1
|
Tan Y, Ying A, Xie J, Xie G, Gong S. Luminescent carbene-copper(i)-amide polymers for efficient host-free solution-processed OLEDs. Chem Sci 2024; 15:11382-11390. [PMID: 39055019 PMCID: PMC11268500 DOI: 10.1039/d4sc01865f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Luminescent metallopolymers have attracted broad interest in the fields of healthcare and organic electronics. However, polymeric emitters based on earth-abundant metal complexes are scarce. Here, two series of Cu(i) polymers, PMAC-x and PCAAC-x (x = 1-3) have been developed using two kinds of Cu(i)-based carbene-metal-amide (CMA) complexes as side-chain emitter units to combine with a nonconjugated polystyrene backbone. These Cu(i) polymers emit via distinct thermally activated delayed fluorescence or dominant phosphorescence, inherited from the grafted Cu(i)-based CMA units. Particularly, the PMAC-x polymers exhibit high photoluminescence quantum efficiencies of up to 0.78, short emission lifetimes of down to 0.66 μs, and fast radiative rates of up to 106 s-1 in neat films. Thanks to the good encapsulation effect of the polystyrene backbone, these Cu(i) polymers not only demonstrate favorable moisture stability but also show significant aggregation-induced emission. The resultant host-free solution-processed organic light-emitting diodes (OLEDs) achieve outstanding electroluminescence performance with a record external quantum efficiency of 13.8% at a practical luminance of ∼100 nits, representing state-of-the-art device efficiency for metallopolymer-based OLEDs. This work not only presents the first example of CMA polymers but also provides the future direction of polymeric emitters from earth-abundant metal complexes for the OLED application.
Collapse
Affiliation(s)
- Yao Tan
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
| | - Ao Ying
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
| | - Jianlong Xie
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
| | - Guohua Xie
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
| | - Shaolong Gong
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
| |
Collapse
|
2
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Naseri S, Mirzakhani M, Besnard C, Guénée L, Briant L, Nozary H, Piguet C. Preorganized Polyaromatic Soft Terdentate Hosts for the Capture of [Ln(β-diketonate) 3 ] Guests in Solution. Chemistry 2023; 29:e202202727. [PMID: 36285628 DOI: 10.1002/chem.202202727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
The concept of preorganization is famous in coordination chemistry for having transformed flexible bidentate 2,2'-bipyridine scaffolds into rigid 1,10-phenanthroline platforms. The resulting boosted affinities for d-block cations has successfully paved the way for the design of a wealth of functional complexes, devices and materials for analysis and optics. Its extension toward terdentate homologues adapted for the selective complexation of f-block cations with larger coordination numbers remains more overlooked. The resulting rigidification of 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine ligands (L1-L7) produces the highly preorganized and extended polyaromatic benzo[4',5']imidazo[1',2' : 1,2]pyrido[3,4-b]benzo[4,5]imidazo[1,2-h][1,7]naphthyridines (L8-L11) receptors, which offer some novel and rare opportunities for efficiently complexing trivalent lanthanides with polyaromatic soft terimine ligands. The crystal structures of the stable heteroleptic [LkLn(hfac)3 ] adducts (Lk=L1, L8, L9; Ln=La, Eu, Gd, Er, Yb, Y; H-hfac=1,1,1,5,5,5-hexafluoropentane-2,4-dione) show a drastic decrease in the Ln-N bond valences upon replacement of the flexible ligand L1 with its preorganized counterparts L8 and L9. This points to a limited match between the preorganized cavity and the entering [Ln(hfac)3 ] lanthanide containers. However, thermodynamic studies conducted in dichloromethane reach the opposite conclusion, with an improved affinity, by up to three orders of magnitude for catching Ln(hfac)3 when L1 is replaced by the preorganized L8-L9 receptors. The key to the enigma lies in the removal of the energy penalty which accompanies the formation of flexible [L1Ln(hfac)3 ] complexes in solution. This driving force overcomes the poor match between the preorganized terdentate N∩ N∩ N cavity in L8 and L9 and the size of trivalent lanthanides. As planned, the rigid, planar and extended π-conjugated system found in L8 and L9 shifts the ligand-centered absorption bands by about 5000 cm-1 toward lower energies, a crucial point if these stable [L8Ln(hfac)3 ] and [L9Ln(hfac)3 ] platforms have to be considered for the visible sensitization of luminescent lanthanides in metallopolymers.
Collapse
Affiliation(s)
- Soroush Naseri
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Liza Briant
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
4
|
Zhang J, Li R, Bei Y, Xu XD, Kang W. Design of a large Stokes shift ratiometric fluorescent sensor with hypochlorite detection towards the potential application as invisible security ink. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121859. [PMID: 36108409 DOI: 10.1016/j.saa.2022.121859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorite (ClO-) as a well-known highly reactive oxygen species (ROS), is widely used as preservative and household disinfectant in daily life. Although many fluorescence imaging sensors for ClO- have been reported, the development of ClO- ratio fluorescence sensors with large Stokes shift is still quite limited. This sensor shows obvious benefits including minimizing environmental intervention and improving signal-to-noise ratio. In the present project, we report an innovative conjugated pyrene-based system, 1-B, as a chlorine fluorescence sensor. The detector exhibits ratio detection performance, large Stokes and emission shifts. Furthermore, the system has desired sensitivity as well as selectivity for ClO-. Based on these excellent properties, the sensor 1-B was successfully used as ink to encrypt patterns and anti-counterfeiting information through inkjet printing technology. Compared with the existing probes, the probe shows some superior characteristics, which provides a promising tool for exploring the role of ClO- response sensor in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Junying Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Ruochen Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yiling Bei
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Xing-Dong Xu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| | - Wenbing Kang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
5
|
Mirzakhani M, Nozary H, Naseri S, Besnard C, Guénée L, Piguet C. Bottom-Up Approach for the Rational Loading of Linear Oligomers and Polymers with Lanthanides. Inorg Chem 2021; 60:15529-15542. [PMID: 34601875 DOI: 10.1021/acs.inorgchem.1c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adducts between luminescent lanthanide tris(β-diketonate)s and diimine or triimine ligands have been explored exhaustively for their exceptional photophysical properties. Their formation, stability, and structures in solution, together with the design of extended metallopolymers exploiting these building blocks, remain, however, elusive. The systematic peripheral substitution of tridentate 2,6-bis(benzimidazol-2-yl)pyridine binding units (Lk = L1-L5), taken as building blocks for linear oligomers and polymers, allows a fine-tuning of their affinity toward neutral [Ln(hfa)3] (hfa = hexafluoroacetylacetonate) lanthanide containers in the [LkLn(hfa)3] adducts. Two trends emerge with (i) an unusual pronounced thermodynamic selectivity for midrange lanthanides (Ln = Eu) and (ii) an intriguing influence of remote peripheral substitutions of the benzimidazole rings on the affinity of the tridentate unit for [Ln(hfa)3]. These trends are amplified upon the connection of several tridentate binding units via their benzimidazole rings to give linear segmental dimers (L6) and trimers (L7), which are considered as models for programming linear Wolf-Type II metallopollymers. Modulation of the affinity between the terminal and central binding units in the linear multitridentate ligands deciphers the global decrease of metal-ligand binding strengths with an increase in the length of the receptors (monomer → dimer → trimer → polymer). Application of the site binding model shed light onto the origin of the variation of the thermodynamic affinities: a prerequisite for the programmed loading of a polymer backbone with luminescent lanthanide β-diketonates. Analysis of the crystal structures for these adducts reveals delicate correlations between the chemical bond lengths measured in the solid state (or bond valence parameters) and the metal-ligand affinities operating in solution.
Collapse
Affiliation(s)
- Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Soroush Naseri
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Li W, He Y, Miao T, Lü X, Fu G, Wong WY, He H. All-Solution-Processed Multilayered White Polymer Light-Emitting Diodes (WPLEDs) Based on Cross-Linked [Ir(4-vb-PBI) 2(acac)]. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11096-11107. [PMID: 33645976 DOI: 10.1021/acsami.0c16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
All-solution-processed multilayered white polymer light-emitting diodes (WPLEDs) are promising candidates for low-cost and large-area flexible full-color flat-panel displays and solid-state lighting. However, it is still challenging to improve their performance. In this work, based on an elegant strategy of orthogonal materials, the utilization of the cross-linked Ir3+ polymer film poly(NVK-co-[Ir(4-vb-PBI)2(acac)]-co-NVK) (NVK = N-vinyl-carbazole; 4-vb-HPBI = 1-(4-vinylbenzyl)-2-phenyl-1H-benzo[d]imidazole; and Hacac = acetylacetone) as the emitting layer (EML) between a hydrophilic polymer film poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole injection layer (HIL) and a hydrophobic polymer film poly(vinyl-PBD) (vinyl-PBD = 2-(4-(tert-butyl)phenyl)-5-(4'-vinyl-[1,1'-biphenyl]-4-yl)-2,5-dihydro-1,3,4-oxadiazole) as the electron transport layer (ETL) led to the successful fabrication of reliable all-solution-processed multilayered WPLEDs. The device exhibits a ηCEMax of 18.19 cd/A, a ηPEMax of 8.16 lm/W, and a ηEQEMax of 9.32% with stable white light (Commission International De L'Eclairage (CIE) coordinates x = 0.269-0.283, y = 0.317-0.330; corrected color temperatures (CCTs) of 7237-8199 K, and CRIs (color rendering indices) of 63-72) under a wide applied-voltage range. Its high performance, especially with record efficiencies among those of reported all-solution-processed WPLEDs, renders cross-linked Ir3+ polymers a new platform to all-solution-processed multilayered WPLEDs.
Collapse
Affiliation(s)
- Wentao Li
- School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yani He
- School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
| | - Tiezheng Miao
- School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xingqiang Lü
- School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
| | - Guorui Fu
- School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hongshan He
- Department of Chemistry & Biochemistry, Eastern Illinois University, Charleston, Illinois 61920, United States
| |
Collapse
|
7
|
Abstract
Lanthanide (LnIII) ions were successfully chelated and sensitized with a tripodal ligand. The absolute LnIII-centered emission efficiencies were ~3% for both the europium(III) (EuIII) and terbium (TbIII) complexes and up to 54% for the cerium(III) (CeIII) complex. The differences in emission quantum yields for the early lanthanides (CeIII) and the mid lanthanides (EuIII and TbIII) were attributed to their d–f and f–f nature, respectively. Despite the low quantum yield of the EuIII complex, the combination of the residual ligand fluorescence and the red EuIII emission resulted in a bluish-white material with the Commission Internationale de l’Eclairage (CIE) coordinates (0.258, 0.242). Thus, metal complexes of the ligand could be used in the generation of single-component white-light-emitting materials.
Collapse
|
8
|
Chang H, Yao S, Kang X, Zhang X, Ma N, Zhang M, Li X, Zhang Z. Flexible, Transparent, and Hazy Cellulose Nanopaper with Efficient Near-Infrared Luminescence Fabricated by 2D Lanthanide (Ln = Nd, Yb, or Er) Metal–Organic-Framework-Grafted Oxidized Cellulose Nanofibrils. Inorg Chem 2020; 59:16611-16621. [DOI: 10.1021/acs.inorgchem.0c02518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui Chang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Xiena Kang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Xiya Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Ningning Ma
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Zhao Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| |
Collapse
|
9
|
Shi Q, Liu J, Wang J, Yang X, Zhang X, Li S, Sun P, Chen J, Li B, Lü X. Color-tunable white-light of binary tris-β-diketonate-(Dy3+, Gd3+) complexes’ blend under single wavelength excitation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Wu Y, Liu D, Lin M, Qian J. Zinc(ii)-based coordination polymer encapsulated Tb 3+ as a multi-responsive luminescent sensor for Ru 3+, Fe 3+, CrO 4 2-, Cr 2O 7 2- and MnO 4. RSC Adv 2020; 10:6022-6029. [PMID: 35497449 PMCID: PMC9049217 DOI: 10.1039/c9ra09541a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 01/17/2023] Open
Abstract
A zinc(ii)-based coordination polymer (CP), namely [Zn(modbc)2] n (Zn-CP) (modbc = 2-methyl-6-oxygen-1,6-dihydro-3,4'-bipyridine-5-carbonitrile), has been synthesized and characterized. Single-crystal structural determination reveals that Zn-CP is a two-dimensional framework structure with tetranuclear homometallic Zn4(modbc)4 units cross-linked by modbc. The excellent luminescence as well as good stability of Zn-CP do not enable it to have selective sensing capability for different ions. After encapsulation of Tb3+ in Zn-CP, the as-obtained fluorescent functionalized Tb3+@Zn-CP maintained excellent luminescence as well as stability, which made it a highly selective and sensitive multiresponsive luminescent sensor for Ru3+, Fe3+, CrO4 2-, Cr2O7 2-, and MnO4 - with high sensitivity, good anti-interference performance, and quick response time (∼10 s). The detection limits are 0.27 μM, 0.57 μM, 0.10 μM, 0.43 μM and 0.15 μM, respectively. A possible sensing mechanism was discussed in detail.
Collapse
Affiliation(s)
- Yuandi Wu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Dongyang Liu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Meihua Lin
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Jing Qian
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Ministry of Education Tianjin 300387 P. R. China
| |
Collapse
|
11
|
Fu G, He Y, Li W, Miao T, Lü X, He H, Liu L, Wong WY. Efficient white polymer light-emitting diodes (WPLEDs) based on covalent-grafting of [Zn2(MP)3(OAc)] into PVK. Chem Sci 2020; 11:2640-2646. [PMID: 34084322 PMCID: PMC8157705 DOI: 10.1039/c9sc05288g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Thanks to the straightforward white light of single grafting-type polymers based on earth-abundant Zn(ii)-complexes, producing cost-effective flexible WOLEDs/WPLEDs with good device performance remains a formidable challenge. Herein, by using the polymer Poly(NVK-co-[Zn2(MP)3(OAc)]) with excellent physical properties for single-layer WPLEDs, record-high efficiencies (η Max c = 13.0 cd A-1, η Max p = 6.1 lm W-1 and η Max EQE = 9.2%) and low (ca. 25%) efficiency roll-off compared to previous organo-Zn2+-based WOLEDs/WPLEDs are realized. This finding renders single Zn(ii)-complex-grafted polymers a new route to low-cost and large-area flexible WPLEDs for potential full-colour flat displays.
Collapse
Affiliation(s)
- Guorui Fu
- School of Chemical Engineering, Northwest University Xi'an 710069 Shaanxi China
| | - Yani He
- School of Chemical Engineering, Northwest University Xi'an 710069 Shaanxi China
| | - Wentao Li
- School of Chemical Engineering, Northwest University Xi'an 710069 Shaanxi China
| | - Tiezheng Miao
- School of Chemical Engineering, Northwest University Xi'an 710069 Shaanxi China
| | - Xingqiang Lü
- School of Chemical Engineering, Northwest University Xi'an 710069 Shaanxi China
| | - Hongshan He
- Department of Chemistry, Eastern Illinois University Charleston IL 61920 USA
| | - Li Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
12
|
|
13
|
Wu Y, Lin M, Liu D, Liu M, Qian J. Two-dimensional Cd(ii) coordination polymer encapsulated by Tb 3+ as a reversible luminescent probe for Fe 3. RSC Adv 2019; 9:34949-34957. [PMID: 35530685 PMCID: PMC9074126 DOI: 10.1039/c9ra06639j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
A two-dimensional luminescent cadmium(ii) coordination polymer, [Cd(modbc)2] n (Cd-P); modbc = 2-methyl-6-oxygen-1,6-dihydro-3,4'-bipyridine-5-carbonitrile, was successfully synthesized by a solvothermal reaction and fully characterized. Cd-P exhibited excellent luminescence emission, and detected Cu2+, Co2+, Fe2+, Hg2+, Ni2+ and Fe3+ ions with high sensitivity and showed good anti-interference performance. After encapsulation of Tb3+ ions in Cd-P, the as-obtained fluorescent functionalized Tb3+@Cd-P maintained distinct chemical stabilities in different pHs and metal salt solutions. Subsequently, we explored the potential application of Tb3+@Cd-P as a probe for Fe3+ ions. A new and convenient method for individual identification of Fe3+ ions by the combination of Cd-P and Tb3+@Cd-P was successfully established. A possible sensing mechanism is discussed in detail.
Collapse
Affiliation(s)
- Yuandi Wu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Meihua Lin
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Dongyang Liu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Ming Liu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Jing Qian
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Ministry of Education Tianjin 300387 P. R. China
| |
Collapse
|
14
|
Zhang PF, Yang GP, Li GP, Yang F, Liu WN, Li JY, Wang YY. Series of Water-Stable Lanthanide Metal-Organic Frameworks Based on Carboxylic Acid Imidazolium Chloride: Tunable Luminescent Emission and Sensing. Inorg Chem 2019; 58:13969-13978. [PMID: 31577144 DOI: 10.1021/acs.inorgchem.9b01954] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of isomorphic lanthanide metal-organic frameworks (Ln-MOFs), {[Ln(L)(H2O)2]·5H2O}n (1-Ln, where Ln = Eu, Tb, Gd, and EuxTb1-x), have been synthesized by a rigid 1,3-bis(3,5-dicarboxyphenyl)imidazolium chloride (H4L+Cl-) ligand and Ln3+ ions via a solvothermal method. Single-crystal X-ray diffraction indicated that 1-Ln exhibited similar three-dimensional porous frameworks with one-dimensional channels decorated by the uncoordinated carboxylate oxygen atoms. The luminescent sensing studies indicated that 1-Eu is an outstanding reusable luminescent probe suitable for the simultaneous detection of Cr2O72-, CrO42-, and MnO4- ions in an aqueous solution. Remarkably, the different proportions of Eu3+ and Tb3+ can be combined into the same Ln-MOF to yield a new series of differently doped 1-EuxTb1-x MOFs. At the same excitation wavelength, they generated dual-emission peaks of Eu3+ and Tb3+ to show a gradual change in luminous color between yellow-green, yellow, orange, orange-red, and red. On the basis of the excellent optical properties of 1-Ln complexes, they can be employed as promising luminescent probe and multicolor tunable photoluminescence materials.
Collapse
Affiliation(s)
- Peng-Feng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Gao-Peng Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Fan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Wei-Ni Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Jia-Yi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| |
Collapse
|
15
|
Wang X, Tang J, Wang G, Wang W, Ren J, Ding W, Zhang X, Wang Y, Shen W, Huang L, Belfiore LA. Ln 3+-Induced Diblock Copolymeric Aggregates for Fully Flexible Tunable White-Light Materials. NANOMATERIALS 2019; 9:nano9030363. [PMID: 30841481 PMCID: PMC6474134 DOI: 10.3390/nano9030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
In this research contribution, nano-aggregates have been fabricated by introducing lanthanide (Ln3+) ions into solutions of amphiphilic diblock copolymers of polystyrene-b-poly (acrylic acid) (PS-b-PAA). The coordination of acrylic acid segments to lanthanide cations induces diblock copolymer (BCPs) self-assembly in order to design stable white luminescent hybrid nanoparticles with fine uniform particle size. The introduction of Ln3+ ions (Eu3+ and Tb3+) bestows the micelles, precisely white light, upon excitation of 342 nm. Lanthanide coordination cross-linking of poly (acrylic acid) segments, or blocks, endows the micelles higher thermal stability than that of BCPs micelles without cross-linking. As the most important key point of this work, the regular and stable nano-particles with high emission quality can make fully flexible electroluminescent devices with self-formation or uncoordinated into polymer hosts. Instead of inorganic luminescent nanoparticles with hard cores, this method can potentially apply for fully flexible white-light emitting diodes (FFWLEDs).
Collapse
Affiliation(s)
- Xinzhi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Guanghui Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Junjie Ren
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wei Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinbo Zhang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wenfei Shen
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
16
|
1D helical silver(I)-based coordination polymer containing pyridyl diimide ligand for Fe(III) ions detection. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Pan M, Liao WM, Yin SY, Sun SS, Su CY. Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chem Rev 2018; 118:8889-8935. [DOI: 10.1021/acs.chemrev.8b00222] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mei Pan
- Ministry of Education (MOE) Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei-Ming Liao
- Ministry of Education (MOE) Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shao-Yun Yin
- Ministry of Education (MOE) Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Si Sun
- Ministry of Education (MOE) Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- Ministry of Education (MOE) Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Li Y, Guo J, Dai B, Geng L, Shen F, Zhang Y, Yu X. Facile construction of terpridine-based metallo-polymers in hydrogels, crystals and solutions directed by metal ions. J Colloid Interface Sci 2018; 521:190-196. [PMID: 29567607 DOI: 10.1016/j.jcis.2018.03.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022]
|
19
|
Dar WA, Ahmed Z, Iftikhar K. Cool white light emission from the yellow and blue emission bands of the Dy(III) complex under UV-excitation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Lin J, Cui Y, Ke C, Zhang X, Lin X, Cai Y, Wu Y. Isostructural lanthanide metal-organic frameworks comprised of left-handed helical chains: Synthesis, structure and luminescent properties. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Tigaa RA, Aerken X, Fuchs A, de Bettencourt‐Dias A. Sensitization of Ln
III
(Ln = Eu, Tb, Tm) Ion Luminescence by Functionalized Polycarbonate‐Based Materials and White Light Generation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rodney A. Tigaa
- Department of Chemistry University of Nevada 89557‐216 Reno NV USA
| | - Xuekelaiti Aerken
- Department of Chemical and Materials Engineering University of Nevada 89557‐388 Reno NV USA
| | - Alan Fuchs
- Department of Chemical and Materials Engineering University of Nevada 89557‐388 Reno NV USA
| | | |
Collapse
|
22
|
Li Y, Yuan HH, Li CP, Li J. A 2D Zn(II) metal-organic framework to show selective removal of Neutral Red (NR) from water. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Dzhardimalieva GI, Uflyand IE. Review: recent advances in the chemistry of metal chelate monomers. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1317347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, Russian Federation
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|
24
|
Kotova O, Comby S, Lincheneau C, Gunnlaugsson T. White-light emission from discrete heterometallic lanthanide-directed self-assembled complexes in solution. Chem Sci 2017; 8:3419-3426. [PMID: 28507713 PMCID: PMC5417009 DOI: 10.1039/c7sc00739f] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 11/24/2022] Open
Abstract
Herein, we have developed a white-light-emitting system based on the formation of discrete lanthanide-based self-assembled complexes using a newly-designed ligand. We demonstrate that fine tuning of the lanthanide ions molar ratio in the self-assemblies combined with the intrinsic blue fluorescence of the ligand allows for the successful emission of pure white light with CIE coordinates of (0.33, 0.34).
White-light-emitting materials have attracted significant interest in recent years due to their potential applications in solid-state lighting and flat-panel displays. Design of such materials is challenging and often relies on the use of multiple fluorophores despite the fact that single component systems yield materials with enhanced stability and reproducibility. Herein, we have developed a white-light-emitting system based on the formation of discrete lanthanide-based self-assembled complexes using a newly-designed ligand. We demonstrate that fine tuning of the lanthanide ions molar ratio in the self-assemblies combined with the intrinsic blue fluorescence of the ligand allows for the successful emission of pure white light with CIE coordinates of (0.33, 0.34).
Collapse
Affiliation(s)
- Oxana Kotova
- School of Chemistry , Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , Dublin 2 , Ireland . ;
| | - Steve Comby
- School of Chemistry , Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , Dublin 2 , Ireland . ;
| | - Christophe Lincheneau
- School of Chemistry , Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , Dublin 2 , Ireland . ;
| | - Thorfinnur Gunnlaugsson
- School of Chemistry , Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , Dublin 2 , Ireland . ;
| |
Collapse
|
25
|
PNBE-supported metallopolymer-type hybrid materials through grafting of Ln3-benzimidazole-arrayed (Ln=Nd, Yb or Er) complex monomers with efficient NIR luminescence. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2016.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Liu L, Feng W, Lü X, Wong WK. First example of near-infrared (NIR) luminescent Yb 4 (Salen) 4 -containing metallopolymer through radical copolymerization with MMA (methyl methacrylate). INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2016.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Yang D, Li Z, He L, Deng Y, Wang Y. Solvent free mechanochemical synthesis of Eu3+ complex and its luminescent sensing of trace water and temperature. RSC Adv 2017. [DOI: 10.1039/c6ra28099d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A solid state Eu(iii) complex was synthesized by a mechanochemical method and used for luminescent sensing of trace water and temperature.
Collapse
Affiliation(s)
- Daqing Yang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zhiqiang Li
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Liang He
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Yucheng Deng
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Yige Wang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| |
Collapse
|
28
|
Liu L, Fu G, Li B, Lü X, Wong WK, Jones RA. Single-component Eu3+–Tb3+–Gd3+-grafted polymer with ultra-high color rendering index white-light emission. RSC Adv 2017. [DOI: 10.1039/c6ra26724f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Color-tuning to white-light (CIE coordinates of x = 0.322, y = 0.331; CCT of 5979 K; ultra-high CRI of 94) with a highly luminous efficiency (17.8%) was achieved for single-component Eu3+−Tb3+−Gd3+-grafted polymer Poly(MMA-co-2-co-3-co-4).
Collapse
Affiliation(s)
- Lin Liu
- School of Chemical Engineering
- Shaanxi Key Laboratory of Degradable Medical Material
- Northwest University
- Xi'an 710069
- China
| | - Guorui Fu
- School of Chemical Engineering
- Shaanxi Key Laboratory of Degradable Medical Material
- Northwest University
- Xi'an 710069
- China
| | - Baoning Li
- School of Chemical Engineering
- Shaanxi Key Laboratory of Degradable Medical Material
- Northwest University
- Xi'an 710069
- China
| | - Xingqiang Lü
- School of Chemical Engineering
- Shaanxi Key Laboratory of Degradable Medical Material
- Northwest University
- Xi'an 710069
- China
| | - Wai-Kwok Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Richard A. Jones
- Department of Chemistry and Biochemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
29
|
Li H, Liu L, Fu G, Li B, Lü X, Wong WK, Jones RA. Pure white-light and color-tuning of PMMA-supported hybrid materials doped with (TTA) 3 -Zn 2+ -Eu 3+ and (BA) 3 -Zn 2+ -Tb 3+ complexes. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|