1
|
Cai R, Li Y, Zhu L, Wei C, Bao X, Zhao Y. 2, 4, 5-Trideoxyhexopyranosides derivatives of diphyllin: Synthesis and anticancer activity. Chem Biol Drug Des 2022; 100:256-266. [PMID: 35614538 DOI: 10.1111/cbdd.14095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
Diphyllin and its natural derivatives were identified as potent vacuolar H+ -ATPase (V-ATPase) inhibitors. In this study, twelve 2, 4, 5-trideoxyhexopyranosides derivatives of diphyllin were synthesized. Most of these compounds showed potent abilities to inhibit the growth of HT-29, MCF-7, HepG2 cancer cells with IC50 values at submicromolar concentration. The compounds 5c3 and 5c4 showed the best inhibitory activity on breast cancer cell lines MCF-7 with IC50 values of 0.09 and 0.10 μM. Compounds 5c3 and 5c4 showed similar V-ATPase inhibitory potency to diphyllin. Molecular docking showed that a hydrogen bond was found between the hydroxyl of 5c3 and SerA534 in the pocket of the V-ATPase receptor.
Collapse
Affiliation(s)
- Rui Cai
- Department of Pharmacy, Changzhou maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yu Li
- School of Pharmacy, Nantong University, Nantong, China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong, China
| | - Caiyan Wei
- School of Pharmacy, Nantong University, Nantong, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
2
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Lee J, Rhee YH. Pd-Catalyzed Umpolung Chemistry of Glycal Acetates and Their [2,3]-Dehydrosugar Isomers. Org Lett 2021; 24:570-574. [PMID: 34967628 DOI: 10.1021/acs.orglett.1c04004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycals and their [2,3]-dehydrosugar derivatives have commonly been used in synthetic chemistry as electrophiles. Here we report a Pd-catalyzed polar inversion (umpolung) of this reaction, where the glycals and isomers can be used as nucleophiles. The reaction showed high regio- and stereoselectivity in the presence of numerous aromatic and aliphatic aldehydes. The synthetic utility of this reaction was demonstrated by the short synthesis of the tetrahydropyran fragment of the anticancer natural product mucocin.
Collapse
Affiliation(s)
- Juyeol Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| |
Collapse
|
4
|
Carder HM, Suh CE, Wendlandt AE. A Unified Strategy to Access 2- and 4-Deoxygenated Sugars Enabled by Manganese-Promoted 1,2-Radical Migration. J Am Chem Soc 2021; 143:13798-13805. [PMID: 34406756 DOI: 10.1021/jacs.1c05993] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective manipulation of carbohydrate scaffolds is challenging due to the presence of multiple, nearly chemically indistinguishable O-H and C-H bonds. As a result, protecting-group-based synthetic strategies are typically necessary for carbohydrate modification. Here we report a concise semisynthetic strategy to access diverse 2- and 4-deoxygenated carbohydrates without relying on the exhaustive use of protecting groups to achieve site-selective reaction outcomes. Our approach leverages a Mn2+-promoted redox isomerization step, which proceeds via sugar radical intermediates accessed by neutral hydrogen atom abstraction under visible light-mediated photoredox conditions. The resulting deoxyketopyranosides feature chemically distinguishable functional groups and are readily transformed into diverse carbohydrate structures. To showcase the versatility of this method, we report expedient syntheses of the rare sugars l-ristosamine, l-olivose, l-mycarose, and l-digitoxose from commercial l-rhamnose. The findings presented here validate the potential for radical intermediates to facilitate the selective transformation of carbohydrates and showcase the step and efficiency advantages attendant to synthetic strategies that minimize a reliance upon protecting groups.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carolyn E Suh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Barpuzary B, Kim M, Rhee YH. Synthetic Study toward Saccharomicin Based upon Asymmetric Metal Catalysis. Org Lett 2021; 23:5969-5972. [PMID: 34292756 DOI: 10.1021/acs.orglett.1c02060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report a de novo metal-catalyzed approach toward the stereoselective glycosidic bond formation in saccharomicin. The signature step is highlighted by the Pd-catalyzed asymmetric coupling of ene-alkoxyallenes and highly functionalized alcohol substrates. The reaction showed high chemo-, regio-, and ligand-driven diastereoselectivity. In combination with the ring-closing metathesis and late-stage functionalization, this method led to highly efficient synthesis of saccharosamine-rhamnose and rhamnose-fucose fragments.
Collapse
Affiliation(s)
- Bhawna Barpuzary
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| | - Mijin Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| |
Collapse
|
6
|
Abstract
A new synthetic approach toward oligosaccharides consisting only of 2,3,6-trideoxypyranoglycosides is reported. The key feature is highlighted by the convergent approach that allows the introduction of the aglycon moiety in the late stage of the synthesis. As an illustrative example, the tetrasaccharide portion of cervimycin K was prepared as cyclohexyl glycoside.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
7
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Liu X, Li B, Han G, Liu X, Cao Z, Jiang DE, Sun Y. Electrocatalytic synthesis of heterocycles from biomass-derived furfuryl alcohols. Nat Commun 2021; 12:1868. [PMID: 33767166 PMCID: PMC7994825 DOI: 10.1038/s41467-021-22157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2021] [Indexed: 11/08/2022] Open
Abstract
It is very attractive yet underexplored to synthesize heterocyclic moieties pertaining to biologically active molecules from biomass-based starting compounds. Herein, we report an electrocatalytic Achmatowicz reaction for the synthesis of hydropyranones from furfuryl alcohols, which can be readily produced from biomass-derived and industrially available furfural. Taking advantage of photo-induced polymerization of a bipyridyl ligand, we demonstrate the facile preparation of a heterogenized nickel electrocatalyst, which effectively drives the Achmatowicz reaction electrochemically. A suite of characterization techniques and density functional theory computations were performed to aid the understanding of the reaction mechanism. It is rationalized that the unsaturated coordination sphere of nickel sites in our electrocatalyst plays an important role at low applied potential, not only allowing the intimate interaction between the nickel center and furfuryl alcohol but also enabling the transfer of hydroxide from nickel to the bound furfuryl alcohol.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Bo Li
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Xingwu Liu
- Syncat@Beijing, Synfuels CHINA Co., Ltd, Beijing, China
| | - Zhi Cao
- Syncat@Beijing, Synfuels CHINA Co., Ltd, Beijing, China.
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China.
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, USA.
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Li J, Zheng N, Duan X, Li R, Song W. Palladium‐Catalyzed Regioselective and Diastereoselective
C
‐Glycosylation by Allyl‐Allyl Coupling. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junhao Li
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Xuelun Duan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Rui Li
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| |
Collapse
|
10
|
Lu Y, Zhu L, Cai R, Li Y, Zhao Y. 2, 4, 5-Trideoxyhexopyranosides Derivatives of 4'- Demethylepipodophyllotoxin: De novo Synthesis and Anticancer Activity. Med Chem 2020; 18:130-139. [PMID: 33222676 DOI: 10.2174/1573406416666201120102250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Podophyllotoxin is a natural lignan which possesses anticancer and antiviral activities. Etoposide and teniposide are semisynthetic glycoside derivatives of podophyllotoxin and are increasingly used in cancer medicine. OBJECTIVE The present work was aimed to design and synthesize a series of 2, 4, 5-trideoxyhexopyranosides derivatives of 4'-demethylepipodophyllotoxin as novel anticancer agents. METHODS A divergent de novo synthesis of 2, 4, 5-trideoxyhexopyranosides derivatives of 4'-demethylepipodophyllotoxin has been established via palladium-catalyzed glycosylation. The abilities of synthesized glycosides to inhibit the growth of A549, HepG2, SH-SY5Y, KB/VCR and HeLa cancer cells were investigated by MTT assay. Flow cytometric analysis of cell cycle with propidium iodide DNA staining was employed to observe the effect of compound 5b on cancer cell cycle. RESULTS Twelve D and L monosaccharides derivatives 5a-5l have been efficiently synthesized in three steps from various pyranone building blocks employing de novo glycosylation strategy. D-monosaccharide 5b showed highest cytotoxicity on five cancer cell lines with the IC50 values from 0.9 to 6.7 mM. It caused HepG2 cycle arrest at G2/M phase in a concentration-dependent manner. CONCLUSION The present work leads to the development of novel 2, 4, 5-trideoxyhexopyranosides derivatives of 4'- demethylepipodophyllotoxin. The biological results suggested that the replacement of the glucosyl moiety of etoposide with 2, 4, 5-trideoxyhexopyranosyl is favorable to their cytotoxicity. D-monosaccharide 5b caused HepG2 cycle arrest at G2/M phase in a concentration-dependent manner.
Collapse
Affiliation(s)
- Yapeng Lu
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Rui Cai
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Yu Li
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001. China
| |
Collapse
|
11
|
Zhang Y, Zhang J, Ponomareva LV, Cui Z, Van Lanen SG, Thorson JS. Sugar-Pirating as an Enabling Platform for the Synthesis of 4,6-Dideoxyhexoses. J Am Chem Soc 2020; 142:9389-9395. [PMID: 32330028 DOI: 10.1021/jacs.9b13766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient divergent synthetic strategy that leverages the natural product spectinomycin to access uniquely functionalized monosaccharides is described. Stereoselective 2'- and 3'-reduction of key spectinomycin-derived intermediates enabled facile access to all eight possible 2,3-stereoisomers of 4,6-dideoxyhexoses as well as representative 3,4,6-trideoxysugars and 3,4,6-trideoxy-3-aminohexoses. In addition, the method was applied to the synthesis of two functionalized sugars commonly associated with macrolide antibiotics-the 3-O-alkyl-4,6-dideoxysugar d-chalcose and the 3-N-alkyl-3,4,6-trideoxysugar d-desosamine.
Collapse
Affiliation(s)
- Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
12
|
Flexible Total Synthesis of 11‐Deoxylandomycins and Their Non‐Natural Analogues by Way of Asymmetric Metal Catalysis. Angew Chem Int Ed Engl 2020; 59:2349-2353. [DOI: 10.1002/anie.201913706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 11/07/2022]
|
13
|
Jiang N, Dong Y, Sun G, Yang G, Wang Q, Zhang J. Core‐Shell Fe
3
O
4
@Carbon@SO
3
H: A Powerful Recyclable Catalyst for the Synthesis of α‐2‐Deoxygalactosides. ChemistrySelect 2020. [DOI: 10.1002/slct.202000089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Youxian Dong
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guosheng Sun
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guofang Yang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Qingbing Wang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Jianbo Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| |
Collapse
|
14
|
Lee J, Kang J, Lee S, Rhee YH. Flexible Total Synthesis of 11‐Deoxylandomycins and Their Non‐Natural Analogues by Way of Asymmetric Metal Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juyeol Lee
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jihun Kang
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sukhyun Lee
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
15
|
Divergent de novo synthesis of 2,4,5-trideoxyhexopyranosides derivatives of podophyllotoxin as anticancer agents. Future Med Chem 2019; 11:3015-3027. [DOI: 10.4155/fmc-2018-0593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Identification of new anticancer glycosidic derivatives of podophyllotoxin. Methods: 14 podophyllotoxin D- and L-monosaccharides have been synthesized in three steps employing de novo glycosylation strategy, and their abilities to inhibit the growth of HeLa, HepG2, MCF-7, A549 and MDA-MB-231 cancer cells were investigated by MTT assay. Molecular docking study of compound 5j with tubulin was performed. Immunofluorescence was applied for detecting the inhibitory effect of 5j on tubulin polymerization. Results & conclusion: Most of synthesized compounds showed strong cytotoxicity activity against five cancer cell lines. Compound 5j possessed the highest cytotoxicity with the IC50 values from 41.6 to 95.2 nM, and could concentration-dependently inhibit polymerization of the microtubule cytoskeleton of MCF-7 cells. Molecular docking disclosed that sugar moiety-dedicated hydrogen bond endowed 5j a higher binding affinity for tubulin.
Collapse
|
16
|
Divergent Synthesis of Dihydropyranone Stereoisomers via N‐Heterocyclic Carbene Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Sau A, Palo-Nieto C, Galan MC. Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C 6F 5) 3 as Catalyst. J Org Chem 2019; 84:2415-2424. [PMID: 30706711 PMCID: PMC6466476 DOI: 10.1021/acs.joc.8b02613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
B(C6F5)3 enables the metal-free
unprecedented substrate-controlled direct α-stereoselective
synthesis of deoxyglycosides from glycals. 2,3-Unsaturated α-O-glycoside products are obtained with deactivated glycals
at 75 °C in the presence of the catalyst, while 2-deoxyglycosides
are formed using activated glycals that bear no leaving group at C-3
at lower temperatures. The reaction proceeds in good to excellent
yields via concomitant borane activation of glycal donor and nucleophile
acceptor. The method is exemplified with the synthesis of a series
of rare and biologically relevant glycoside analogues.
Collapse
Affiliation(s)
- Abhijit Sau
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Carlos Palo-Nieto
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - M Carmen Galan
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
18
|
Lee J, Kang S, Kim J, Moon D, Rhee YH. A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6-Trideoxypyranoglycosides. Angew Chem Int Ed Engl 2018; 58:628-631. [DOI: 10.1002/anie.201812222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Juyeol Lee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Soyeong Kang
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Jungjoon Kim
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Dohyun Moon
- Department of Beamline; Pohang Accelerator Laboratory; Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| |
Collapse
|
19
|
Lee J, Kang S, Kim J, Moon D, Rhee YH. A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6-Trideoxypyranoglycosides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juyeol Lee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Soyeong Kang
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Jungjoon Kim
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Dohyun Moon
- Department of Beamline; Pohang Accelerator Laboratory; Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| |
Collapse
|
20
|
Peng H, Luo W, Jiang H, Yin B. Tandem Achmatowicz Rearrangement and Acetalization of 1-[5-(Hydroxyalkyl)-furan-2-yl]-cyclobutanols Leading to Dispiroacetals and Subsequent Ring-Expansion to Form 6,7-Dihydrobenzofuran-4(5 H)-ones. J Org Chem 2018; 83:12869-12879. [PMID: 30240214 DOI: 10.1021/acs.joc.8b01765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we report a one-pot protocol for the synthesis of dispiroacetals 4 bearing a cyclobutane motif via tandem Achmatowicz rearrangement and acetalization of 1-[5-(hydroxyalkyl)-furan-2-yl]-cyclobutanols 3 with m-CPBA as the oxidant and AgSbF6 as an additive to promote the cyclization step in an aqueous medium. Dispiroacetals 4 could subsequently undergo Lewis acid-catalyzed ring expansion and skeletal rearrangement to afford 6,7-dihydro-5 H-benzofuran-4-ones 5.
Collapse
Affiliation(s)
- Hui Peng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P.R. China
| | - Wenkun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P.R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P.R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P.R. China
| |
Collapse
|
21
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800909] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
22
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018; 57:6120-6124. [DOI: 10.1002/anie.201800909] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
23
|
Zhu Z, Glazier DA, Yang D, Tang W. Catalytic Asymmetric Synthesis of All Possible Stereoisomers of 2,3,4,6-Tetradeoxy-4-Aminohexopyranosides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongpeng Zhu
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Chemical Sciences; University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Daniel A. Glazier
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| | - Daoshan Yang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 People's Republic of China
| | - Weiping Tang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| |
Collapse
|
24
|
Song WZ, Zheng YB, Li M, Zheng N, Ullah K, Li JH, Dong K. Vanadium-Catalyzed Achmatowicz and Aza-Achmatowicz Rearrangement Reactions. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Zhu Z, Wang HY, Simmons C, Tseng PS, Qiu X, Zhang Y, Duan X, Yang JK, Tang W. Iridium-Catalyzed Dynamic Kinetic Stereoselective Allylic Etherification of Achmatowicz Rearrangement Products. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhongpeng Zhu
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing People's Republic of China
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Hao-Yuan Wang
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Christopher Simmons
- Department of Chemistry; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Po-Sen Tseng
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Xiang Qiu
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Yu Zhang
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Xiyan Duan
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Jing-Kui Yang
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Weiping Tang
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison, WI 53705 USA
| |
Collapse
|
26
|
Dhanjee HH, Kobayashi Y, Buergler JF, McMahon TC, Haley MW, Howell JM, Fujiwara K, Wood JL. Total Syntheses of (+)- and (−)-Tetrapetalones A and C. J Am Chem Soc 2017; 139:14901-14904. [DOI: 10.1021/jacs.7b09358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heemal H. Dhanjee
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Yutaka Kobayashi
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Jonas F. Buergler
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Travis C. McMahon
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Matthew W. Haley
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Jennifer M. Howell
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Koichi Fujiwara
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - John L. Wood
- Department of Chemistry and
Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| |
Collapse
|
27
|
Palo-Nieto C, Sau A, Galan MC. Gold(I)-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. J Am Chem Soc 2017; 139:14041-14044. [PMID: 28934850 PMCID: PMC5951607 DOI: 10.1021/jacs.7b08898] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Au(I) in combination
with AgOTf enables the unprecedented direct
and α-stereoselective catalytic synthesis of deoxyglycosides
from glycals. Mechanistic investigations suggest that the reaction
proceeds via Au(I)-catalyzed hydrofunctionalization of the enol ether
glycoside. The room temperature reaction is high yielding and amenable
to a wide range of glycal donors and OH nucleophiles.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
28
|
Song W, Wang S, Tang W. De Novo Synthesis of Mono- and Oligosaccharides via Dihydropyran Intermediates. Chem Asian J 2017; 12:1027-1042. [DOI: 10.1002/asia.201700212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Wangze Song
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Pharmaceutical Science and Technology; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian, 116024 P.R. China
| | - Shuojin Wang
- School of Pharmacy; Hainan Medical University; Haikou 571199 P.R. China
| | - Weiping Tang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53706 USA
| |
Collapse
|
29
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017; 56:3640-3644. [PMID: 28211228 PMCID: PMC5484376 DOI: 10.1002/anie.201612071] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Palladium(II) in combination with a monodentate phosphine ligand enables the unprecedented direct and α-stereoselective catalytic synthesis of deoxyglycosides from glycals. Initial mechanistic studies suggest that in the presence of N-phenyl-2-(di-tert-butylphosphino)pyrrole as the ligand, the reaction proceeds via an alkoxy palladium intermediate that increases the proton acidity and oxygen nucleophilicity of the alcohol. The method is demonstrated with a wide range of glycal donors and acceptors, including substrates bearing alkene functionalities.
Collapse
Affiliation(s)
- Abhijit Sau
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Ryan Williams
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Carlos Palo‐Nieto
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Sandra Medina
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
30
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium‐Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhijit Sau
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Ryan Williams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Carlos Palo‐Nieto
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Antonio Franconetti
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Sandra Medina
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - M. Carmen Galan
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
31
|
Ghosh AK, Brindisi M. Achmatowicz Reaction and its Application in the Syntheses of Bioactive Molecules. RSC Adv 2016; 6:111564-111598. [PMID: 28944049 PMCID: PMC5603243 DOI: 10.1039/c6ra22611f] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Substituted pyranones and tetrahydropyrans are structural subunits of many bioactive natural products. Considerable efforts are devoted toward the chemical synthesis of these natural products due to their therapeutic potential as well as low natural abundance. These embedded pyranones and tetrahydropyran structural motifs have been the subject of synthetic interest over the years. While there are methods available for the syntheses of these subunits, there are issues related to regio and stereochemical outcomes, as well as versatility and compatibility of reaction conditions and functional group tolerance. The Achmatowicz reaction, an oxidative ring enlargement of furyl alcohol, was developed in the 1970s. The reaction provides a unique entry to a variety of pyranone derivatives from functionalized furanyl alcohols. These pyranones provide convenient access to substituted tetrahydropyran derivatives. This review outlines general approaches to the synthesis of tetrahydropyrans, covering general mechanistic aspects of the Achmatowicz reaction or rearrangement with an overview of the reagents utilized for the Achmatowicz reaction. The review then focuses on the synthesis of functionalized tetrahydropyrans and pyranones and their applications in the synthesis of natural products and medicinal agents.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Kim M, Kang S, Rhee YH. De Novo Synthesis of Furanose Sugars: Catalytic Asymmetric Synthesis of Apiose and Apiose-Containing Oligosaccharides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mijin Kim
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Soyeong Kang
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Young Ho Rhee
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| |
Collapse
|
33
|
Kim M, Kang S, Rhee YH. De Novo Synthesis of Furanose Sugars: Catalytic Asymmetric Synthesis of Apiose and Apiose-Containing Oligosaccharides. Angew Chem Int Ed Engl 2016; 55:9733-7. [DOI: 10.1002/anie.201604199] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Mijin Kim
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Soyeong Kang
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Young Ho Rhee
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| |
Collapse
|