1
|
Guo D, Zhang Z, Sun J, Hou W, Du N. A primitive cell model involving Vesicles, microtubules and asters. J Colloid Interface Sci 2024; 675:700-711. [PMID: 38996700 DOI: 10.1016/j.jcis.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
HYPOTHESIS Simple single-chain amphiphiles (sodium monododecyl phosphate, SDP) and organic small molecules (isopentenol, IPN), both of primitive relevance, are proved to have been the building blocks of protocells on the early Earth. How do SDP-based membrane and coexisting IPN come together in specific ways to produce more complex chemical entities? What kind of cell-like behavior can be endowed with this protocell model? These are important questions in the pre-life chemical origin scenario that have not been answered to date. EXPERIMENTS The phase behavior and formation mechanism of the aggregates for SDP/IPN/H2O ternary system were characterized and studied by different electron microscopy, fluorescent probe technology, DLS, IR, ESI-MS, SAXS, etc. The stability (freeze-thaw and wet-dry treatments) and cell-like behavior (chemical signaling communication) were tested via simulating particular scenarios. FINDINGS Vesicles, microtubules and asters phases resembling the morphology and structure of modern cells/organelles were obtained. The intermolecular hydrogen bonding is the main driving force for the emergence of the aggregates. The protocell models not only display remarkable stabilities by simulating the primordial Earth's diurnal temperature differences and ocean tides but also are able to exhibit cell-like behavior of chemical signaling transition.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ziyue Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jichao Sun
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, PR China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
2
|
Chen H, Chen J, Wan D, Zhang H, Mao C, Wang R. Self‐assembly of gemini amphiphiles with symmetrical tails in selective solvent. POLYM INT 2022. [DOI: 10.1002/pi.6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongrui Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University Nanjing 210023 China
| | - Jianfa Chen
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Daihong Wan
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Huikun Zhang
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Chengli Mao
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Rong Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
3
|
Vesicles composed of the single-chain amphiphile sodium monododecylphosphate: A model of protocell compartment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Del Giudice D, Spatola E, Valentini M, Bombelli C, Ercolani G, Di Stefano S. Time-programmable pH: decarboxylation of nitroacetic acid allows the time-controlled rising of pH to a definite value. Chem Sci 2021; 12:7460-7466. [PMID: 34163836 PMCID: PMC8171335 DOI: 10.1039/d1sc01196k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
In this report it is shown that nitroacetic acid 1 (O2NCH2CO2H) can be conveniently used to control the pH of a water solution over time. Time-programmable sequences of the kind pH1(high)-pH2(low)-pH3(high) can be achieved, where both the extent of the initial pH jump (pH1(high)-pH2(low)) and the time required for the subsequent pH rising (pH2(low)-pH3(high)) can be predictably controlled by a judicious choice of the absolute and relative concentrations of the reagents (acid 1 and NaOH). Successive pH1(high)-pH2(low)-pH3(high) sequences can be obtained by subsequent additions of acid 1. As a proof of concept, the method is applied to control over time the pH-dependent host-guest interaction between alpha-cyclodextrin and p-aminobenzoic acid.
Collapse
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
- ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
| | - Emanuele Spatola
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
- ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
| | - Matteo Valentini
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
| | - Cecilia Bombelli
- ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
- ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" P.le A. Moro 5 I-00185 Rome Italy
| |
Collapse
|
5
|
Hou Z, Wu X, Wu G, Yang E, Sun G, Wu A, Zheng L. Self-Assembled Vesicles Formed by Positional Isomers of Sodium Dodecyl Benzene Sulfonate-Based Pseudogemini Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7593-7601. [PMID: 32513009 DOI: 10.1021/acs.langmuir.0c01206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The construction of pseudogemini surfactants based on noncovalent interactions (such as electrostatic interaction and π-π stacking) was a powerful method to assemble well-defined aggregates in aqueous solution. The mixtures of butane-1,4-bis(methylimidazolium bromide) ([mim-C4-mim]Br2) and positional isomers of sodium dodecyl benzene sulfonate (SDBS-0,11 or SDBS-3,8) in a molar ratio of 1:2 were studied to characterize the effect of straight and branched alkyl chains on the aggregation behavior of pseudogemini surfactants. Spontaneous phase transition from micelles to vesicles was formed by these two kinds of complexes. Interestingly, a densely stacked onion-like structure (multilamellar vesicles) with more than one dozen layers was fabricated. The micelle and vesicle phases were characterized in detail by cryogenic transmission electron microscopy, polarized optical microscopy, dynamic light scattering, and rheological measurements. It can be clearly demonstrated that the structure of alkyl chain can significantly influence the surface adsorption, solution self-assembly, and aqueous two-phase system of pseudogemini surfactants. Our work provided a convenient technique to achieve controlled self-assembly by introducing positional isomers of surfactants.
Collapse
Affiliation(s)
- Zhaowei Hou
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
- Exploration and Development Research Institute of Daqing Oilfield Co. Ltd., Daqing 163712, China
| | - Xiaolin Wu
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
- Exploration and Development Research Institute of Daqing Oilfield Co. Ltd., Daqing 163712, China
| | - Guopeng Wu
- Exploration and Development Research Institute of Daqing Oilfield Co. Ltd., Daqing 163712, China
| | - Erlong Yang
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Guannan Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| |
Collapse
|
6
|
Hao Q, Kang Y, Xu JF, Zhang X. pH/ROS Dual-Responsive Supramolecular Vesicles Fabricated by Carboxylated Pillar[6]arene-Based Host-Guest Recognition and Phenylboronic Acid Pinacol Ester Derivative. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4080-4087. [PMID: 32212613 DOI: 10.1021/acs.langmuir.0c00460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pH and reactive oxygen species (ROS) dual-responsive supramolecular vesicle utilizing a novel host-guest molecular recognition between a phenylboronic acid pinacol ester derivative carrying long alkyl chain (PBEC12A) and carboxylated pillar[6]arene (CP[6]) is developed. The host-guest complexation between CP[6] and PBEC12A was first studied in aqueous solution. PBEC12A was encapsulated within CP[6] forming a stable host-guest complex with a binding constant as high as 106 M-1 order of magnitude. The driving force behind such a host-guest recognition was the combination of electrostatic interaction and hydrophobic effect. Then, the self-assembly of the supra-amphiphiles of PBEC12A-CP[6] host-guest complexes was investigated in aqueous solution through high-resolution transmission electron microscope and dynamic light scattering. It was found that the supra-amphiphiles self-assembled into supramolecular vesicles and the size of the self-assembled supramolecular vesicles could be tuned from 25 to 200 nm by varying the ratio of CP[6] to PBEC12A. To demonstrate the pH- and ROS-responsive properties of the self-assembled vesicles, the supramolecular vesicles self-assembled from PBEC12A/CP[6] (5:1) were utilized. The Nile Red loading and release studies demonstrated that the supramolecular vesicles possessed good pH/ROS dual-responsive properties. This study enriches the field of supra-amphiphile based on noncovalent interactions. It is anticipated that the pH/ROS dual-responsive supramolecular vesicles have potential applications in drug-delivery systems because both the stimuli are in close relation with specific microenvironments of tumors and relevant diseases of the human body.
Collapse
Affiliation(s)
- Qi Hao
- Key Laboratory of Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuetong Kang
- Key Laboratory of Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Ding JD, Jin WJ, Pei Z, Pei Y. Morphology transformation of pillararene-based supramolecular nanostructures. Chem Commun (Camb) 2020; 56:10113-10126. [DOI: 10.1039/d0cc03682j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this feature article, the construction methods and the factors that influence the morphological transformation of pillararene-based supramolecular nanostructures are reviewed.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Wen-Juan Jin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
8
|
Jia H, Leng X, Lian P, Han Y, Wang Q, Wang S, Sun T, Liang Y, Huang P, Lv K. pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface. SOFT MATTER 2019; 15:5529-5536. [PMID: 31241648 DOI: 10.1039/c9sm00891h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Additional HCl can facilely control the dynamic noncovalent interaction between anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and additional organic matter, 4,4'-oxydianiline (ODA), at the water/oil interface. At low HCl concentration (ODA/HCl molar ratio (r) = 1 : 1.5, [ODA] = 250 mg L-1), the ODA+ ions effectively enhanced the SDBS ability to reduce the water/oil interfacial tension (IFT) by about two orders of magnitude, while the (SDBS)2/ODA2+ gemini-like surfactants could be constructed at a relatively high HCl concentration (r = 1 : 4, [ODA] = 250 mg L-1), which could largely reduce the IFT to 1.19 × 10-3 mN m-1. Molecular simulation was employed to explore the interfacial activity of ODAn+ (ODA+/ODA2+) ions and the SDBS/ODAn+ interaction. The control experiments used another three surfactants to verify the proposed model. The pH-switchable gradual protonation of amino groups in ODA molecules determined the SDBS/ODA interfacial assembly, which was responsible for the reversal of IFT variations and the related emulsion behaviors.
Collapse
Affiliation(s)
- Han Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xu Leng
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Peng Lian
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yugui Han
- Bohai Oilfield Research Institute, Tianjin Branch, CNOOC China Limited, Tianjin, 300459, China
| | - Qiuxia Wang
- Bohai Oilfield Research Institute, Tianjin Branch, CNOOC China Limited, Tianjin, 300459, China
| | - Shaoyan Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Tunan Sun
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yipu Liang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Pan Huang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kaihe Lv
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
9
|
Thamizhanban A, Lalitha K, Nagarajan S. Self-Assembled Soft Materials for Energy and Environmental Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-04474-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
10
|
Li J, Li H, Wang J, Jiang H, Yao C, Wang G, Ma H, Shi L. Trimeric Supra-Amphiphile with Diverse Lamellar Self-Assemblies. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jun Li
- Department of Applied Chemistry; Yuncheng University; Yuncheng 044000 P. R. China
| | - Hui Li
- Department of Applied Chemistry; Yuncheng University; Yuncheng 044000 P. R. China
| | - Jie Wang
- Department of Applied Chemistry; Yuncheng University; Yuncheng 044000 P. R. China
| | - Hongshi Jiang
- Department of Applied Chemistry; Yuncheng University; Yuncheng 044000 P. R. China
| | - Chenzhong Yao
- Department of Applied Chemistry; Yuncheng University; Yuncheng 044000 P. R. China
| | - Gaofeng Wang
- Department of Applied Chemistry; Yuncheng University; Yuncheng 044000 P. R. China
| | - Huixuan Ma
- Department of Applied Chemistry; Yuncheng University; Yuncheng 044000 P. R. China
| | - Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province; Taiyuan University of Technology; Taiyuan 030024 P. R. China
| |
Collapse
|
11
|
Shi L, Liu F, Liu T, Chen J, Xu S, Zeng H. Reversible fabrication and self-assembly of a gemini supra-amphiphile driven by dynamic covalent bonds. SOFT MATTER 2018; 14:5995-6000. [PMID: 30020304 DOI: 10.1039/c8sm01239c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A smart gemini supra-amphiphile behaving with pH/CO2 dual-sensitive hierarchical self-assembly was fabricated under the effect of dynamic covalent bonds. In the presence of an amino-functionalized cation, water-insoluble terephthalaldehyde, and an amphiphilic anion, the benzoic imine bond can initiate the transformation from a single-tailed supra-amphiphile to a gemini supra-amphiphile with increasing pH, followed by the subsequent evolution from micelles to vesicles. Reversible self-assembly and disassembly of the gemini supra-amphiphile can be realized via CO2/N2 treatment, thus inducing the fission and reversion of vesicles. Interestingly, the flexible nature of supra-amphiphiles allows for the hierarchical assembly of vesicles, leading to the formation of aqueous two-phase systems. Multiple responsive supra-amphiphiles have useful applications in the fabrication of smart supra-molecular materials, including self-healing materials, nanocarriers and chemosensors.
Collapse
Affiliation(s)
- Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P. R. China
| | | | | | | | | | | |
Collapse
|
12
|
Sun P, Wu A, Sun N, Qiao X, Shi L, Zheng L. Multiple-Responsive Hierarchical Self-Assemblies of a Smart Supramolecular Complex: Regulation of Noncovalent Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2791-2799. [PMID: 29397743 DOI: 10.1021/acs.langmuir.7b03900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We herein report a smart amphiphilic supramolecular complex ([MimA-EDA-MimA]@[DBS]2) with stimuli-responsive self-assembly, constructed by 3-(3-formyl-4-hydroxybenzyl)-1-methylimidazolium chloride (MimACl), sodium dodecyl benzene sulfonate (SDBS), and ethylenediamine (EDA). The self-assembly of [MimA-EDA-MimA]@[DBS]2 shows triple-sensitivities in response to pH, concentration, and salt. At a low pH, only micelles are formed, which can transform into vesicles spontaneously when the pH increases to 11.8. Vesicles can gradually fuse into vesicle clusters and elongated assemblies with increasing concentration of [MimA-EDA-MimA]@[DBS]2. Chainlike aggregates, ringlike aggregates, or giant vesicles can be formed by adding inorganic salts (i.e., NaCl and NaNO3), which could be derived from the membrane fusion of vesicles. The noncovalent interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, were found to be responsible for the topology evolution of assemblies. Thus, it provides an opportunity to construct smart materials through the regulation of the role of noncovalent interactions in self-assembly.
Collapse
Affiliation(s)
- Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Xuanxuan Qiao
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology , Taiyuan 030024, China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| |
Collapse
|
13
|
Woch J, Iłowska J, Hordyjewicz-Baran Z, Arabasz S, Kaczmarczyk B, Grabowski R, Libera M, Dworak A, Trzebicka B. Aqueous solution behaviour and solubilisation properties of octadecyl cationic gemini surfactants and their comparison with their amide gemini analogues. SOFT MATTER 2018; 14:754-764. [PMID: 29292439 DOI: 10.1039/c7sm02210g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gemini surfactants 18-s-18(Et), comprised of two ethylammonium headgroups and two alkyl tails with m = 18 carbon atoms with spacers of s = 4, 6, 8 and 10 linking the headgroups (alkanediyl-α,ω-bis(diethyloctadecylammonium bromides)), were obtained. Their aqueous solution behaviour, including adsorption at the interface and aggregation in solution, was followed by tensiometric, conductometric and spectroscopic methods. The critical micelle concentration (CMC) of the surfactants decreased with increasing spacer length. The size of 18-s-18(Et) aggregates formed at concentrations of 10 and 40 CMC measured by DLS varied with the elongation of the spacer. Visualisation of aggregated surfactant structures at 40 CMC by cryo-TEM evidenced the formation of different morphologies depending on spacer length. Gemini with s = 4 formed elongated, cylindrical micelles, while geminis of s = 6, 8 and 10 self-assembled into vesicles. The ability of the studied geminis to solubilise hydrophobic dye Sudan I in water was determined as a function of surfactant concentration, demonstrating their high efficiency. Results for 18-s-18(Et) geminis were compared with those previously obtained for their analogues containing an amide group placed between headgroups and tails. The significant impact of amide groups on the surface activity and aggregation properties of gemini surfactants was evidenced and is related to hydrogen-bond formation by amide-containing compounds.
Collapse
Affiliation(s)
- J Woch
- Institute of Heavy Organic Synthesis "Blachownia", Kedzierzyn-Kozle, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dai C, Zhang Y, Gao M, Li Y, Lv W, Wang X, Wu Y, Zhao M. The Study of a Novel Nanoparticle-Enhanced Wormlike Micellar System. NANOSCALE RESEARCH LETTERS 2017; 12:431. [PMID: 28673050 PMCID: PMC5493605 DOI: 10.1186/s11671-017-2198-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/12/2017] [Indexed: 06/01/2023]
Abstract
In this work, a novel nanoparticle-enhanced wormlike micellar system (NEWMS) was proposed based on the typical wormlike micelles composed of cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal). In order to strengthen the structure of wormlike micelles, silica nanoparticles are used to design the novel nanoparticle-enhanced wormlike micelle. The stability and morphologies of silica nanoparticles were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM) at first. After the formation of NEWMS, the rheological properties were discussed in detail. The zero-shear viscosity of NEWMS increases with the addition of silica nanoparticles. Dynamic oscillatory measurements show the viscoelastic properties of NEWMS. Through comparison with the original wormlike micelles, the entanglement length and mesh size of NEWMS are nearly unchanged, while the contour length increases with the increase of silica concentration. These phenomena confirm the enhanced influence of silica nanoparticles on wormlike micelles. The formation mechanism of NEWMS, especially the interactions between wormlike micelles and nanoparticles, is proposed. This work can deepen the understanding of the novel NEWMS and widen their applications.
Collapse
Affiliation(s)
- Caili Dai
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China.
| | - Yue Zhang
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China
| | - Mingwei Gao
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China
| | - Yuyang Li
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China
| | - Wenjiao Lv
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China
| | - Xinke Wang
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China
| | - Yining Wu
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China
| | - Mingwei Zhao
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, People's Republic of China.
| |
Collapse
|
15
|
A Novel Bola-Type Rosin-Based Functional Surfactant and Its Synergistic Effect with Natural Surfactant Saponin. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1994-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Wu X, Dai C, Fang S, Li H, Wu Y, Sun X, Zhao M. The effect of hydroxyl on the solution behavior of a quaternary ammonium gemini surfactant. Phys Chem Chem Phys 2017; 19:16047-16056. [DOI: 10.1039/c7cp00131b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The influence of the introduction of a hydroxyl group into the system is studied at the macro and micro levels.
Collapse
Affiliation(s)
- Xuepeng Wu
- School of Petroleum Engineering
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Caili Dai
- School of Petroleum Engineering
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Sisi Fang
- School of Petroleum Engineering
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Hao Li
- School of Petroleum Engineering
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Yining Wu
- School of Petroleum Engineering
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Xin Sun
- School of Petroleum Engineering
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Mingwei Zhao
- School of Petroleum Engineering
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| |
Collapse
|
17
|
Zhang W, Shi L, Liu Y, Meng X, Xu H, Xu Y, Liu B, Fang X, Li HB, Ding T. Supramolecular interactions via hydrogen bonding contributing to citric-acid derived carbon dots with high quantum yield and sensitive photoluminescence. RSC Adv 2017. [DOI: 10.1039/c7ra02160g] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorophores coupled with supramolecules lead to “dot” topologies in citric-acid derived carbon dots under the effect of hydrogen bonding.
Collapse
|
18
|
Shi L, Sun P, Zheng L. Controllable hierarchical self-assembly of gemini supra-amphiphiles: the effect of spacer length. SOFT MATTER 2016; 12:8682-8689. [PMID: 27714371 DOI: 10.1039/c6sm02070d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gemini supra-amphiphiles with different spacer lengths, [M-n-M]2+@2[DBS]- (n = 2, 6, 10), were easily constructed. The conformational flexibility and hydrophobicity of the spacer group can be effectively tailored through regulating the spacer length, leading to the fine control of the topologies and subsequent hierarchical self-assemblies of [M-n-M]2+@2[DBS]-. Vesicles are primarily fabricated by [M-n-M]2+@2[DBS]-, and then successively fused into vesicle clusters, nanotubes, and planar bilayers, whose bilayer curvatures are gradually decreased, with increasing spacer length. Coating [M-10-M]2+ with β-CD can reduce the flexibility and hydrophobicity of the decyl spacer, resulting in the reversion from planar bilayers to vesicles. Furthermore, stable aqueous two-phase systems (ATPSs) that spontaneously formed via vesicle fusion in the solutions of [M-n-M]2+@2[DBS]- (n = 6, 10) can act as functional supramolecular systems in the isolation and purification of oil-soluble biomaterials.
Collapse
Affiliation(s)
- Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China.
| |
Collapse
|
19
|
Properties and ionic self-assembled structures from mixture of a bola-type strong alkali dication and a branched phosphoric acid. J Colloid Interface Sci 2016; 472:157-66. [DOI: 10.1016/j.jcis.2016.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/21/2022]
|