1
|
Geka G, Kanioura A, Likodimos V, Gardelis S, Papanikolaou N, Kakabakos S, Petrou P. SERS Immunosensors for Cancer Markers Detection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3733. [PMID: 37241360 PMCID: PMC10221005 DOI: 10.3390/ma16103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Early diagnosis and monitoring are essential for the effective treatment and survival of patients with different types of malignancy. To this end, the accurate and sensitive determination of substances in human biological fluids related to cancer diagnosis and/or prognosis, i.e., cancer biomarkers, is of ultimate importance. Advancements in the field of immunodetection and nanomaterials have enabled the application of new transduction approaches for the sensitive detection of single or multiple cancer biomarkers in biological fluids. Immunosensors based on surface-enhanced Raman spectroscopy (SERS) are examples where the special properties of nanostructured materials and immunoreagents are combined to develop analytical tools that hold promise for point-of-care applications. In this frame, the subject of this review article is to present the advancements made so far regarding the immunochemical determination of cancer biomarkers by SERS. Thus, after a short introduction about the principles of both immunoassays and SERS, an extended presentation of up-to-date works regarding both single and multi-analyte determination of cancer biomarkers is presented. Finally, future perspectives on the field of SERS immunosensors for cancer markers detection are briefly discussed.
Collapse
Affiliation(s)
- Georgia Geka
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
| | - Anastasia Kanioura
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (V.L.); (S.G.)
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (V.L.); (S.G.)
| | - Nikolaos Papanikolaou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
| | - Panagiota Petrou
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
| |
Collapse
|
2
|
Recent advances in photonic crystal-based sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Yuan K, Jurado-Sánchez B, Escarpa A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J Nanobiotechnology 2022; 20:537. [PMID: 36544151 PMCID: PMC9771791 DOI: 10.1186/s12951-022-01711-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a very promising tool for the direct detection of biomarkers for the diagnosis of i.e., cancer and pathogens. Yet, current SERS strategies are hampered by non-specific interactions with co-existing substances in the biological matrices and the difficulties of obtaining molecular fingerprint information from the complex vibrational spectrum. Raman signal enhancement is necessary, along with convenient surface modification and machine-based learning to address the former issues. This review aims to describe recent advances and prospects in SERS-based approaches for cancer and pathogens diagnosis. First, direct SERS strategies for key biomarker sensing, including the use of substrates such as plasmonic, semiconductor structures, and 3D order nanostructures for signal enhancement will be discussed. Secondly, we will illustrate recent advances for indirect diagnosis using active nanomaterials, Raman reporters, and specific capture elements as SERS tags. Thirdly, critical challenges for translating the potential of the SERS sensing techniques into clinical applications via machine learning and portable instrumentation will be described. The unique nature and integrated sensing capabilities of SERS provide great promise for early cancer diagnosis or fast pathogens detection, reducing sanitary costs but most importantly allowing disease prevention and decreasing mortality rates.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| |
Collapse
|
4
|
Yang H, Li J, Rao Y, Yang L, Xue Y, Zhang Y, Yang Z, Li J. Ultrasensitive multiplex SERS immunoassay based on porous Au-Ag alloy nanoparticle-amplified Raman signal probe and encoded photonic crystal beads. Mikrochim Acta 2022; 190:13. [PMID: 36478275 DOI: 10.1007/s00604-022-05539-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
An ultrasensitive multiplex surface-enhanced Raman scattering (SERS) immunoassay was developed using porous Au-Ag alloy nanoparticles (p-AuAg NPs) as Raman signal amplification probe coupling with encoded photonic crystal microsphere. p-AuAg NPs were synthesized and modified with the second antibody (Ab2) and Raman tag (mercaptobenzoic acid, MBA) to prepare a Raman signal-amplified probe. The high porosity of the p-AuAg NPs enables significant coupling of the localized surface plasmon resonance and thus abundant inherent hotspots for Raman signal enhancement. 3D-ordered silver nanoparticles-coated silica photonic crystal beads (Ag/SPCBs) were prepared as encoded SERS substrate for multiplex detection using their reflection peaks. The signal-amplified probe was used for multiplex detection of tumor markers carcinoembryonic antigen (CEA) and alpha fetoprotein (AFP). The wide linear ranges of 10-7-103 ng/mL for CEA and 10-4-103 ng/mL for AFP with detection limits of 1.22 × 10-8 ng/mL and 2.47 × 10-5 ng/mL for CEA and AFP at a signal-to-noise ratio of 3 were obtained. The proposed multiplex SERS immunoassay method displays ultrahigh sensitivity, wide linear range, and excellent specificity, which can be successfully applied to measure clinical serum samples with satisfactory results. The research provides a novel SERS signal enhancement strategy for the multiplex bioassay.
Collapse
Affiliation(s)
- Huizhen Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Jiayin Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yan Rao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Linan Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yadong Xue
- Jinhua Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| | - Juan Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| |
Collapse
|
5
|
Shao C, Yu Y, Fan Q, Wang X, Ye F. Polyurethane-polypyrrole hybrid structural color films for dual-signal mechanics sensing. SMART MEDICINE 2022; 1:e20220008. [PMID: 39188741 PMCID: PMC11235726 DOI: 10.1002/smmd.20220008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 08/28/2024]
Abstract
The monitoring of mechanical indexes involved in body movement has attracted immense interest in the diagnosis of neurodegenerative diseases. Here, we present a hybrid flexible conductive structural color (SC) film with the capability of dual-signal mechanics screening. The film is constructed by oxidatively polymerizing pyrrole on the surface of an inverse opal polyurethane (IPU) membrane, which can be utilized to measure the mechanical indexes through resistance change. Owing to the inverse opal structure, the film shows visual structural color change when stretched and released according to the body movement. Additionally, the highly uniform ordered porous structure endows the conductive film with a lower coefficient of variance on relative resistance change. Benefiting from these features, we have demonstrated that such a flexible conductive SC film could monitor Parkinson's disease (PD) by detecting mechanical indexes simultaneously via dual signals. These features indicate the great value of the stretchable conductive SC films in mechanics sensing applications.
Collapse
Affiliation(s)
- Changmin Shao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Xiaochen Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Zou B, Lou S, Wang J, Zhou S, Wang Y. Periodic Surface-Enhanced Raman Scattering-Encoded Magnetic Beads for Reliable Quantitative Surface-Enhanced Raman Scattering-Based Multiplex Bioassay. Anal Chem 2022; 94:11557-11563. [PMID: 35960877 DOI: 10.1021/acs.analchem.2c01793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman scattering (SERS)-based immunoassay on encoded beads is highly attractive with the advantages of ultrasensitivity, multiplex and high throughput. However, it was a great challenge to screen out in-focus signals of the immunoconjugated SERS nanoprobes on spherical bead conveniently. Here, periodic SERS-encoded magnetic beads (PSE-MBs) were developed through droplet optofluidic technique by using monodisperse SERS-encoded magnetic nanospheres as building blocks. The designed PSE-MBs not only exhibit huge coding capacity, but also provide the strongest and reproducible SERS coding signals as "in-focus beacons". When PSE-MBs are used as capture carriers in SERS-based immunoassay, both multiple target analytes and in-focus signals of SERS nanoprobes could be easily identified according to the collected SERS coding signals. Thus, reliable quantitative analysis of multiple target analytes could be conveniently achieved by such detection protocol. Additionally, the magnetic ingredient in PSE-MBs made the operation easily during the bioassay. The multiple advantages of PSE-MBs including large coding capacity, in-focus beacons and magnetic operation endorse them to be robust capture carriers in reliable quantitative SERS-based multiplex immunoassay.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China.,School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Shiyun Lou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Jizhou Wang
- Department of Clinical Laboratory, Translational Medicine Centre, Huaihe Hospital Affiliated to Henan University, Kaifeng 475004, P. R. China
| | - Shaomin Zhou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
7
|
Pollap A, Świt P. Recent Advances in Sandwich SERS Immunosensors for Cancer Detection. Int J Mol Sci 2022; 23:ijms23094740. [PMID: 35563131 PMCID: PMC9105793 DOI: 10.3390/ijms23094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer has been one of the most prevalent diseases around the world for many years. Its biomarkers are biological molecules found in the blood or other body fluids of people with cancer diseases. These biomarkers play a crucial role not only in the diagnosis of cancer diseases, but also in risk assessment, selection of treatment methods, and tracking its progress. Therefore, highly sensitive and selective detection and determination of cancer biomarkers are essential from the perspective of oncological diagnostics and planning the treatment process. Immunosensors are special types of biosensors that are based on the recognition of an analyte (antigen) by an antibody. Sandwich immunosensors apply two antibodies: a capture antibody and a detection antibody, with the antigen ‘sandwiched’ between them. Immunosensors’ advantages include not only high sensitivity and selectivity, but also flexible application and reusability. Surface-enhanced Raman spectroscopy, known also as the sensitive and selective method, uses the enhancement of light scattering by analyte molecules adsorbed on a nanostructured surface. The combination of immunosensors with the SERS technique further improves their analytical parameters. In this article, we followed the recent achievements in the field of sandwich SERS immunosensors for cancer biomarker detection and/or determination.
Collapse
Affiliation(s)
| | - Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, 40-006 Katowice, Poland
- Correspondence:
| |
Collapse
|
8
|
Nanoporous silver nanorods as surface-enhanced Raman scattering substrates. Biosens Bioelectron 2022; 202:114004. [DOI: 10.1016/j.bios.2022.114004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
|
9
|
Chen Q, Wang S, Huang T, Xiao F, Wu Z, Yu R. Construction and Research of Multiple Stimuli-Responsive 2D Photonic Crystal DNA Hydrogel Sensing Platform with Double-Network Structure and Signal Self-Expression. Anal Chem 2022; 94:5530-5537. [PMID: 35357128 DOI: 10.1021/acs.analchem.1c04390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stimuli-responsive DNA hydrogel has attracted wide attention in the fields of chemical and biological sensing. However, it is still a challenge to integrate characteristics with low-cost, high mechanical strength, and signal self-expression into a DNA hydrogel simultaneously. Herein, a stimuli-responsive 2D photonic crystal double network DNA hydrogel (2D PhC DN-DNA hydrogel) sensing platform is developed via combining the signal self-expression of 2D PhC array with the selective recognition of polyacrylamide (PAM)/DNA DN hydrogel. The change of DNA configuration induced by specific target triggers the change of 2D PhC DN-DNA hydrogel volume, leading to a shift of the Debye diffraction ring diameter. In order to verify the feasibility of this strategy, the 2D PhC DN-DNA hydrogel with C-rich sequences is chosen as a proof-of-concept. The results indicate that the hydrogel has good detection performance for pH and Ag+/Cys. And the Debye diffraction ring diameter of the hydrogel is correlated with the concentration of the Ag+/Cys in the range of 0.5-20 μM. Compared with previously pure DNA hydrogel sensing platform, the 2D PhC DN-DNA hydrogel features low-cost preparation process and label-free determination. Meanwhile, only a laser pointer and a ruler are needed for the determination of targets, which shows that the hydrogel has application prospect in the development of portable response equipment.
Collapse
Affiliation(s)
- Qianshan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Shihong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ting Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Fubing Xiao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, Hengyang 421001, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
10
|
Advances in droplet microfluidics for SERS and Raman analysis. Biosens Bioelectron 2022; 198:113822. [PMID: 34836710 DOI: 10.1016/j.bios.2021.113822] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Raman spectroscopy can realize qualitative and quantitative characterization, and surface-enhanced Raman spectroscopy (SERS) can further enhance its detection sensitivity. In combination with droplet microfluidics, some significant but insurmountable limitations of SERS and Raman spectroscopy can be overcome to some extent, thus improving their detection capability and extending their application. During the past decade, these systems have constantly developed and demonstrated a great potential in more applications, but there is no new review systematically summarizing the droplet microfluidics-based Raman and SERS analysis system since the first related review was published in 2011. Thus, there is a great need for a new review to summarize the advances. In this review, we focus on droplet microfluidics-based Raman and SERS analysis, and summarize two mainstream research directions on this topic up to now. The one is SERS or Raman detection in the moving droplet microreactors, including analysis of molecules, single cells and chemical reaction processes. The other one is SERS active microparticle fabrication via microfluidic droplet templates covering polymer matrix and photonic crystal microparticles. We also comment on the advantages, disadvantage and correlation resolution of droplet microfluidics for SERS or Raman. Finally, we summarize these systems and illustrate our perspectives for future research directions in this field.
Collapse
|
11
|
Chen F, Huang Y, Li R, Zhang S, Wang B, Zhang W, Wu X, Jiang Q, Wang F, Zhang R. Bio-inspired structural colors and their applications. Chem Commun (Camb) 2021; 57:13448-13464. [PMID: 34852027 DOI: 10.1039/d1cc04386b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural colors, generated by the interaction of interference, diffraction, and scattering between incident light and periodic nanostructured surfaces with features of the same scale with incident visible light wavelengths, have recently attracted intense interest in a wide range of research fields, due to their advantages such as various brilliant colors, long-term stability and environmental friendliness, low energy consumption, and mysterious biological functions. Tremendous effort has been made to design structural colors and considerable progress has been achieved in the past few decades. However, there are still significant challenges and obstacles, such as durability, portability, compatibility, recyclability, mass production of structural-color materials, etc., that need to be solved by rational structural design and novel manufacturing strategies. In this review, we summarize the recent progress of bio-inspired structural colors and their applications. First, we introduce several typical natural structural colors displayed by living organisms from fundamental optical phenomena, including interference, diffraction grating, scattering, photonic crystals effects, the combination of different phenomena, etc. Subsequently, we review recent progress in bio-inspired artificial structural colors generated from advanced micro/nanoscale manufacturing strategies to relevant biomimetic approaches, including self-assembly, template methods, phase conversion, magnetron sputtering, atomic layer deposition, etc. Besides, we also present the current and potential applications of structural colors in various fields, such as displays, anti-counterfeiting, wearable electronics, stealth, printing, etc. Finally, we discuss the challenges and future development directions of structural colors, aiming to push forward the research and applications of structural-color materials.
Collapse
Affiliation(s)
- Fengxiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. .,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Shiliang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Wenshuo Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Li J, Li W, Rao Y, Shi F, Yu S, Yang H, Min L, Yang Z. Synthesis of highly ordered AgNPs-coated silica photonic crystal beads for sensitive and reproducible 3D SERS substrates. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Ji H, Xia C, Xu J, Wu X, Qiao L, Zhang C. A highly sensitive immunoassay of pesticide and veterinary drug residues in food by tandem conjugation of bi-functional mesoporous silica nanospheres. Analyst 2020; 145:2226-2232. [PMID: 32043494 DOI: 10.1039/c9an02430a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of enzyme-antibody conjugation using mesoporous silicon nanospheres (MSN) was developed, which amplified the labeling signal and highly increased the sensitivity of enzyme-linked immunosorbent assay (ELISA) for the determination of pesticide and veterinary drug residues in food. First, conjugates were prepared through layer-by-layer immobilization of an enzyme and an antibody on an MSN scaffold. Then the MSN scaffold was employed for labeling and signal amplification to develop a sensitive colorimetric immunoassay through the catalytic oxidation reaction of 5,50-tetramethylbenzidine (TMB). When this MSN-based ELISA was applied to detect chloramphenicol, avermectin, tetracycline and streptomycin in food samples, it provided linear ranges of 0.025 ng ml-1-25 ng ml-1, 0.05 ng ml-1-10 ng ml-1, 0.025 ng ml-1-10 ng ml-1 and 0.05 ng ml-1-25 ng ml-1, respectively, with low detection limits down to 0.011 ng mL-1, 0.134 ng mL-1, 0.015 ng ml-1 and 0.106 ng ml-1, respectively. For avermectin, it provided a 16.7-fold decrease of the limit of detection in contrast to that of standard ELISA without the loss of method specificity and accuracy. This novel immunoassay was hypersensitive, simple and easy-to-use, which made it high potential in applying for the accurate analysis of harmful substances in food.
Collapse
Affiliation(s)
- Hanxu Ji
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - Chenxi Xia
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - JingJing Xu
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - XiaoXiao Wu
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - Ling Qiao
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - Chi Zhang
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China and Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| |
Collapse
|
14
|
Affiliation(s)
- Hai Zhu
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Yu Huang
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
- Zhejiang Institute China University of Geosciences Hangzhou China
| | - Xiaoding Lou
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Fan Xia
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| |
Collapse
|
15
|
Maw SS, Watanabe S, Miyahara MT. Multiple Roles of Polyethylenimine during Synthesis of 10 nm Thick Continuous Silver Nanoshells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4511-4518. [PMID: 32239957 DOI: 10.1021/acs.langmuir.9b03096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silica@silver core-shell particles (silver nanoshells) present a wide range of applications, owing to their unique optical, chemical, and surface plasmon resonance (SPR) properties. Because SPR properties are mainly determined by shell thickness, precise shell thickness control is required. However, the synthesis of continuous nanoshells less than 10 nm thickness is still a challenge. In this study, we overcame this challenge by using polyethyleneimine (PEI) during the shell growth step of the seed-mediated growth method. We determined that the addition of PEI significantly slowed the shell growth reaction and facilitated the formation of uniform shells, which allowed us to synthesize 9.8 nm thick complete silver nanoshells. The SPR absorptions of the resultant nanoshell suspensions remained almost unchanged for 15 days. Therefore, we demonstrated that PEI molecules played three different roles during the shell growth process: reaction-rate regulators, shell growth facilitators, and resultant suspension stabilizers. The shell thickness was tuned from 9.8 to 29.5 nm by simply varying the silver-ion concentration. A key factor was the amount of added PEI because excess PEI would result in the formation of silver nanoparticles in the bulk solution phase, while too little PEI would produce incomplete shells. The optimum mass ratio of PEI-to-silica particles was determined to be 1.0 for the experimental conditions in this study. The mixing sequence of the reaction solutions was also important because PEI had to be mixed with silica particles first to ensure that the PEI molecules get adsorbed on the surface of silica and accommodated silver ions via the coordination interactions between the amine groups of the PEI molecules and silver ions. The reaction that involves the use of PEI could lead to establishing a simple and robust synthesis technique for silver nanoshells.
Collapse
Affiliation(s)
- San San Maw
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Minoru T Miyahara
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
16
|
Ji J, Lu W, Zhu Y, Jin H, Yao Y, Zhang H, Zhao Y. Porous Hydrogel-Encapsulated Photonic Barcodes for Multiplex Detection of Cardiovascular Biomarkers. ACS Sens 2019; 4:1384-1390. [PMID: 30985109 DOI: 10.1021/acssensors.9b00352] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early detection of cardiac troponin I (cTnI), B-type natriuretic peptide (BNP), and myoglobin (Myo) is essential for the diagnosis of acute myocardial infarction (AMI) and heart failure (HF). We designed a porous hydrogel-encapsulated photonic crystal (PhC) barcode-based suspension array for multiple cardiovascular marker detection. The hybrid hydrogel was composed of polyethylene glycol diacrylate (PEGDA) and gelatin, resulting in a porous and hydrophilic scaffold which ensured stability of the PhC in aqueous solutions. The encapsulated PhC barcodes had stable diffraction peaks for the corresponding markers. Using a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of cardiovascular biomarkers in a single tube. The immunoassay results we tested on cTnI, BNP, and Myo could be assayed in the ranges of 0.01 to 1000 ng/mL, 0.1 to 10 000 pg/mL, and 1 to 10 000 ng/mL with limits of detection of 0.009 ng/mL, 0.084 pg/mL, and 0.68 ng/mL at 3σ, respectively. This method also showed acceptable accuracy and repeated detection, and the results were consistent with the results of conventional clinical methods for detecting actual clinical samples. Therefore, suspension arrays based on hydrogel-encapsulated PhC barcodes are highly promising for AMI diagnosis.
Collapse
Affiliation(s)
- JingJing Ji
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Wenbin Lu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Huidan Zhang
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yuanjin Zhao
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
17
|
Liu B, Monshat H, Gu Z, Lu M, Zhao X. Recent advances in merging photonic crystals and plasmonics for bioanalytical applications. Analyst 2019; 143:2448-2458. [PMID: 29748684 DOI: 10.1039/c8an00144h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photonic crystals (PhCs) and plasmonic nanostructures offer the unprecedented capability to control the interaction of light and biomolecules at the nanoscale. Based on PhC and plasmonic phenomena, a variety of analytical techniques have been demonstrated and successfully implemented in many fields, such as biological sciences, clinical diagnosis, drug discovery, and environmental monitoring. During the past decades, PhC and plasmonic technologies have progressed in parallel with their pros and cons. The merging of photonic crystals with plasmonics will significantly improve biosensor performances and enlarge the linear detection range of analytical targets. Here, we review the state-of-the-art biosensors that combine PhC and plasmonic nanomaterials for quantitative analysis. The optical mechanisms of PhCs, plasmonic crystals, and metal nanoparticles (NPs) are presented, along with their integration and potential applications. By explaining the optical coupling of photonic crystals and plasmonics, the review manifests how PhC-plasmonic hybrid biosensors can achieve the advantages, including high sensitivity, low cost, and short assay time as well. The review also discusses the challenges and future opportunities in this fascinating field.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | |
Collapse
|
18
|
Wang Z, Gao X, Wen G, Tian P, Zhong L, Guo Z. Polysulfide microspheres with chemical modification for generation of interfaces with macroscopic colour variation and biomimetic superhydrophobicity. NANOSCALE ADVANCES 2019; 1:281-290. [PMID: 36132471 PMCID: PMC9473270 DOI: 10.1039/c8na00011e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/23/2018] [Indexed: 06/11/2023]
Abstract
Both superwettability and structural colours have attracted considerable attention in recent years. In addition, the combination of structural colours and superwettability could endow materials with broader application prospects. The combination provides a new strategy to design novel functional materials, and there are many studies pertaining to these materials that have been reported in recent years. Herein, a polysulfide (PSF) superhydrophobic coating was synthesized successfully. The PSF superhydrophobic coating possesses excellent superhydrophobicity, oleophobicity for diesel and macroscopic structural colour variation when wetted. The colour is changed when the coating is wetted and it returns to its original colour after drying. In addition, the surface presents better reusability and thermostability which satisfies various daily needs. The PSF superhydrophobic coating can be considered as an excellent candidate for designing wetting responsive materials, and it has enormous application potential in the fields of detection, sensing, anti-counterfeiting and security. For the first time, we present a novel and low-cost strategy to fabricate materials with both superhydrophobicity and structural colour, offering significant insights into the practical application of these functional materials.
Collapse
Affiliation(s)
- Zelinlan Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University Wuhan 430062 People's Republic of China +86-931-8277088 +86-931-4968105
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Xiaoyu Gao
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University Wuhan 430062 People's Republic of China +86-931-8277088 +86-931-4968105
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Gang Wen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University Wuhan 430062 People's Republic of China +86-931-8277088 +86-931-4968105
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Pan Tian
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University Wuhan 430062 People's Republic of China +86-931-8277088 +86-931-4968105
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Lieshuang Zhong
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University Wuhan 430062 People's Republic of China +86-931-8277088 +86-931-4968105
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University Wuhan 430062 People's Republic of China +86-931-8277088 +86-931-4968105
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
19
|
Wang ZY, Li W, Gong Z, Sun PR, Zhou T, Cao XW. Detection of IL-8 in human serum using surface-enhanced Raman scattering coupled with highly-branched gold nanoparticles and gold nanocages. NEW J CHEM 2019. [DOI: 10.1039/c8nj05353g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS) based on the double antibody sandwich format was used for the determination of IL-8.
Collapse
Affiliation(s)
- Zhen-yu Wang
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University
- Yangzhou 225009
| | - Wei Li
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
| | - Zheng Gong
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Medical College, Yangzhou University
- Yangzhou 225001
| | - Pei-rong Sun
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Medical College, Yangzhou University
- Yangzhou 225001
| | - Tong Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
| | - Xiao-wei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University
- Yangzhou 225009
| |
Collapse
|
20
|
Zhan S, Pan Y, Gao ZF, Lou X, Xia F. Biological and chemical sensing applications based on special wettable surfaces. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Zhang S, Shakiba N, Chen Y, Zhang Y, Tian P, Singh J, Chamberlain MD, Satkauskas M, Flood AG, Kherani NP, Yu S, Zandstra PW, Wheeler AR. Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803342. [PMID: 30307718 DOI: 10.1002/smll.201803342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Optical micromanipulation has become popular for a wide range of applications. In this work, a new type of optical micromanipulation platform, patterned optoelectronic tweezers (p-OET), is introduced. In p-OET devices, the photoconductive layer (that is continuous in a conventional OET device) is patterned, forming regions in which the electrode layer is locally exposed. It is demonstrated that micropatterns in the photoconductive layer are useful for repelling unwanted particles/cells, and also for keeping selected particles/cells in place after turning off the light source, minimizing light-induced heating. To clarify the physical mechanism behind these effects, systematic simulations are carried out, which indicate the existence of strong nonuniform electric fields at the boundary of micropatterns. The simulations are consistent with experimental observations, which are explored for a wide variety of geometries and conditions. It is proposed that the new technique may be useful for myriad applications in the rapidly growing area of optical micromanipulation.
Collapse
Affiliation(s)
- Shuailong Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Nika Shakiba
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Yujie Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanfeng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pengfei Tian
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Jastaranpreet Singh
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - M Dean Chamberlain
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Monika Satkauskas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Andrew G Flood
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Nazir P Kherani
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Siyuan Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
- Photonics Group, Merchant Venturers School of Engineering, University of Bristol, Bristol, BS81UB, UK
| | - Peter W Zandstra
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Medicine by Design, University of Toronto, Toronto, ON, M5S 3G9, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Aaron R Wheeler
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
22
|
Zhao X, Ma T, Zeng Z, Zheng S, Gu Z. Hyperspectral imaging analysis of a photonic crystal bead array for multiplex bioassays. Analyst 2018; 141:6549-6556. [PMID: 27833950 DOI: 10.1039/c6an01756h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For multiplex bioassays, one effective strategy is to employ microfluidic chips based on an array of photonic crystal beads (PCBs) that are encoded by their characteristic reflection spectrum (CRS). In this paper, we report a hyperspectral imaging system and algorithms for the high throughput decoding of a PCB array and subsequent detection. The results showed that the decoding accuracy of up to ∼500 PCBs is 98.56% with an excellent ability to extract low-intensity fluorescence intensities. The results also demonstrated hyperspectral imaging techniques which can simultaneously obtain both spatial and spectral information as powerful tools in the analysis of multiplex bioassays or microfluidic chips.
Collapse
Affiliation(s)
- Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Tengfei Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Zhaoyu Zeng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Shiya Zheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, P.R. China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| |
Collapse
|
23
|
Chen M, Luo W, Zhang Z, Wang R, Zhu Y, Yang H, Chen X. Synthesis of Multi-Au-Nanoparticle-Embedded Mesoporous Silica Microspheres as Self-Filtering and Reusable Substrates for SERS Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42156-42166. [PMID: 29140677 DOI: 10.1021/acsami.7b16618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surface-enhanced Raman-scattering-based (SERS-based) biosensing in biological fluids is constrained by nonspecific macromolecule adsorptions and disposable property of the SERS substrate. Here, novel multi-Au-nanoparticle-embedded mesoporous silica microspheres (AuNPs/mSiO2) were prepared using a one-pot method, which served as reliable substrates for SERS enhancement associated with salient features of self-filtering ability and reusability. The fabrication and physical characterization of AuNPs/mSiO2 microspheres were discussed, and SERS activity of this novel substrate was investigated by using 4-mercaptobenzoic acid (4-MBA) as Raman probe. The responses of our substrates to Raman intensities exhibited a SERS enhancement factor of 2.01 × 107 and high reproducibility (relative standard deviation of 6.13%). Proof-of-concept experiments were designed to evaluate the self-filtering ability of the substrates in bovine serum albumin (BSA) and human serum solution, separately. The results clearly demonstrate that mesoporous SiO2 can serve as a molecular sieve via size exclusion and avoid Raman signal interference of biomacromolecules in biological fluids. Subsequently, feasibility of practical application of AuNPs/mSiO2 microspheres was assessed by quantitative detection of methotrexate (MTA) in serum. The method exhibited good linearity between 1 and 110 nM with the correlation coefficients of 0.996, which proved that the obtained AuNPs/mSiO2 microspheres were good SERS substrates for determination of small biomolecules directly in biological fluids without need of manipulating samples. In addition, the substrate maintained its SERS response during multiple cycles, which was evaluated by recording Raman signals for 4-MBA before and after thermal annealing, thereby demonstrating the high thermostability and satisfactory reusability. These results offered the AuNPs/mSiO2 microspheres attractive advantages in their SERS biosensing.
Collapse
Affiliation(s)
- Miao Chen
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Wen Luo
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Ranhao Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University , Changsha, Hunan 410083, China
| |
Collapse
|
24
|
Chen H, Lou R, Chen Y, Chen L, Lu J, Dong Q. Photonic crystal materials and their application in biomedicine. Drug Deliv 2017; 24:775-780. [PMID: 28475387 PMCID: PMC8241077 DOI: 10.1080/10717544.2017.1321059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 01/31/2023] Open
Abstract
Photonic crystal (PC) materials exhibit unique structural colors that originate from their intrinsic photonic band gap. Because of their highly ordered structure and distinct optical characteristics, PC-based biomaterials have advantages in the multiplex detection, biomolecular screening and real-time monitoring of biomolecules. In addition, PCs provide good platforms for drug loading and biomolecule modification, which could be applied to biosensors and biological carriers. A number of methods are now available to fabricate PC materials with variable structure colors, which could be applied in biomedicine. Emphasis is given to the description of various applications of PC materials in biomedicine, including drug delivery, biodetection and tumor screening. We believe that this article will promote greater communication among researchers in the fields of chemistry, material science, biology, medicine and pharmacy.
Collapse
Affiliation(s)
| | | | - Yanxiao Chen
- Center of Evidence Based Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, China
| | | | | | | |
Collapse
|
25
|
Multiplexing determination of cancer-associated biomarkers by surface-enhanced Raman scattering using ordered gold nanohoneycomb arrays. Bioanalysis 2017; 9:1561-1572. [PMID: 29072486 DOI: 10.4155/bio-2016-0237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Here, a multiplex surface-enhanced Raman scattering (SERS) based assay for simultaneous quantitation of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) was developed. METHODS SERS tags of nanostars and SERS substrates of nanobowl arrays were functionalized with labeling and capturing antibodies, respectively. In presence of antigens, SERS tags, antigens and SERS substrates formed sandwich structure. RESULTS The SERS-based technique showed a wide linear range from 0.5 to 100 ng/ml and detection limits were 0.41 and 0.35 ng/ml for CEA and AFP in phosphate-buffered saline buffer, respectively. Analysis results of clinical serum samples using this technique were similar to that shown in phosphate-buffered saline buffer. The LODs were 0.44 and 0.40 ng/ml for CEA and AFP, respectively. Conclusion: The precision and stability of this analysis technique were satisfactory, meanwhile, no obvious cross-reactivity could be found. What's more, it also suggested that this novel multiplex SERS-based technique could be a simple, specific, reliable, sensitive and multiplexed tool for important diagnostic and prognostic applications.
Collapse
|
26
|
Zhang Q, Serpe MJ, Mugo SM. Stimuli Responsive Polymer-Based 3D Optical Crystals for Sensing. Polymers (Basel) 2017; 9:E436. [PMID: 30965852 PMCID: PMC6418830 DOI: 10.3390/polym9110436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022] Open
Abstract
3D optical crystals have found their applications in sensing, actuation, optical devices, batteries, supercapacitors, etc. The 3D optical crystal devices are comprised of two main components: colloidal gels and nanoparticles. Nanoparticles self-assemble into face center cubic structures in colloidal gels. The inherent 3D optical crystal structure leads to display of structural colors on these devices following light impingement. As such, these optical properties have led to the utilization of these 3D optical crystals as self-reporting colorimetric sensors, which is the focus of this review paper. While there is extensive work done so far on these materials to exhaustively be covered in this review, we focus here in on: mechanism of color display, materials and preparation of 3D optical crystals, introduction of recent sensing examples, and combination of 3D optical crystals with molecular imprinting technology. The aim of this review is to familiarize the reader with recent developments in the area and to encourage further research in this field to overcome some of its challenges as well as to inspire creative innovations of these materials.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Samuel M Mugo
- Physical Sciences Department, MacEwan University, Edmonton, AB T5J 4S2, Canada.
| |
Collapse
|
27
|
Liu B, Ni H, Zhang D, Wang D, Fu D, Chen H, Gu Z, Zhao X. Ultrasensitive Detection of Protein with Wide Linear Dynamic Range Based on Core-Shell SERS Nanotags and Photonic Crystal Beads. ACS Sens 2017; 2:1035-1043. [PMID: 28750518 DOI: 10.1021/acssensors.7b00310] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Detection of proteins in a wide concentration range from fg mL-1 to sub mg mL-1 is a challenge in the high throughput analysis of precision medicine. Herein, we proposed a biosensor consisting of core-shell surface-enhanced Raman scattering (SERS) nanotags as labels and photonic crystal beads (PCBs) as carriers for ultrasensitive detection of proteins. In practice, Raman dyes (RDs) were embedded in the interface of gold core and silver shell in the bimetal nanoparticles to form SERS nanotags. It was found that the sensitivity was significantly improved due to the enhanced Raman signal by the coupling of the core-shell structure and linear dynamic range (LDR) was extended owing to the high surface to volume ratio of PCBs as well. In addition, we also demonstrated that the biosensor exhibited fine stability and low background, which has great application potential in the detection of protein biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongyuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
28
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
29
|
Wang D, Ni H, Wang Z, Liu B, Chen H, Gu Z, Zhao X. Discrimination of Nosiheptide Sources with Plasmonic Filters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13049-13055. [PMID: 28374999 DOI: 10.1021/acsami.7b01335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria identification plays a vital role in the field of clinical diagnosis, food industry, and environmental monitoring, which is in great demand of point of care detection methods. In this paper, in order to discriminate the source of nosiheptide product, a plasmonic filter was fabricated to filtrate, capture and identify Streptomycete spores with Surface enhanced Raman Scattering (SERS). Since the plasmonic filter was derived from self-assembled photonic crystal coated with silver, the plasmonic "hot spots" on the filter surface was distributed evenly in a fare good density and the SERS enhancement factor was 7.49 × 107. With this filter, a stain- and PCR-free detection was realized with only 5 μL sample solution and 5 min in a manner of "filtration and measure". Comparison to traditional Gram stain method and silver-plated nylon filter membrane, the plasmonic filter showed good sensitivity and efficiency in the discrimination of nosiheptide prepared with chemical and biological methods. It is anticipated that this simple SERS detection method with plasmonic filter has promising potentials in food safety, environmental, or clinical applications.
Collapse
Affiliation(s)
- Delong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Suzhou Key Laboratory of Environment and Biosafety, Suzhou Research Institute of Southeast University , Suzhou 215123, China
| | - Haibin Ni
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Suzhou Key Laboratory of Environment and Biosafety, Suzhou Research Institute of Southeast University , Suzhou 215123, China
| | - Zhongqiang Wang
- SUNNY GROUP·SEL BIOCHEM , Paradise Software Park, Hangzhou 310012, China
| | - Bing Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Suzhou Key Laboratory of Environment and Biosafety, Suzhou Research Institute of Southeast University , Suzhou 215123, China
| | - Hongyuan Chen
- State Key Laboratory of Coordination Chemistry, Department of Chemistry, Nanjing University , Nanjing 210093, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Suzhou Key Laboratory of Environment and Biosafety, Suzhou Research Institute of Southeast University , Suzhou 215123, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Suzhou Key Laboratory of Environment and Biosafety, Suzhou Research Institute of Southeast University , Suzhou 215123, China
| |
Collapse
|
30
|
Liu X, Liu H, Li M, Qi H, Gao Q, Zhang C. Highly Sensitive Electrochemiluminescence Assay for Cardiac Troponin I and Adenosine Triphosphate by using Supersandwich Amplification and Bifunctional Aptamer. ChemElectroChem 2017. [DOI: 10.1002/celc.201600845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xia Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Huiwen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Honglan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Qiang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| |
Collapse
|
31
|
Xiao X, Zheng S, Li X, Zhang G, Guo X, Xue H, Pang H. Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. J Mater Chem B 2017; 5:5234-5239. [DOI: 10.1039/c7tb00180k] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrathin Ni-MOF nanobelts, [Ni20(C5H6O4)20(H2O)8]·40H2O(Ni-MIL-77 NBs), were synthesized by a facile one-pot solution process and can be used as an efficient catalyst electrode for glucose oxidation under alkaline conditions.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University Yangzhou
- Jiangsu 225002
- China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University Yangzhou
- Jiangsu 225002
- China
| | - Xinran Li
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University Yangzhou
- Jiangsu 225002
- China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University Yangzhou
- Jiangsu 225002
- China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University Yangzhou
- Jiangsu 225002
- China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University Yangzhou
- Jiangsu 225002
- China
| | - Huan Pang
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University Yangzhou
- Jiangsu 225002
- China
| |
Collapse
|
32
|
Wang Z, Guo Z. Biomimetic superwettable materials with structural colours. Chem Commun (Camb) 2017; 53:12990-13011. [DOI: 10.1039/c7cc07436k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review aims at offering a comprehension elaboration of the mechanism, recent biomimetic research and applications of biomimetic superwettable materials with structural colours. Futhermore, this review will provide significant insight into the design, fabrication and application of biomimetic superwettable materials with structural colours.
Collapse
Affiliation(s)
- Zelinlan Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
33
|
Yi Z, Niu G, Luo J, Kang X, Yao W, Zhang W, Yi Y, Yi Y, Ye X, Duan T, Tang Y. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate. Sci Rep 2016; 6:32314. [PMID: 27586562 PMCID: PMC5009367 DOI: 10.1038/srep32314] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/14/2016] [Indexed: 12/26/2022] Open
Abstract
Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.
Collapse
Affiliation(s)
- Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China.,Co-Innovation Center for Energetic Materials, Southwest University of Science and Technology, Mianyang 621900, China
| | - Gao Niu
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Jiangshan Luo
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaoli Kang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Weitang Yao
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China.,Co-Innovation Center for Energetic Materials, Southwest University of Science and Technology, Mianyang 621900, China
| | - Weibin Zhang
- Department of Physics, Dongguk University, Seoul, 100715, Korea
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| | - Yong Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China.,Co-Innovation Center for Energetic Materials, Southwest University of Science and Technology, Mianyang 621900, China
| | - Xin Ye
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Tao Duan
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China.,Co-Innovation Center for Energetic Materials, Southwest University of Science and Technology, Mianyang 621900, China
| | - Yongjian Tang
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China.,Co-Innovation Center for Energetic Materials, Southwest University of Science and Technology, Mianyang 621900, China
| |
Collapse
|
34
|
Hu Y, Zhao T, Zhu P, Zhu Y, Liang X, Sun R, Wong CP. Tailoring Size and Coverage Density of Silver Nanoparticles on Monodispersed Polymer Spheres as Highly Sensitive SERS Substrates. Chem Asian J 2016; 11:2428-35. [PMID: 27511618 DOI: 10.1002/asia.201600821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/16/2016] [Indexed: 12/27/2022]
Abstract
Silver nanoparticles (AgNPs) were deposited onto the monodispersed carboxylic polystyrene (CPS) spheres by an improved in situ reduction method. The size and coverage density of the AgNPs on the surface of CPS spheres could be easily tailored by tuning the concentrations of carboxylic functional groups and silver precursor. The morphologies and structures of the resulting CPS/Ag hybrid particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis-NIR spectrometer and X-ray photoelectron spectroscopy (XPS), etc. The surface enhanced Raman scattering (SERS) performances of the resulting uniform CPS/Ag hybrid particles were investigated using 4-aminobenzenethiol (4-ABT) as the probe molecule. The optimized CPS/Ag hybrid particles show high enhancement factor (EF) of 2.71×10(7) , low limit of detection (LOD) of 10(-10) m and good reproducibility with relative standard deviation (RSD) of 9.64 %. The good SERS improvement properties demonstrate these hybrid particles could be employed as simple and effective substrates in the SERS spectroscopy.
Collapse
Affiliation(s)
- Yougen Hu
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Tao Zhao
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Pengli Zhu
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China. .,Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, P. R. China.
| | - Yu Zhu
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.,Nano Science and Technology Institute, University of Sciences and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xianwen Liang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Rong Sun
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Ching-Ping Wong
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, P. R. China.,School of Materials Sciences and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|