1
|
Hanna SL, Farha OK. Energy-structure-property relationships in uranium metal-organic frameworks. Chem Sci 2023; 14:4219-4229. [PMID: 37123191 PMCID: PMC10132172 DOI: 10.1039/d3sc00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Located at the foot of the periodic table, uranium is a relatively underexplored element possessing rich chemistry. In addition to its high relevance to nuclear power, uranium shows promise for small molecule activation and photocatalysis, among many other powerful functions. Researchers have used metal-organic frameworks (MOFs) to harness uranium's properties, and in their quest to do so, have discovered remarkable structures and unique properties unobserved in traditional transition metal MOFs. More recently, (e.g. the last 8-10 years), theoretical calculations of framework energetics have supplemented structure-property studies in uranium MOFs (U-MOFs). In this Perspective, we summarize how these budding energy-structure-property relationships in U-MOFs enable a deeper understanding of chemical phenomena, enlarge chemical space, and elevate the field to targeted, rather than exploratory, discovery. Importantly, this Perspective encourages interdisciplinary connections between experimentalists and theorists by demonstrating how these collaborations have elevated the entire U-MOF field.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
2
|
Sethi S, Panigrahi R, Mallik BS, Behera N. Novel Heteroleptic Uranyl(VI) Complexes Incorporating Tetradentate and Bidentate Chelating Ligands: Deviation from the O
yl
‐U‐O
yl
Linearity. ChemistrySelect 2022. [DOI: 10.1002/slct.202201784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sipun Sethi
- School of Chemistry Sambalpur University, Jyoti Vihar- 768019 Sambalpur Odisha India
| | - Rachita Panigrahi
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy, Telangana India
| | - Bhabani S. Mallik
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy, Telangana India
| | - Nabakrushna Behera
- School of Chemistry Sambalpur University, Jyoti Vihar- 768019 Sambalpur Odisha India
| |
Collapse
|
3
|
An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Zhang Q, Jin B, Zheng T, Tang X, Guo Z, Peng R. Hexadentate β-Dicarbonyl(bis-catecholamine) Ligands for Efficient Uranyl Cation Decorporation: Thermodynamic and Antioxidant Activity Studies. Inorg Chem 2019; 58:14626-14634. [PMID: 31613591 DOI: 10.1021/acs.inorgchem.9b02306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The special linear dioxo cation structure of the uranyl cation, which relegates ligand coordination to an equatorial plane perpendicular to the O═U═O vector, poses an unusual challenge for the rational design of efficient chelating agents. Therefore, the planar hexadentate ligand rational design employed in this work incorporates two bidentate catecholamine (CAM) chelating moieties and a flexible linker with a β-dicarbonyl chelating moiety (β-dicarbonyl(CAM)2 ligands). The solution thermodynamics of β-dicarbonyl(CAM)2 with a uranyl cation was investigated by potentiometric and spectrophotometric titrations. The results demonstrated that the pUO22+ values are significantly higher than for the previously reported TMA(2Li-1,2-HOPO)2, and efficient chelation of the uranyl cation was realized by the planar hexadentate β-dicarbonyl(CAM)2. The efficient chelating ability of β-dicarbonyl(CAM)2 was attributed to the presence of the more flexible β-dicarbonyl chelating linker and planar hexadentate structure, which favors the geometric arrangement between ligand and uranyl coordinative preference. Meanwhile, β-dicarbonyl(CAM)2 also exhibits higher antiradical efficiency in comparison to butylated hydroxyanisole. These results indicated that β-dicarbonyl(CAM)2 has potential application prospects as a chelating agent for efficient chelation of a uranyl cation.
Collapse
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Tian Zheng
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Xingyan Tang
- Sichuan Research Center of New Materials, Institute of Chemical Materials , China Academy of Engineering Physics , Chengdu 610200 , People's Republic of China
| | - Zhicheng Guo
- School of National Defense Science and Technology , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| |
Collapse
|
5
|
Ai J, Chen FY, Gao CY, Tian HR, Pan QJ, Sun ZM. Porous Anionic Uranyl–Organic Networks for Highly Efficient Cs+ Adsorption and Investigation of the Mechanism. Inorg Chem 2018; 57:4419-4426. [DOI: 10.1021/acs.inorgchem.8b00099] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Ai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Fang-Yuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People’s Republic of China
| | - Chao-Ying Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
| | - Hong-Rui Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People’s Republic of China
| | - Zhong-Ming Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
| |
Collapse
|
6
|
Thuéry P, Harrowfield J. Complexes of Uranyl Ions with Aromatic Di‐ and Tetracarboxylates Involving [Ni(bipy)
n
]
2+
(
n
= 2, 3) Counterions. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pierre Thuéry
- NIMBE CEA Université Paris‐Saclay 91191 Gif‐sur‐Yvette France
| | - Jack Harrowfield
- ISIS CEA Université de Strasbourg 8 allée Gaspard Monge 67083 Strasbourg France
| |
Collapse
|
7
|
Mei L, Wang CZ, Zhu LZ, Gao ZQ, Chai ZF, Gibson JK, Shi WQ. Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks. Inorg Chem 2017. [DOI: 10.1021/acs.inorgchem.7b00312] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Zhi-fang Chai
- School
of Radiological and Interdisciplinary Sciences and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - John K. Gibson
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | | |
Collapse
|
8
|
Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2016.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Tang XY, Fan ZC, Wen C, Hu YH, Yin WY, Cheng HJ, Ma YS, Yuan RX. Structural diversity and photocatalytic properties of five nickel coordination polymers constructed from 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid and N-donor ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Song J, Xing YH, Wang XM, Gao X, Wang ZN, Feng XD, Bai FY. Exploring Crystal Engineering for Porous Uranyl-Organic Frameworks: Insight into Hydrolysis and In Situ
Reaction, Structural Variation-Dependent Physical Properties. ChemistrySelect 2016. [DOI: 10.1002/slct.201600580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Song
- College of Chemistry and Chemical Engineering; Liaoning Normal University; Dalian 116029 P.R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering; Liaoning Normal University; Dalian 116029 P.R. China
| | - Xiao-Min Wang
- The analysis center of Liaoning Normal University; Liaoning Normal University; Dalian 116029 P.R. China
| | - Xue Gao
- College of Chemistry and Chemical Engineering; Liaoning Normal University; Dalian 116029 P.R. China
| | - Zhi-Nan Wang
- College of Chemistry and Chemical Engineering; Liaoning Normal University; Dalian 116029 P.R. China
| | - Xiao-Dong Feng
- College of Chemistry and Chemical Engineering; Liaoning Normal University; Dalian 116029 P.R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering; Liaoning Normal University; Dalian 116029 P.R. China
| |
Collapse
|
11
|
Thuéry P, Harrowfield J. Anchoring flexible uranyl dicarboxylate chains through stacking interactions of ancillary ligands on chiral U(vi) centres. CrystEngComm 2016. [DOI: 10.1039/c6ce00603e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Carter KP, Kalaj M, Cahill CL. Probing the Influence of N-Donor Capping Ligands on Supramolecular Assembly in Molecular Uranyl Materials. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Mei L, Wu QY, An SW, Gao ZQ, Chai ZF, Shi WQ. Silver Ion-Mediated Heterometallic Three-Fold Interpenetrating Uranyl–Organic Framework. Inorg Chem 2015; 54:10934-45. [DOI: 10.1021/acs.inorgchem.5b01988] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Mei
- Laboratory
of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-yan Wu
- Laboratory
of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-wen An
- Laboratory
of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zeng-qiang Gao
- Beijing Synchrotron Radiation Facility, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-fang Chai
- Laboratory
of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Radiological
and Interdisciplinary Sciences and Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei-qun Shi
- Laboratory
of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|