1
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
2
|
Bitzer J, Kleist W. Synthetic Strategies and Structural Arrangements of Isoreticular Mixed‐Component Metal–Organic Frameworks. Chemistry 2019; 25:1866-1882. [DOI: 10.1002/chem.201803887] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Johannes Bitzer
- Faculty of Chemistry and Biochemistry, Industrial Chemistry—, Nanostructured Catalyst MaterialsRuhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Wolfgang Kleist
- Faculty of Chemistry and Biochemistry, Industrial Chemistry—, Nanostructured Catalyst MaterialsRuhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
3
|
Yuan N, Church TL, Brandt EG, Hedin N, Zou X, Bernin D. Insights into Functionalization of Metal-Organic Frameworks Using In Situ NMR Spectroscopy. Sci Rep 2018; 8:17530. [PMID: 30510207 PMCID: PMC6277383 DOI: 10.1038/s41598-018-35842-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/11/2018] [Indexed: 11/09/2022] Open
Abstract
Postsynthetic reactions of metal-organic frameworks (MOFs) are versatile tools for producing functional materials, but the methods of evaluating these reactions are cumbersome and destructive. Here we demonstrate and validate the use of in situ NMR spectroscopy of species in the liquid state to examine solvent-assisted ligand exchange (SALE) and postsynthetic modification (PSM) reactions of metal-organic frameworks. This technique allows functionalization to be monitored over time without decomposing the product for analysis, which simplifies reaction screening. In the case of SALE, both the added ligand and the ligand leaving the framework can be observed. We demonstrate this in situ method by examining SALE and PSM reactions of the robust zirconium MOF UiO-67 as well as SALE with the aluminum MOF DUT-5. In situ NMR spectroscopy provided insights into the reactions studied, and we expect that future studies using this method will permit the examination of a variety of MOF–solute reactions.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.,Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Tamara L Church
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Erik G Brandt
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Diana Bernin
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden. .,Department of Chemistry and Chemical Engineering, Chalmers University, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
4
|
Tansell AJ, Jones CL, Easun TL. MOF the beaten track: unusual structures and uncommon applications of metal-organic frameworks. Chem Cent J 2017; 11:100. [PMID: 29086865 PMCID: PMC5636780 DOI: 10.1186/s13065-017-0330-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Over the past few decades, metal-organic frameworks (MOFs) have proved themselves as strong contenders in the world of porous materials, standing alongside established classes of compounds such as zeolites and activated carbons. Following extensive investigation into the porosity of these materials and their gas uptake properties, the MOF community are now branching away from these heavily researched areas, and venturing into unexplored avenues. Ranging from novel synthetic routes to post-synthetic functionalisation of frameworks, host-guest properties to sensing abilities, this review takes a sidestep away from increasingly 'traditional' approaches in the field, and details some of the more curious qualities of this relatively young family of materials.
Collapse
Affiliation(s)
- Alexander J. Tansell
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
| | - Corey L. Jones
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
| | - Timothy L. Easun
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
| |
Collapse
|
5
|
González Miera G, Bermejo Gómez A, Chupas PJ, Martín-Matute B, Chapman KW, Platero-Prats AE. Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange. Inorg Chem 2017; 56:4577-4584. [DOI: 10.1021/acs.inorgchem.7b00149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Greco González Miera
- Department of Organic
Chemistry and Berzelii Center EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm, Sweden
| | - Antonio Bermejo Gómez
- Department of Organic
Chemistry and Berzelii Center EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm, Sweden
| | - Peter J. Chupas
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Belén Martín-Matute
- Department of Organic
Chemistry and Berzelii Center EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm, Sweden
| | - Karena W. Chapman
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ana E. Platero-Prats
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
6
|
Platero-Prats AE, Mavrandonakis A, Gallington LC, Liu Y, Hupp JT, Farha OK, Cramer CJ, Chapman KW. Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. J Am Chem Soc 2016; 138:4178-85. [DOI: 10.1021/jacs.6b00069] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ana E. Platero-Prats
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4858, United States
| | - Andreas Mavrandonakis
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Leighanne C. Gallington
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4858, United States
| | - Yangyang Liu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Joseph T. Hupp
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Christopher J. Cramer
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Karena W. Chapman
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4858, United States
| |
Collapse
|