition for Iron Between Host and Pathogen: A Structural Case Study on Helicobacter pylori. Methods Mol Biol 2017; 1535:65-75. [PMID: 27914073 DOI: 10.1007/978-1-4939-6673-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly successful bacterial pathogen, which colonizes the stomach of more than half of the world's population. To colonize and survive in such an acidic and inhospitable niche, H. pylori cells have evolved complex mechanisms to acquire nutrients from human hosts, including iron, an essential nutrient for both the pathogens and host cells. However, human cells also utilize diverse strategies in withholding of irons to prevent the bacterial outgrowth. The competition for iron is the central battlefield between pathogen and host. This mini-review summarizes the updated scenarios of the battle for iron between H. pylori and human host from a structural biology perspective.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China.
| |
Collapse
|
29
|
Keogan DM, Twamley B, Fitzgerald-Hughes D, Griffith DM. Novel class of Bi(iii) hydroxamato complexes: synthesis, urease inhibitory activity and activity against H. pylori. Dalton Trans 2016; 45:11008-11014. [PMID: 27314129 DOI: 10.1039/c5dt05061h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Reaction of Bi(NO3)3 with benzohydroxamic acid (Bha) and salicylhydroxamic acid (Sha) gives the novel Bi(iii) complexes [Bi2(Bha-1H)2(μ-Bha-1H)2(η(2)-NO3)2] () and [Bi6(CH3OH)2(η(1)-NO3)2(η(2)-NO3)(OH2)2(Sha-1H)12](NO3)2 (). X-ray crystal structure of reveals two hydroxamato coordination modes; bidentate bridging (O, O') and bidentate non-bridging (O, O') and of reveals one coordination mode; bidentate bridging (O, O'). , specifically designed to and demonstrated to inhibit the activity of urease, exhibits excellent antibacterial activity against three strains of Helicobacter pylori with MIC ≥ 16 μg mL(-1).
Collapse
Affiliation(s)
- D M Keogan
- Centre for Synthesis & Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | - B Twamley
- School of Chemistry, Chemistry Building, Trinity College Dublin, Dublin 2, Ireland
| | - D Fitzgerald-Hughes
- RCSI Microbiology, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - D M Griffith
- Centre for Synthesis & Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|