1
|
Acar M, Tatini D, Fidi A, Pacini L, Quagliata M, Nuti F, Papini AM, Lo Nostro P. A Promising Compound for Green Multiresponsive Materials Based on Acyl Carrier Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12381-12393. [PMID: 38836557 DOI: 10.1021/acs.langmuir.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH2 self-healing physical gels in water, glycerol carbonate (GC), and their mixtures. The morphology was investigated by optical, birefringence, and confocal laser scanning microscopy, circular dichroism, Fourier transform infrared, and fluorescence spectroscopy experiments. We found that all samples possess pH responsiveness with fully reversible sol-to-gel transitions. The rheological properties depend on the temperature and solvent composition. The temperature dependence of the gels in water shows a peculiar behavior that is similar to that of thermoresponsive polymer solutions. The results reveal the presence of several β-sheet structures and amyloid aggregates, offering valuable insights into the fibrillation mechanism of amyloids in different solvent media.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alberto Fidi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Lorenzo Pacini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Michael Quagliata
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Francesca Nuti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Maria Papini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
2
|
Ren J, Zhao L, Zhang L, Wang X, Li Y, Yang W. Electroconductive and free-shapeable nanocomposite hydrogels with an ultrafast self-healing property and high stretchability performance. SOFT MATTER 2020; 16:8422-8431. [PMID: 32812620 DOI: 10.1039/d0sm01233e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conductive self-healing hydrogels as a fascinating class of materials have received much attention in recent years and been widely used in many fields. However, a long healing time and poor electrical conductivity have limited their extended applications. To overcome these shortcomings, we fabricated an excellent conductive self-healing hydrogel by embedding a nanocomposite of Ag nanoparticles and reduced graphene oxide (Ag/RGO) in PVA-borax dynamic networks, which exhibits a relatively high conductivity (4.43 S m-1), good flexibility and excellent self-healing properties without any external stimuli. The multifunctional hydrogel could self-heal within 3 s at room temperature. It also exhibits an excellent free-shapeable property like clay such that it can be modeled into any different complex geometrical shape as desired. It is expected to have potential applications in many fields such as flexible electronic wearable devices, sensors, rechargeable batteries, and biomaterials.
Collapse
Affiliation(s)
- Jie Ren
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Lanzhou, 730070, P. R. China.
| | - Lingling Zhao
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Lanzhou, 730070, P. R. China.
| | - Lan Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Lanzhou, 730070, P. R. China.
| | - Xuemiao Wang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Lanzhou, 730070, P. R. China.
| | - Yan Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Lanzhou, 730070, P. R. China.
| | - Wu Yang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Lanzhou, 730070, P. R. China.
| |
Collapse
|
3
|
Deng Z, Wang H, Ma PX, Guo B. Self-healing conductive hydrogels: preparation, properties and applications. NANOSCALE 2020; 12:1224-1246. [PMID: 31859313 DOI: 10.1039/c9nr09283h] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conductive hydrogels have generated great interest in biomedical and electrical fields. However, conventional conductive hydrogels usually lack self-healing properties, which might be unfavorable for their application. Conductive self-healing hydrogels with excellent performance for applications in the biomedical and electrical fields are growing in number. In this review paper, the progress related to conductive self-healing hydrogels is summarized. The self-healing mechanism is classified to demonstrate the design and synthesis of conductive self-healing hydrogels and their applications in tissue engineering, wound healing, electronic skin, sensors and self-repaired circuits are presented and discussed. The future development of conductive self-healing hydrogels and problems that need to be solved are also described.
Collapse
Affiliation(s)
- Zexing Deng
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | | | | | | |
Collapse
|
4
|
Yang HL, Sun XW, Zhang YM, Wang ZH, Zhu W, Fan YQ, Wei TB, Yao H, Lin Q. A bi-component supramolecular gel for selective fluorescence detection and removal of Hg 2+ in water. SOFT MATTER 2019; 15:9547-9552. [PMID: 31714557 DOI: 10.1039/c9sm01652j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bi-component supramolecular gel (RQ) was successfully constructed by the assembly of the gelators 4-aminophenyl functionalized naphthalimide derivative (R) and tri-(pyridine-4-yl)-functionalized trimesic amide (Q) in DMSO-H2O (6.1 : 3.9, v/v) binary solution. The gel RQ exhibits excellent self-healing capacity. Interestingly, the RQ could fluorescently detect and reversibly remove Hg2+ from water through cation-π interactions with high selectivity, efficient adsorption and quick response. The limit of lowest detection (LOD) of the RQ for Hg2+ is 4.52 × 10-8 M and the separation ratio is 91.14%. Moreover, the RQ could be efficiently recycled and regenerated with little loss via a simple treatment by I-. Notably, thin films based on RQ and RQ + Hg2+ were prepared, which could serve as convenient and efficient test tools for the detection of Hg2+ and I-, respectively. This work provided an efficient method and novel supramolecular gel material for the separation and detection of Hg2+.
Collapse
Affiliation(s)
- Hai-Long Yang
- Research Centre of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tatikonda R, Bulatov E, Özdemir Z, Haukka M. Infinite coordination polymer networks: metallogelation of aminopyridine conjugates and in situ silver nanoparticle formation. SOFT MATTER 2019; 15:442-451. [PMID: 30570631 DOI: 10.1039/c8sm02006j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein we report silver(i) directed infinite coordination polymer network (ICPN) induced self-assembly of low molecular weight organic ligands leading to metallogelation. Structurally simple ligands are derived from 3-aminopyridine and 4-aminopyridine conjugates which are composed of either pyridine or 2,2'-bipyridine cores. The cation specific gelation was found to be independent of the counter anion, leading to highly entangled fibrillar networks facilitating the immobilization of solvent molecules. Rheological studies revealed that the elastic storage modulus (G') of a given gelator molecule is counter anion dependent. The metallogels derived from ligands containing a bipyridine core displayed higher G' values than those with a pyridine core. Furthermore, using single crystal X-ray diffraction studies and 1H-15N two-dimensional (2D) correlation NMR spectroscopy, we show that the tetracoordination of silver ions enables simultaneous coordination polymerization and metallosupramolecular cross-linking. The resulting metallogels show spontaneous, in situ nanoparticle (d < 2-3 nm) formation without any additional reducing agents. The silver nanoparticle formation was followed using spectroscopic studies, and the self-assembled fibrillar networks were imaged using transmission electron microscopy (TEM) imaging.
Collapse
Affiliation(s)
| | - Evgeny Bulatov
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Zülal Özdemir
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague 6, Czech Republic and Institute of Experimental Botany AS CR, Isotope Laboratory, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
6
|
Yan L, Liu C, Shen L, Li J, Liu X, Lv M, Su C, Ye Z. Visual Discrimination of 2-Picolinic Acid by a Supramolecular Metallogel. CHEM LETT 2018. [DOI: 10.1246/cl.180065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Liwei Yan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Cheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Linghong Shen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jialing Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xuan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Mingqian Lv
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Chunjiao Su
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Zhongbin Ye
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil &Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
7
|
Yan L, Lv M, Su C, Zheng L, Li J, Ye Z. An efficient supramolecular adsorbent for co-adsorption of dyes and metal ions from wastewater and its application in self-healing materials. SOFT MATTER 2017; 13:8772-8780. [PMID: 29130095 DOI: 10.1039/c7sm01977g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, a novel type of two-component supramolecular adsorbent, 2-OA, was developed based on non-covalent interactions using tetrazolyl derivative with octadecylamine (OA) and fully characterized using a number of structural and spectral techniques. The self-assembled 2-OA gels displayed remarkable stimuli-responsiveness as well as shape-persistent and self-healing properties. In addition, it was found that the adsorbent 2-OA was able to remove dyes (10 kinds of cationic and anionic dyes) and metal ions (Cu2+ and Fe2+) simultaneously from wastewater owing to synergistic electrostatic attraction, hydrogen-bonding, and hydrophobic and coordination interactions. It also exhibited excellent co-adsorption capability to dye mixtures and binary mixtures of dyes and metal ions. In particular, the dye/metal-loaded adsorbents could be obtained easily from the aqueous phase, and recycling of the adsorbents could thus be achieved. These results suggest that the supramolecular gel 2-OA not only has great potential application in wastewater treatment but also provides a strategy for the development of intriguing self-healing materials.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Road, Xindu, 610500, Chengdu, China.
| | | | | | | | | | | |
Collapse
|
8
|
Dhara B, Kumar V, Gupta K, Jha PK, Ballav N. Giant Enhancement of Carrier Mobility in Bimetallic Coordination Polymers. ACS OMEGA 2017; 2:4488-4493. [PMID: 31457741 PMCID: PMC6641710 DOI: 10.1021/acsomega.7b00931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 06/08/2023]
Abstract
Electrically conductive metal-organic coordination polymers (CPs) are promising candidates for a variety of technological applications. However, poor energetic and spatial overlap between the sp-electrons of organic ligands and the d-electrons of metal ion often blocks an effective charge transport (mobility) across CPs. Herein, we present a bimetallic design principle for enhancing carrier mobility in CPs. Bimetallic CPs of Fe(III) and Cr(III) ions coordinated to 1,3,5-benzenetricarboxylic acid (BTC) ligand (Fe-BTC-Cr) exhibited remarkably high carrier mobility at the matching mole ratio (1:1) with enhancement factors of 102 and 104 in comparison to those of monometallic parents, Fe-BTC and Cr-BTC, respectively. The observation was substantiated by lowering of the band gap between the valence band and the conduction band upon the formation of a hybrid p-n-type structure in the bimetallic CPs. The direct current conductivity values of the CPs measured by four-probe technique were in good agreement with the alternating current conductivity values obtained from the electrochemical impedance spectroscopy. Our flexible approach of picking and choosing the appropriate combination of metal ions from the periodic table is expected to generate various CPs with desirable semiconducting properties.
Collapse
|
9
|
He X, Zhang C, Wang M, Zhang Y, Liu L, Yang W. An Electrically and Mechanically Autonomic Self-healing Hybrid Hydrogel with Tough and Thermoplastic Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11134-11143. [PMID: 28276239 DOI: 10.1021/acsami.7b00358] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conductive hydrogels are a class of composite materials that usually comprise hydrated polymers and conductive materials. Practical application requires the conductive hydrogels to have various properties such as high conductivity, toughness, self-healing, facile processing ability, and so on. Although challenging to have all the above-mentioned properties, a composite material composed of polymer hydrogel with embedded Au nanoparticles (i.e., P(NaSS)/P(VBIm-Cl)/PVA@Au) was found to show the comprehensive properties above in this paper. For example, P(NaSS)/P(VBIm-Cl)/PVA@Au exhibits mechanical and electrical self-healing properties at ambient conditions. In addition, P(NaSS)/P(VBIm-Cl)/PVA@Au is tough and thermoplastic, potentially making it useful for a variety of applications.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Caiyun Zhang
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Meng Wang
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Yunlei Zhang
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Liqin Liu
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Wu Yang
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| |
Collapse
|
10
|
Li J, Zhang M, Weiss RG. (R)-12-Hydroxystearic Acid Hydrazides as Very Efficient Gelators: Diffusion, Partial Thixotropy, and Self-Healing in Self-Standing Gels. Chem Asian J 2016; 11:3414-3422. [DOI: 10.1002/asia.201601163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Jingjing Li
- School of Chemistry and Chemical Engineering; Henan University of Technology; 100 Lianhua Street Zhengzhou Henan 450001 China
- Department of Chemistry; Georgetown University; 37 & O Streets NW Washington DC 20057-1227 USA
| | - Mohan Zhang
- Department of Chemistry; Georgetown University; 37 & O Streets NW Washington DC 20057-1227 USA
| | - Richard G. Weiss
- Department of Chemistry; Georgetown University; 37 & O Streets NW Washington DC 20057-1227 USA
- Institute for Soft Matter Synthesis and Metrology; Georgetown University; 37 & O Streets NW Washington DC 20057-1227 USA
| |
Collapse
|
11
|
Häring M, Díaz DD. Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation. Chem Commun (Camb) 2016; 52:13068-13081. [PMID: 27711325 DOI: 10.1039/c6cc06533c] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this feature article, we discuss a series of contributions dealing with the in situ fabrication of supramolecular metallogels (i.e. using low molecular weight ligands and metal ions) that show self-healing properties of the bulk gel phase after complete physical segregation. Most of the advances in this area have taken place during the last three years and are mainly represented by organogels, whereas examples of hydrogels and organic-aqueous gels are still a minority. In situ gelation via metal-coordination of low molecular weight compounds is conceptually different from the use of premade (e.g. in solution) coordination polymers and polymeric structures as gelators and ligands, respectively. In the case of in situ gelation, the cooperative effects of all components of the mixture (i.e. ligand, metal ion, counterions and solvent molecules) in an appropriate ratio under well-defined experimental conditions play a crucial role in the gelation phenomenon and self-healing properties of the material.
Collapse
Affiliation(s)
- Marleen Häring
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg 93053, Germany.
| | | |
Collapse
|
12
|
Sutar P, Maji TK. Coordination polymer gels: soft metal–organic supramolecular materials and versatile applications. Chem Commun (Camb) 2016; 52:8055-74. [DOI: 10.1039/c6cc01955b] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|