1
|
Liu C, Feng C, Liu Y, Wu Y, Yao H, He S, Zeng X. Construction of a novel NIR-emissive rhodamine derivative for monitoring mitochondrial viscosity in ferroptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125486. [PMID: 39612536 DOI: 10.1016/j.saa.2024.125486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Ferroptosis, an iron-dependent programmed cell death mechanism, is mediated by distinct molecular pathways of lipid peroxidation caused by intracellular iron supplementation and glutathione synthesis inhibition that cause oxidative damage to the cell membrane. Monitoring viscosity changes of mitochondria is essential for a deeper understanding of ferroptosis, as mitochondria will be shrunk with increased membrane density and leading to drastic mitochondrial viscous changes during ferroptosis process. Thus, it is essential to explore novel and efficient fluorescent probes for monitoring viscosity in organisms. In this work, we designed and synthesized a mitochondria-targeting probe TJ-FRP for cellular viscosity measurement via fluorescence imaging method. To obtain this probe, we firstly developed a novel modifiable fluorescent π-extended xanthene dye TJ-FR by replacing the benzoic acid group with a strong electron-withdrawing perfluorobenzoic acid group at the 9-position of xanthene framework. The dye not only presents emission wavelength at 758 nm and a large stokes shift of 142 nm in water, but also the dye is low biotoxic, membrane permeable. By reaction with 4-aminobutyltriphenylphosphonium bromide, TJ-FR was converted to the mitochondria-targeting probe TJ-FRP. TJ-FRP was successfully applied for the imaging of viscosity in living cells. Especially, the probe can be applied for visualizing mitochondrial viscosity changes during various inducers-stimulated ferroptosis process in model cells. These findings suggest that this novel NIR fluorescent probe can serve as a powerful tool to monitor the viscosity in biological samples and may provide new insights for various diseases during ferroptosis.
Collapse
Affiliation(s)
- Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chuang Feng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuanyuan Wu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huirong Yao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Ding L, Liu Y, Wang L, Yang Y. Distinguishing the responsive mechanisms of fluorescent probes to hydrogen peroxide, proteins, and DNA/RNA. Phys Chem Chem Phys 2024; 26:7765-7771. [PMID: 38372974 DOI: 10.1039/d4cp00082j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The responsive mechanisms of cationic quinolinium-vinyl-N,N-dimethylaniline boronate (QVD-B) derivative probes to hydrogen peroxide (H2O2), proteins and DNA/RNA are theoretically investigated in this study. The potential energy curves of QVD-B scanned on a dihedral angle (N+-C-CC) in the first singlet (S1) state exhibit large torsional energy barriers. Additionally, the energy of the lowest unoccupied molecular orbital (LUMO) of an acceptor moiety (-3.14 eV) is lower than that of a donor moiety (-1.13 eV) in QVD-B. This demonstrates that photoinduced electron transfer (PET) quenches the fluorescence of QVD-B, as opposed to the previous report of intramolecular single-bond rotation. After reacting with H2O2, the reaction product of quinoline-vinyl-N,N-dimethylaniline (QVD) turns off the PET pathway and turns on the fluorescence at 550 nm, which is consistent with the experimental results (580 nm). Among the possible configurations of QVD-B that forms with proteins and DNA, the calculated fluorescence values of corresponding twisted QVD-B-P (638 nm) and QVD-B-D (686 nm) are consistent with the experimental results (632 and 688 nm). The frontier molecular orbital and electron-hole analysis show that the charge transfer distance follows the order of QVD (1.88 Å) < QVD-B-P (4.49 Å) < QVD-B-D (6.39 Å), which induces the fluorescence red-shifts of QVD-B-P and QVD-B-D compared to that of QVD. The multi-detection mechanism of the fluorescent probe QVD-B is attributed to PET progress and different degrees of local charge transfer after photoexcitation.
Collapse
Affiliation(s)
- Lina Ding
- School of Chemistry and Chemical Engineering, School of Physics, Henan Normal University, Xinxiang 453007, P. R. China.
| | - Yang Liu
- School of Chemistry and Chemical Engineering, School of Physics, Henan Normal University, Xinxiang 453007, P. R. China.
| | - Liang Wang
- School of Chemistry and Chemical Engineering, School of Physics, Henan Normal University, Xinxiang 453007, P. R. China.
| | - Yonggang Yang
- School of Chemistry and Chemical Engineering, School of Physics, Henan Normal University, Xinxiang 453007, P. R. China.
| |
Collapse
|
3
|
Michel L, Auvray M, Askenatzis L, Badet-Denisot MA, Bignon J, Durand P, Mahuteau-Betzer F, Chevalier A. Visualization of an Endogenous Mitochondrial Azoreductase Activity under Normoxic Conditions Using a Naphthalimide Azo-Based Fluorogenic Probe. Anal Chem 2024; 96:1774-1780. [PMID: 38230524 DOI: 10.1021/acs.analchem.3c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this paper, we demonstrate the existence of an endogenous mitochondrial azoreductase (AzoR) activity that can induce the cleavage of N═N double bonds of azobenzene compounds under normoxic conditions. To this end, 100% OFF-ON azo-based fluorogenic probes derived from 4-amino-1,8-naphthalimide fluorophores were synthesized and evaluated. The in vitro study conducted with other endogenous reducing agents of the cell, including reductases, demonstrated both the efficacy and the selectivity of the probe for AzoR. Confocal experiments with the probe revealed an AzoR activity in the mitochondria of living cells under normal oxygenation conditions, and we were able to demonstrate that this endogenous AzoR activity appears to be expressed at different levels across different cell lines. This discovery provides crucial information for our understanding of the biochemical processes occurring within the mitochondria. It thus contributes to a better understanding of its function, which is implicated in numerous pathologies.
Collapse
Affiliation(s)
- Laurane Michel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie Auvray
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Laurie Askenatzis
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie-Ange Badet-Denisot
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Jérôme Bignon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Philippe Durand
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Arnaud Chevalier
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Sun J, Ge X, Jin B, Li S, Hou Y, Zhong S, Yang Z, Xi P, Li M, Gao B. Super-resolution imaging of mitochondrial cristae using a more hydrophobic far-red Si-rhodamine probe. Chem Commun (Camb) 2023; 59:13038-13041. [PMID: 37843422 DOI: 10.1039/d3cc04696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Mitochondrial probe SiRPFA was synthesized by attaching a long perfluoroalkyl chain on Si-rhodamine cationic dye. High lipophilicity endowed SiRPFA with mitochondrial membrane potential independent properties. Under stimulated emission depletion microscopy, SiRPFA clearly revealed changes in mitochondrial cristae morphology during autophagy induced by starvation or apoptosis.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Boya Jin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Shiyi Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Yiwei Hou
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Suyi Zhong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Zikang Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
5
|
Li Y, Lei J, Qin X, Li G, Zhou Q, Yang Z. A mitochondria-targeted dual-response sensor for monitoring viscosity and peroxynitrite in living cells with distinct fluorescence signals. Bioorg Chem 2023; 138:106603. [PMID: 37210825 DOI: 10.1016/j.bioorg.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Viscosity and peroxynitrite (ONOO-) are two significant indicators to affect and evaluate the mitochondrial functional status, which are nearly relational with pathophysiological process in many diseases. Developing suitable analytical methods for monitoring mitochondrial viscosity changes and ONOO- is thus of great importance. In this research, a new mitochondria-targeted sensor DCVP-NO2 for the dual determination of viscosity and ONOO- was exploited based on the coumarin skeleton. DCVP-NO2 displayed a red fluorescence "turn-on" response toward viscosity along with about 30-fold intensity increase. Meanwhile, it could be used as ratiometric probe for detection of ONOO- with excellent sensitivity and extraordinary selectivity for ONOO- over other chemical and biological species. Moreover, thanks to its good photostability, low cytotoxicity and ideal mitochondrion-targeting capability, DCVP-NO2 was successfully utilized for fluorescence imaging of viscosity variations and ONOO- in mitochondria of living cells through different channels. In addition, the results of cell imaging revealed that ONOO- would lead to the increase of viscosity. Taken together, this work provides a potential molecular tool for researching biological functions and interactions of viscosity and ONOO- in mitochondria.
Collapse
Affiliation(s)
- Yaqian Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| | - Jieni Lei
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Xin Qin
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Guangyi Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Qiulan Zhou
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Zi Yang
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|
6
|
Jiao S, Dong X, Zhao W. Meso pyridinium BODIPY-based long wavelength infrared mitochondria-targeting fluorescent probe with high photostability. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3149-3155. [PMID: 37334656 DOI: 10.1039/d3ay00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mito-tracker deep red (MTDR) as a commercially available mitochondria-targeting probe was easily bleached upon imaging. We designed and synthesized a family of meso-pyridinium BODIPY and introduced lipophilic methyl or benzyl as the head moiety to develop a mitochondria-targeting deep red probe. Moreover, we changed the substitution of the 3,5-phenyl moieties with the methoxy or methoxyethoxyethyl group to balance hydrophilicity. The designed BODIPY dyes possessed long absorption and good fluorescence emission. Among them, meso ortho-pyridinium BODIPYs with benzyl head and glycol substitution on phenyl moiety (3h) with favorable Stokes shift were found to have the best mitochondrial targeting performance. 3h was easily uptaken by cells and was less toxic and more photostable than MTDR. An immobilizable probe (3i) was further developed, and nice mitochondria targeting properties under the damaging condition of mitochondria membrane potential were maintained. BODIPY 3h or 3i may become alternative long-wavelength mitochondria targeting probes apart from MTDR and be suitable for long-term mitochondrial tracking studies.
Collapse
Affiliation(s)
- Shenghe Jiao
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
7
|
Tacke E, Hoang MD, Tatoueix K, Keromnes B, Van Eslande E, Durand P, Pieters G, Chevalier A. Unprecedented perspectives on the application of CinNapht fluorophores provided by a "late-stage" functionalization strategy. Chem Sci 2023; 14:6000-6010. [PMID: 37293654 PMCID: PMC10246687 DOI: 10.1039/d3sc01365k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
A simple and easy-to-implement process based on a nucleophilic aromatic substitution reaction with a wide variety of nucleophiles on a fluorinated CinNapht is described. This process has the key advantage of introducing multiple functionalities at a very late stage, thus providing access to new applications including the synthesis of photostable and bioconjugatable large Stokes shift red emitting dyes and selective organelle imaging agents, as well as AIEE-based wash-free lipid droplet imaging in live cells with high signal-to-noise ratio. The synthesis of bench-stable CinNapht-F has been optimized and can be reproduced on a large scale, making it an easy-to-store starting material that can be used at will to prepare new molecular imaging tools.
Collapse
Affiliation(s)
- Eléonore Tacke
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Minh-Duc Hoang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Kevin Tatoueix
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE 91191 Gif-sur-Yvette France
| | - Benoît Keromnes
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Elsa Van Eslande
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Philippe Durand
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Gregory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE 91191 Gif-sur-Yvette France
| | - Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
8
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|
9
|
Xiong H, Ye J, Wang M, Wang Y, Liu X, Jiang H, Wang X. In-situ bio-assembled specific Au NCs-Aptamer-Pyro conjugates nanoprobe for tumor imaging and mitochondria-targeted photodynamic therapy. Biosens Bioelectron 2022; 218:114763. [PMID: 36240628 DOI: 10.1016/j.bios.2022.114763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mitochondrion has emerged as a promising drug target for photodynamic therapy (PDT), due to its significant role in supporting life activities and being reactive oxygen species (ROS)-sensitive. Herein, we establish a new strategy that in-situ bio-synthesized Au NCs combine with mitochondria-targeted aptamer-Pyro conjugates (ApPCs) for specific tumor imaging and PDT. The prepared ApPCs can serve as template for the in-situ bio-synthesis of Au NCs, thereby facilitating the generation of Au NCs-ApPCs assemblies in unique tumor microenvironment. Compared with highly negatively charged ApPCs, bio-synthesized nanoscale Au NCs-ApPCs assemblies are conducive to cell uptake, which consequently benefits the delivery of ApPCs. After dissociated from Au NCs-ApPCs, internalized ApPCs can selectively accumulate in mitochondria and generate excess ROS to disrupt the mitochondrial membrane upon irradiation, thus inducing efficient cell killing. In vitro assays demonstrated that the fluorescent Au NCs-ApPCs assemblies could be specifically produced in cancerous cells, indicating the specific tumor imaging ability, while intracellular ApPCs co-localized well with mitochondria. CCK-8 results revealed over 80% cell death after PDT. In vivo study showed that fluorescent Au NCs-ApPCs assemblies were exclusively generated in tumor and achieved long-term retention; tumor growth was significantly inhibited after 15-day PDT treatment. All these evidences suggest that in-situ bio-synthesized Au NCs-ApPCs assembly is a potent mitochondria-targeted nanoprobe to boost the PDT efficacy of cancers.
Collapse
Affiliation(s)
- Hongjie Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Maonan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
10
|
Jo S, Kim S, Lee Y, Kim G, Kim S, Lee S, Seung Lee T. Synthesis of a dual-emissive pyrene-based fluorescent probe for imaging intracellular viscosity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Kumar GD, Banasiewicz M, Wrzosek A, O'Mari O, Zochowska M, Vullev VI, Jacquemin D, Szewczyk A, Gryko DT. A sensitive zinc probe operating via enhancement of excited-state intramolecular charge transfer. Org Biomol Chem 2022; 20:7439-7447. [PMID: 36102673 DOI: 10.1039/d2ob01296k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel highly sensitive fluorescent probes for zinc cations based on the diketopyrrolopyrrole scaffold were designed and synthesized. Large bathochromic shifts (≈80 nm) of fluorescence are observed when the Zn2+-recognition unit (di-(2-picolyl)amine) is bridged with the fluorophore possessing an additional pyridine unit able to participate in the coordination process. This effect originates from the dipolar architecture and the increasing electron-withdrawing properties of the diketopyrrolopyrrole core upon addition of the cation. The new, greenish-yellow emitting probes, which operate via modulation of intramolecular charge transfer, are very sensitive to the presence of Zn2+. Introduction of a morpholine unit in the diketopyrrolopyrrole structure induces a selective six-fold increase of the emission intensity upon zinc coordination. Importantly, the presence of other divalent biologically relevant metal cations has negligible effects and typically even at a 100-fold higher concentration of Mg2+/Zn2+, the effect is comparable. Computational studies rationalize the strong bathochromic shift upon Zn2+-complexation. Decorating the probes with the triphenylphosphonium cation and morpholine unit enables selective localization in the mitochondria and the lysosome of cardiac H9C2 cells, respectively.
Collapse
Affiliation(s)
- G Dinesh Kumar
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Monika Zochowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Denis Jacquemin
- Nantes University, CNRS, CEISAM, UMR-6230, F-4400 Nantes, France.
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
12
|
Kumar GD, Banasiewicz M, Wrzosek A, Kampa RP, Bousquet MHE, Kusy D, Jacquemin D, Szewczyk A, Gryko DT. Probing the flux of mitochondrial potassium using an azacrown-diketopyrrolopyrrole based highly sensitive probe. Chem Commun (Camb) 2022; 58:4500-4503. [PMID: 35302138 DOI: 10.1039/d2cc00324d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The diketopyrrolopyrrole bearing an aza-18-crown-6 as a binding unit as well as a PPh3+ group is highly sensitive towards K+ and localizes selectively in mitochondria of cardiac H9C2 cells. Fast efflux/influx of mitochondrial K+ can be observed upon stimulation with nigericin.
Collapse
Affiliation(s)
- G Dinesh Kumar
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Rafal P Kampa
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | | | - Damian Kusy
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Denis Jacquemin
- University of Nantes, CNRS, CEISAM, UMR-6230, F-4400 Nantes, France.
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
13
|
Park H, Niu G, Wu C, Park C, Liu H, Park H, Kwok RTK, Zhang J, He B, Tang BZ. Precise and long-term tracking of mitochondria in neurons using a bioconjugatable and photostable AIE luminogen. Chem Sci 2022; 13:2965-2970. [PMID: 35382465 PMCID: PMC8905947 DOI: 10.1039/d1sc06336g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/03/2022] [Indexed: 12/22/2022] Open
Abstract
Tracking mitochondrial movement in neurons is an attractive but challenging research field as dysregulation of mitochondrial motion is associated with multiple neurological diseases. To realize accurate and long-term tracking of mitochondria in neurons, we elaborately designed a novel aggregation-induced emission (AIE)-active luminogen, TPAP-C5-yne, where we selected a cationic pyridinium moiety to target mitochondria and employed an activated alkyne terminus to achieve long-term tracking through bioconjugation with amines on mitochondria. For the first time, we successfully achieved the accurate analysis of the motion of a single mitochondrion in live primary hippocampal neurons and the long-term tracking of mitochondria for up to a week in live neurons. Therefore, this new AIEgen can be used as a potential tool to study the transport of mitochondria in live neurons.
Collapse
Affiliation(s)
- Hojeong Park
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Guangle Niu
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Chao Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Chungwon Park
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Haixiang Liu
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Hyokeun Park
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, HKUST Clear Water Bay Kowloon Hong Kong China
- Department of Physics, HKUST Clear Water Bay Kowloon Hong Kong China
- State Key Laboratory of Molecular Neuroscience, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jing Zhang
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Benzhao He
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519085 China
| | - Ben Zhong Tang
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong 2001 Longxiang Boulevard, Longgang District Shenzhen City Guangdong 518172 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
14
|
Wang R, Xia X, Yang Y, Rong X, Liu T, Su Z, Zeng X, Du J, Fan J, Sun W, Peng X. A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Adv Healthc Mater 2022; 11:e2102017. [PMID: 34812594 DOI: 10.1002/adhm.202102017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Indexed: 01/13/2023]
Abstract
Although photodynamic therapy (PDT) is a promising approach for cancer therapy, most existing photosensitizers lack selectivity for tumor cells and the overexpressed glutathione (GSH) in tumor cells reduces the PDT efficiency. Therefore, designing photosensitizers that can be selectively activated within tumor cells and combine PDT with other therapeutic modalities represents a route for precise and efficient anticancer treatment. Herein, an organic activatable photosensitizer, CyI-DNBS, bearing 2,4-dinitrobenzenesulfonate (DNBS) as the cage group is reported. CyI-DNBS can be uptaken by cancer cells after which the cage group is selectively removed by the intracellular GSH, resulting in the generation of SO2 for gas therapy. The reaction also releases the activated photosensitizer, CyI-OH, that can produce singlet oxygen (1 O2 ) under red light irradiation. Therefore, CyI-DNBS targets cancer cells for both photodynamic and SO2 gas therapy treatments. The activatable photosensitizer provides a new approach for PDT and SO2 gas synergistic therapy and demonstrates excellent anticancer effect in vivo.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Yanjun Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xiang Rong
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Zehou Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xiaolong Zeng
- Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology No.26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology No.26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology No.26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
15
|
Zhang Y, Jiang R, Jiang H, Xia Q, Wang Y, Xiong L, Xiang Zhou, Hu L, Qi W. Design, synthesis and imaging of a novel mitochondrial fluorescent nanoprobe based on distyreneanthracene-substituted triphenylphosphonium salt. Anal Biochem 2021; 634:114424. [PMID: 34678251 DOI: 10.1016/j.ab.2021.114424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Targeting and monitoring the dynamics of mitochondria are of great significance because mitochondria are involved in a variety of physiological and pathological processes. For achieving this purpose, highly sensitive, photostable, tolerance and specific fluorescent probe is necessary. To obtain a superior mitochondrial fluorescent probe, (4-distyreneanthracenoxybutyl) bis(triphenylphosphonium) bromide (DSA-TPP) with aggregation-induced emission (AIE) characteristic was designed and synthesized for mitochondrial targeting. DSA-TPP dots with high fluorescence quantum yield (Φ = 17.9) and small particle size (8 nm) can be easily prepared by self-assembly formation. DSA-TPP dots had the ability of lightning mitochondria in living cells with high brightness, superior photostability and strong tolerance to cell environment change.
Collapse
Affiliation(s)
- Yan Zhang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Rui Jiang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China
| | - Hongbo Jiang
- Chongqing Bashu Secondary School, Chongqing, 400013, PR China
| | - Qinglian Xia
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yuting Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China
| | - Lulu Xiong
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xiang Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China
| | - Wenjing Qi
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China
| |
Collapse
|
16
|
Zhang X, Zhang L, Liu F, Hu S, Xu Q, Li F, Li H, Zhang G, Xu J. A unique red-emitting molecular rotor for high-fidelity visualizing and long-term tracking mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119979. [PMID: 34052766 DOI: 10.1016/j.saa.2021.119979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Visualizing and tracking mitochondrial changes is the key to understand the processes of diseases related to mitochondria, which is meaningful to physiology, pathology, and pharmacology. So, a great deal of mitochondrial probes was designed and synthesized according to the principle that probes with a positive charge can target mitochondria through mitochondrial membrane potential (MMP). However, these traditional mitochondrial probes are not able to visualize and track mitochondrial changes, because their targeting abilities depend on high MMP. Once MMP decreases, they will leak from mitochondria. Herein, we designed and synthesized a red-emitting molecule rotor (SQ, sensitive to viscosity) that could visualize mitochondria with high-fidelity. The rotor was able to firmly immobilize in mitochondrial inner membrane through the cooperation of MMP and the high viscosity property of mitochondrial membrane, and it could still stain mitochondria with long-term regardless of MMP changes. Hence, the probe is able to real-time image and distinguish four kinds of mitochondria with high-fidelity in muscle tissues. In addition, SQ can monitor mitochondrial autophagy in real time. These results demonstrate that SQ is a powerful tool for high-fidelity visualizing and long-term tracking mitochondria in vitro and in vivo.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Long Zhang
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Fang Liu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Shuxin Hu
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Quan Xu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Fei Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Hui Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Ge Zhang
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Jingkun Xu
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| |
Collapse
|
17
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
18
|
Vygranenko KV, Poronik YM, Wrzosek A, Szewczyk A, Gryko DT. Red emissive sulfone-rhodols as mitochondrial imaging agents. Chem Commun (Camb) 2021; 57:7782-7785. [PMID: 34263888 DOI: 10.1039/d1cc02687a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The controlled hydrolysis of sulfone-rhodamines affords a series of core-modified red-emitting rhodols, the fluorescence of which is sensitive to solvent polarity with pronounced bathochromic shifts recorded in both DMSO and CH3CN combined with an up to 8-fold increase in the fluorescence quantum yield.
Collapse
Affiliation(s)
- Kateryna V Vygranenko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
19
|
Wang S, Huang Y, Guan X. Fluorescent Probes for Live Cell Thiol Detection. Molecules 2021; 26:3575. [PMID: 34208153 PMCID: PMC8230801 DOI: 10.3390/molecules26123575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols' concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.
Collapse
Affiliation(s)
| | | | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Box 2202C, Brookings, SD 57007, USA; (S.W.); (Y.H.)
| |
Collapse
|
20
|
Dai L, Ren M, Lin W. Development of a novel NIR viscosity fluorescent probe for visualizing the kidneys in diabetic mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119627. [PMID: 33714915 DOI: 10.1016/j.saa.2021.119627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Viscosity is an important parameter for evaluating cell health, and abnormal viscosity can cause a variety of intracellular organelle function disorders. The mitochondria are a key organelle in cells, and the viscosity of the mitochondria determines the state of the cell. In this work, we report a novel near-infrared fluorescent probe, referred to as NI-VD, that has a large Stokes-shift and a satisfactory response multiple. NI-VD can sensitively detect changes in cell viscosity in cells and tissues, and it can effectively avoid interference from the overlap of excitation and emission light. The fluorescence spectrum shows that NI-VD has maximum emission peaks at 730 nm, and the fluorescence intensity is amplified with an increase in the solution viscosity. The response from pure PBS solution to glycerol changes by 13-fold. After confirmation in a variety of cell and biological models, NI-VD can detect the changes in viscosity in mitochondria. Most importantly, this study is the first to visualize the differences between the kidneys of diabetic mice and normal mice. This approach is a new solution for the diagnosis and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Lixuan Dai
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China; State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
21
|
Kumar P, Kumar V, Gupta R. Dipicolinamide and isophthalamide based fluorescent chemosensors: recognition and detection of assorted analytes. Dalton Trans 2021; 49:9544-9555. [PMID: 32627772 DOI: 10.1039/d0dt01508c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This perspective focuses on a variety of fluorescent receptors based on dipicolinamide and isophthalamide groups and their significant roles in the molecular recognition, sensing and detection of assorted analytes ranging from metal ions, anions, neutral molecules, drugs and explosives. Both the "turn-on" and "turn-off" nature of sensing highlights noteworthy applications in many fields encompassing biological, medicinal, environmental and analytical disciplines.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Vijay Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
22
|
Fan L, Zan Q, Wang X, Wang S, Zhang Y, Dong W, Shuang S, Dong C. A
Mitochondria‐Specific
Orange/
Near‐Infrared‐Emissive
Fluorescent Probe for
Dual‐Imaging
of Viscosity and
H
2
O
2
in Inflammation and Tumor Models. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Qi Zan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Shuohang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin Jilin 132022 China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin Jilin 132022 China
| | - Wenjuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|
23
|
Ren M, Xu Q, Bai Y, Wang S, Kong F. Construction of a dual-response fluorescent probe for copper (II) ions and hydrogen sulfide (H 2S) detection in cells and its application in exploring the increased copper-dependent cytotoxicity in present of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119299. [PMID: 33341745 DOI: 10.1016/j.saa.2020.119299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Multiple types of metal ions and active small molecules (reactive nitrogen species, reactive oxygen species, reactive sulfur species, etc.) exist in living organisms. They have connections to each other and can interact and/or interfere with each other. To investigate the relationship of metal ions and active small molecules in living cells, it is necessary and critical to develop molecular tools that can track two kinds of associated certain metal ions and reactive molecules with multiple fluorescence signals. However, this is a challenging task that requires an ingenious molecular design to achieve this goal. Here, we present a fluorescent probe (D-CN) that can offer fluorescence imaging of H2S and copper (II) ions with different response signals. Recognition of H2S and Cu (II) by the new probe can result in green and red emissions, respectively, providing different signal responses to the two substances in living cells and zebrafish. In addition, we used this probe to visually prove that the cytotoxicity of copper ions in living cells increases in the presence of hydrogen sulfide and could lead to cell apoptosis.
Collapse
Affiliation(s)
- Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China.
| | - Qingyu Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Yayu Bai
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Shoujuan Wang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
24
|
Zhu N, Xu G, Wang R, Zhu T, Tan J, Gu X, Zhao C. Precise imaging of mitochondria in cancer cells by real-time monitoring of nitroreductase activity with a targetable and activatable fluorescent probe. Chem Commun (Camb) 2021; 56:7761-7764. [PMID: 32613955 DOI: 10.1039/d0cc00494d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An activatable and mitochondrial-targetable fluorescent probe was developed. This designed probe showed ratiometric fluorescence and light-up near-infrared emission responsiveness to nitroreductase, achieving precise imaging of mitochondria in cancer cells by real-time monitoring of nitroreductase activity.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ge Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiahui Tan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
25
|
Chimeric Drug Design with a Noncharged Carrier for Mitochondrial Delivery. Pharmaceutics 2021; 13:pharmaceutics13020254. [PMID: 33673228 PMCID: PMC7918843 DOI: 10.3390/pharmaceutics13020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.
Collapse
|
26
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
27
|
Xu F, Ge H, Xu N, Yang C, Yao Q, Long S, Sun W, Fan J, Xu X, Peng X. Radical induced quartet photosensitizers with high 1O2 production for in vivo cancer photodynamic therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9922-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Pandey V, Raza MK, Sonowal M, Gupta I. BODIPY based red emitters: Synthesis, computational and biological studies. Bioorg Chem 2020; 106:104467. [PMID: 33223201 DOI: 10.1016/j.bioorg.2020.104467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
Donor-Acceptor type BODIPYs with strong absorption and fluorescence in the red region (550-800 nm) are reported. The aromatic groups like N-butylcarbazole/ N-butylphenothiazine/ benzothiadiazole were attached to the C-8 position of the BODIPY core with furan or thiophene spacers. TD-DFT studies indicated significant charge distribution between C-8 aromatic heterocycles and BODIPY core in all the molecules. The in-vitro studies of the N-butylcarbazole substituted BODIPYs indicated significant localization in the endoplasmic reticulum and lysosomes of the cancer cells. The BODIPYs showed decent cytotoxicity after 48 h incubation period (14.9 to 31.8 μM) in HeLa and A549 cancer cells, indicating their potential application as theranostic agents.
Collapse
Affiliation(s)
- Vijayalakshmi Pandey
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mridupavan Sonowal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
29
|
Liu F, Zhang L, Li F, Zhang X, Zou L, Chai J, Xin X, Xu J, Zhang G. A noteworthy interface-targeting fluorescent probe for long-term tracking mitochondria and visualizing mitophagy. Biosens Bioelectron 2020; 168:112526. [DOI: 10.1016/j.bios.2020.112526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
|
30
|
Engineering a double-rotor-based fluorescent molecule to sensitively track mitochondrial viscosity in living cells and zebrafish with high signal-to-background ratio (S/B). J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Yang G, Liu Z, Zhang R, Tian X, Chen J, Han G, Liu B, Han X, Fu Y, Hu Z, Zhang Z. A Multi‐responsive Fluorescent Probe Reveals Mitochondrial Nucleoprotein Dynamics with Reactive Oxygen Species Regulation through Super‐resolution Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guanqing Yang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Juan Chen
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Bianhua Liu
- Institute of Intelligent Machines Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Xinya Han
- School of Chemistry and Chemical Engineering Anhui University of Technology Ma'anshan Anhui 243032 China
| | - Yao Fu
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology Linköping University Linköping 58183 Sweden
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 China
- Institute of Intelligent Machines Chinese Academy of Sciences Hefei Anhui 230031 China
| |
Collapse
|
32
|
Yang G, Liu Z, Zhang R, Tian X, Chen J, Han G, Liu B, Han X, Fu Y, Hu Z, Zhang Z. A Multi-responsive Fluorescent Probe Reveals Mitochondrial Nucleoprotein Dynamics with Reactive Oxygen Species Regulation through Super-resolution Imaging. Angew Chem Int Ed Engl 2020; 59:16154-16160. [PMID: 32573047 DOI: 10.1002/anie.202005959] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Indexed: 11/06/2022]
Abstract
Understanding the biomolecular interactions in a specific organelle has been a long-standing challenge because it requires super-resolution imaging to resolve the spatial locations and dynamic interactions of multiple biomacromolecules. Two key difficulties are the scarcity of suitable probes for super-resolution nanoscopy and the complications that arise from the use of multiple probes. Herein, we report a quinolinium derivative probe that is selectively enriched in mitochondria and switches on in three different fluorescence modes in response to hydrogen peroxide (H2 O2 ), proteins, and nucleic acids, enabling the visualization of mitochondrial nucleoprotein dynamics. STED nanoscopy reveals that the proteins localize at mitochondrial cristae and largely fuse with nucleic acids to form nucleoproteins, whereas increasing H2 O2 level leads to disassociation of nucleic acid-protein complexes.
Collapse
Affiliation(s)
- Guanqing Yang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Juan Chen
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Bianhua Liu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, China.,Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
33
|
Abelha TF, Morris G, Lima SM, Andrade LHC, McLean AJ, Alexander C, Calvo‐Castro J, McHugh CJ. Development of a Neutral Diketopyrrolopyrrole Phosphine Oxide for the Selective Bioimaging of Mitochondria at the Nanomolar Level. Chemistry 2020; 26:3173-3180. [DOI: 10.1002/chem.201905634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Thais F. Abelha
- School of PharmacyThe University of Nottingham University Park NG72RD Nottingham UK
| | - Graeme Morris
- School of Computing, Engineering and Physical SciencesUniversity of the West of Scotland PA12BE Paisley UK
| | - Sandro M. Lima
- Grupo de Espectroscopia Óptica e FototérmicaUniversidade Estadual de Mato Grosso do Sul CP 351 79804-970 Dourados MS Brazil
| | - Luis H. C. Andrade
- Grupo de Espectroscopia Óptica e FototérmicaUniversidade Estadual de Mato Grosso do Sul CP 351 79804-970 Dourados MS Brazil
| | - Andrew J. McLean
- School of Computing, Engineering and Physical SciencesUniversity of the West of Scotland PA12BE Paisley UK
| | - Cameron Alexander
- School of PharmacyThe University of Nottingham University Park NG72RD Nottingham UK
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of Hertfordshire AL109AB Hatfield UK
| | - Callum J. McHugh
- School of Computing, Engineering and Physical SciencesUniversity of the West of Scotland PA12BE Paisley UK
| |
Collapse
|
34
|
Zhang J, Wang N, Ji X, Tao Y, Wang J, Zhao W. BODIPY-Based Fluorescent Probes for Biothiols. Chemistry 2020; 26:4172-4192. [PMID: 31769552 DOI: 10.1002/chem.201904470] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/23/2019] [Indexed: 12/22/2022]
Abstract
Fluorescent probes for biothiols have aroused increasing interest owing to their potential to enable better understanding of the diverse physiological and pathological processes related to the biothiol species. BODIPY fluorophores exhibit excellent optical properties, which can be readily tailored by introducing diverse functional units at various positions of the BODIPY core. In the present review, the development of fluorescent probes based on BODIPYs for the detection of biothiols are systematically summarized, with emphasis on the preferable detection of individual biothiols, as well as simultaneous discrimination among cysteine (Cys), homocysteine (Hcy), reduced glutathione (GSH). In addition, organelle-targeting probes for biothiols are also highlighted. The general design principles, various recognition mechanisms, and biological applications are elaboratively discussed, which could provide a useful reference to researchers worldwide interested in this area.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Ji
- School of Pharmacy, Institute of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.,School of Pharmacy, Institute of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
35
|
Nakayama A, Otani A, Inokuma T, Tsuji D, Mukaiyama H, Nakayama A, Itoh K, Otaka A, Tanino K, Namba K. Development of a 1,3a,6a-triazapentalene derivative as a compact and thiol-specific fluorescent labeling reagent. Commun Chem 2020; 3:6. [PMID: 36703318 PMCID: PMC9812263 DOI: 10.1038/s42004-019-0250-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/11/2019] [Indexed: 01/29/2023] Open
Abstract
For the fluorescence imaging of biologically active small compounds, the development of compact fluorophores that do not perturb bioactivity is required. Here we report a compact derivative of fluorescent 1,3a,6a-triazapentalenes, 2-isobutenylcarbonyl-1,3a,6a-triazapentalene (TAP-VK1), as a fluorescent labeling reagent. The reaction of TAP-VK1 with various aliphatic thiols proceeds smoothly to afford the corresponding 1,4-adducts in high yields, and nucleophiles other than thiols do not react. After the addition of thiol groups in dichloromethane, the emission maximum of TAP-VK1 shifts to a shorter wavelength and the fluorescence intensity is substantially increased. The utility of TAP-VK1 as a compact fluorescent labeling reagent is clearly demonstrated by the labeling of Captopril, which is a small molecular drug for hypertension. The successful imaging of Captopril, one of the most compact drugs, in this study demonstrates the usefulness of compact fluorophores for mechanistic studies.
Collapse
Affiliation(s)
- Atsushi Nakayama
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan ,grid.267335.60000 0001 1092 3579Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Akira Otani
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Tsubasa Inokuma
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan ,grid.267335.60000 0001 1092 3579Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Daisuke Tsuji
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Haruka Mukaiyama
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Akira Nakayama
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku Tokyo, 113-8656 Japan
| | - Kohji Itoh
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Akira Otaka
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Keiji Tanino
- grid.39158.360000 0001 2173 7691Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku Sapporo, 060-0810 Japan
| | - Kosuke Namba
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan ,grid.267335.60000 0001 1092 3579Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| |
Collapse
|
36
|
Blázquez-Moraleja A, Sáenz-de-Santa María I, Chiara MD, Álvarez-Fernández D, García-Moreno I, Prieto-Montero R, Martínez-Martínez V, López Arbeloa I, Chiara JL. Shedding light on the mitochondrial matrix through a functional membrane transporter. Chem Sci 2019; 11:1052-1065. [PMID: 34084361 PMCID: PMC8146229 DOI: 10.1039/c9sc04852a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The first fluorescent probes that are actively channeled into the mitochondrial matrix by a specific mitochondrial membrane transporter in living cells have been developed. The new functional probes (BCT) have a minimalist structural design based on the highly efficient and photostable BODIPY chromophore and carnitine as a biotargeting element. Both units are orthogonally bonded through the common boron atom, thus avoiding the use of complex polyatomic connectors. In contrast to known mitochondria-specific dyes, BCTs selectively label these organelles regardless of their transmembrane potential and in an enantioselective way. The obtained experimental evidence supports carnitine–acylcarnitine translocase (CACT) as the key transporter protein for BCTs, which behave therefore as acylcarnitine biomimetics. This simple structural design can be readily extended to other structurally diverse starting F-BODIPYs to obtain BCTs with varied emission wavelengths along the visible and NIR spectral regions and with multifunctional capabilities. BCTs are the first fluorescent derivatives of carnitine to be used in cell microscopy and stand as promising research tools to explore the role of the carnitine shuttle system in cancer and metabolic diseases. Extension of this approach to other small-molecule mitochondrial transporters is envisaged. A BODIPY derivative of carnitine enters mitochondria regardless of their membrane potential and in an enantioselective way through a specific mitochondrial membrane transporter in living cells.![]()
Collapse
Affiliation(s)
| | - Ines Sáenz-de-Santa María
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Central de Asturias 33011 Oviedo Spain
| | - María D Chiara
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Central de Asturias 33011 Oviedo Spain
| | | | | | - Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco UPV-EHU, Facultad de Ciencia y Tecnología Apartado 644 48080 Bilbao Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco UPV-EHU, Facultad de Ciencia y Tecnología Apartado 644 48080 Bilbao Spain
| | - Iñigo López Arbeloa
- Departamento de Química Física, Universidad del País Vasco UPV-EHU, Facultad de Ciencia y Tecnología Apartado 644 48080 Bilbao Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
37
|
Xu F, Li H, Yao Q, Ge H, Fan J, Sun W, Wang J, Peng X. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy. Chem Sci 2019; 10:10586-10594. [PMID: 32110344 PMCID: PMC7020795 DOI: 10.1039/c9sc03355f] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy is considered as a promising treatment for cancer, but still faces several challenges. The hypoxic environment in solid tumors, imprecise tumor recognition and the lack of selectivity between normal and cancer cells extremely hinder the applications of photodynamic therapy in clinics. Moreover, the "always on" property of photosensitizers also increases the toxicity to normal tissues when exposed to light irradiation. In this study, a hypoxia-activated NIR photosensitizer ICy-N was synthesized and successfully applied for in vivo cancer treatment. ICy-N is in the inactivated state with low fluorescence whereas its NIR emission (λ em = 716 nm) was induced via reduction caused by nitroreductase at the tumor site. In addition, the reduced product ICy-OH was specially located in the mitochondria and demonstrated a high singlet oxygen production under 660 nm light irradiation, which efficiently induced cell apoptosis (IC50 = 0.63 μM). The in vivo studies carried out in Balb/c mice indicated that ICy-N was suitable for precise tumor hypoxia imaging and can work as an efficient photosensitizer for restraining tumor growth through the PDT process.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jingyun Wang
- School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Shenzhen Research Institute , Dalian University of Technology , Nanshan District , Shenzhen 518057 , P. R. China
| |
Collapse
|
38
|
Coman AG, Paun A, Popescu CC, Hădade ND, Hanganu A, Chiritoiu G, Farcasanu IC, Matache M. A novel adaptive fluorescent probe for cell labelling. Bioorg Chem 2019; 92:103295. [DOI: 10.1016/j.bioorg.2019.103295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
|
39
|
Aswathy PR, Sharma S, Tripathi NP, Sengupta S. Regioisomeric BODIPY Benzodithiophene Dyads and Triads with Tunable Red Emission as Ratiometric Temperature and Viscosity Sensors. Chemistry 2019; 25:14870-14880. [DOI: 10.1002/chem.201902952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- P. R. Aswathy
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Sushil Sharma
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Narendra Pratap Tripathi
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Sanchita Sengupta
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| |
Collapse
|
40
|
Water soluble thioglycosylated BODIPYs for mitochondria targeted cytotoxicity. Bioorg Chem 2019; 91:103139. [DOI: 10.1016/j.bioorg.2019.103139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
|
41
|
Vakuliuk O, Jun YW, Vygranenko K, Clermont G, Reo YJ, Blanchard‐Desce M, Ahn KH, Gryko DT. Modified Isoindolediones as Bright Fluorescent Probes for Cell and Tissue Imaging. Chemistry 2019; 25:13354-13362. [DOI: 10.1002/chem.201902534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Olena Vakuliuk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Yong Woong Jun
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | - Kateryna Vygranenko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Ye Jin Reo
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | | | - Kyo Han Ahn
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
42
|
Zhang P, Fu C, Zhang Q, Li S, Ding C. Ratiometric Fluorescent Strategy for Localizing Alkaline Phosphatase Activity in Mitochondria Based on the ESIPT Process. Anal Chem 2019; 91:12377-12383. [PMID: 31513368 DOI: 10.1021/acs.analchem.9b02917] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent probes are powerful tools for detecting and mapping the species of interest in vitro and in vivo. Although the probes always show high selectivity and sensitivity, they are usually affected by some factors, such as detecting conditions and the probe concentrations. Ratiometric fluorescent strategies, possessing advantage of low background noise, would solve the problem effectively and lead to a higher sensing performance. Thus, an ESIPT-based ratiometric probe (HBTP-mito) was developed on the basis of a phosphorylated 2-(2'-hydroxyphenyl)-benzothiazole derivative for the determination of ALP activity. HBTP-mito is water soluble and emits green fluorescence in TBS buffer due to the blockage of ESIPT. Upon the introduction of ALP, the phosphate ester of HBTP-mito was hydrolyzed and the ESIPT process was restored. Accordingly, the fluorescence at 514 nm decreases, while emission at 650 nm shows a "turn-on" response. The ratio of intensity (I514nm/I650nm) decreases linearly with ALP activity increasing from 0 to 60 mU/mL, obtained an LOD of 0.072 mU/mL. The favorable performance of the probe enables its application not only in the detection of ALP activity in biological samples, but also in the localization of the ALP levels in living cells and in vivo.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Shasha Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| |
Collapse
|
43
|
Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26529-26558. [PMID: 31136142 DOI: 10.1021/acsami.9b01370] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ultimate goal of cancer therapy is to eliminate malignant tumors while causing no damage to normal tissues. In the past decades, numerous nanoagents have been employed for cancer treatment because of their unique properties over traditional molecular drugs. However, lack of selectivity and unwanted therapeutic outcomes have severely limited the therapeutic index of traditional nanodrugs. Recently, a series of nanomaterials that can accumulate in specific organelles (nucleus, mitochondrion, endoplasmic reticulum, lysosome, Golgi apparatus) within cancer cells have received increasing interest. These rationally designed nanoagents can either directly destroy the subcellular structures or effectively deliver drugs into the proper targets, which can further activate certain cell death pathways, enabling them to boost the therapeutic efficiency, lower drug dosage, reduce side effects, avoid multidrug resistance, and prevent recurrence. In this Review, the design principles, targeting strategies, therapeutic mechanisms, current challenges, and potential future directions of organelle-targeted nanomaterials will be introduced.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
44
|
Diethelm-Varela B, Ai Y, Liang D, Xue F. Nitrogen Mustards as Anticancer Chemotherapies: Historic Perspective, Current Developments and Future Trends. Curr Top Med Chem 2019; 19:691-712. [PMID: 30931858 DOI: 10.2174/1568026619666190401100519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Nitrogen mustards, a family of DNA alkylating agents, marked the start of cancer pharmacotherapy. While traditionally characterized by their dose-limiting toxic effects, nitrogen mustards have been the subject of intense research efforts, which have led to safer and more effective agents. Even though the alkylating prodrug mustards were first developed decades ago, active research on ways to improve their selectivity and cytotoxic efficacy is a currently active topic of research. This review addresses the historical development of the nitrogen mustards, outlining their mechanism of action, and discussing the improvements on their therapeutic profile made through rational structure modifications. A special emphasis is made on discussing the nitrogen mustard prodrug category, with Cyclophosphamide (CPA) serving as the main highlight. Selected insights on the latest developments on nitrogen mustards are then provided, limiting such information to agents that preserve the original nitrogen mustard mechanism as their primary mode of action. Additionally, future trends that might follow in the quest to optimize these invaluable chemotherapeutic medications are succinctly suggested.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
45
|
|
46
|
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10:6035-6071. [PMID: 31360411 PMCID: PMC6585876 DOI: 10.1039/c9sc01652j] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dynamic fluctuations of bioactive species in living cells are associated with numerous physiological and pathological phenomena. The emergence of organelle-targeted fluorescent probes has significantly facilitated our understanding on the biological functions of these species. This review describes the design, applications, challenges and potential directions of organelle-targeted bioactive species probes.
Bioactive species, including reactive oxygen species (ROS, including O2˙–, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO–, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2Sn, SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
47
|
Lin X, Lu X, Zhou J, Ren H, Dong X, Zhao W, Chen Z. Instantaneous fluorescent probe for the specific detection of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:416-422. [PMID: 30738350 DOI: 10.1016/j.saa.2019.01.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Novel cyanine-based fluorescent probes for the detection of H2S were developed. The probes developed are stable under physiological conditions. The water soluble fluorescent probe 2 displayed ultrafast and specific response to H2S displaying NIR fluorescence of 115-fold turn-on with the detection limit of 11 nM without assistance of organic solvent or surfactant. Cell imaging experiments indicated that probe 2 was cell-permeable and was able to detect H2S sensitively in lysosomes. Moreover, our probe was able to detect H2S intrinsically produced H2S through enzymatic/non-enzymatic biosynthetic pathway from Cys/GSH. Moreover, we applied probe 2 to detect H2S in living mice and demonstrated the fast metabolism of H2S. Thus, probe 2 shows great promise as a reporter for H2S.
Collapse
Affiliation(s)
- Xianfeng Lin
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiuhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Junliang Zhou
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Hang Ren
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Weili Zhao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China; Key Laboratory for Special Functional Material of the Ministry of Education, Henan University, Kaifeng 475004, PR China.
| | - Zhongjian Chen
- Shanghai Dermatology Hospital, Shanghai 200443, PR China
| |
Collapse
|
48
|
Zhang R, Niu G, Li X, Guo L, Zhang H, Yang R, Chen Y, Yu X, Tang BZ. Reaction-free and MMP-independent fluorescent probes for long-term mitochondria visualization and tracking. Chem Sci 2019; 10:1994-2000. [PMID: 30881628 PMCID: PMC6383331 DOI: 10.1039/c8sc05119d] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Visualizing and tracking mitochondrial dynamic changes is crucially important in the fields of physiology, pathology and pharmacology. Traditional electrostatic-attraction based mitochondrial probes fail to visualize and track the changes due to their leakage from mitochondria when mitochondrial membrane potential (MMP) decreases. Reaction-based MitoTracker probes can realize visualization and tracking of mitochondria changes independent of MMP changes. However, such probes impair mitochondrial proteins and exhibit high cytotoxicity. Therefore, it still remains challenging to explore reaction-free and highly biocompatible probes for visualizing and tracking mitochondrial dynamics independent of MMP fluctuations. Herein we synthesized two reaction-free fluorescent mitochondrial probes ECPI-12 and IVPI-12 bearing a long C12-alkyl chain. These cationic probes can firmly immobilize in the mitochondrial inner membrane by strong hydrophobic interaction between the C12-alkyl chain and lipid bilayer, resulting in high specificity and long-term mitochondrial staining regardless of MMP changes. They also exhibit large two-photon absorption cross-sections and show deep penetration in live tissues in two-photon microscopy. Furthermore, they display excellent biocompatibility and realize in situ and real-time mitophagy tracking in live cells. These excellent properties could make ECPI-12 and IVPI-12 the first selective tools for long-term visualization and tracking of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Guangle Niu
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Xuechen Li
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Lifang Guo
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Huamiao Zhang
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Rui Yang
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Yuncong Chen
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Xiaoqiang Yu
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| |
Collapse
|
49
|
Zhang SJ, Kang K, Niu LM, Kang WJ. Electroanalysis of neurotransmitters via 3D gold nanoparticles and a graphene composite coupled with a microdialysis device. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Carvalho PHPR, Correa JR, Paiva KLR, Baril M, Machado DFS, Scholten JD, de Souza PEN, Veiga-Souza FH, Spencer J, Neto BAD. When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining. Org Chem Front 2019. [DOI: 10.1039/c9qo00428a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design, synthesis, molecular architecture and the unexpected behavior of fluorescent benzothiadiazole for selective mitochondrial and plasma membrane staining are investigated.
Collapse
|