1
|
Dong LL, Yang H, Sun XH, Fu YP, Liu HL, Zhang WK, Chen XL, Cui HL, Liu L, Wang JJ. Two three-dimensional coordination polymers as fluorescence probes for the detection of nitrobenzene, tetracycline, fluazinam and their application in green pepper. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124934. [PMID: 39216369 DOI: 10.1016/j.saa.2024.124934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Two coordination polymers (CPs), [Zn5(L)2(phen)5](1) and [Cd2(HL)(2,2-bpy)(H2O)3](2), were synthesized by using 2',3,3',5,5'-Diphenyl ether pentacarboxylic acid (H5L), phenanthroline (phen), and 2,2'-bipyridine (2,2'-bpy) under hydrothermal conditions. The L5- ligand adopts the μ6-к2: к2: к1: к1: к1: к1 mode in 1 and the μ5-к2: к2: к2: к2: к1 mode in 2. Sensing experiments show that 1 and 2 are fluorescence probes with high sensitivity and rapid detection of nitro explosives, antibiotics, and pesticides. In order to verify the ability of 2 to detect FLU in actual samples, we performed a spiked recovery experiment in green pepper water. The spiked recoveries were 97.77-101.18 %. Interestingly, because H5L is not completely deprotonated in 2, there is abundant hydrogen bonding, which makes the fluorescence quenching rate higher and the detection limit lower. The possible fluorescence quenching mechanism of 1 and 2 can be explained by their UV-VIS absorption spectra and orbital energy levels.
Collapse
Affiliation(s)
- Lu-Lu Dong
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China.
| | - Xue-Hua Sun
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China.
| | - Yu-Pei Fu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China
| | - Hong-Li Liu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Li Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China
| | - Hua-Li Cui
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China
| | - Lin Liu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China
| | - Ji-Jiang Wang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an, Shaanxi 716000, China
| |
Collapse
|
2
|
Ju H, Wang B, Li M, Hao J, Si W, Song S, Mei K, Sue ACH, Wang J, Jia C, Guo X. Tracking Noncovalent Interactions of π, π-Hole, and Ion in Molecular Complexes at the Single-Molecule Level. J Am Chem Soc 2024; 146:25290-25298. [PMID: 39196992 DOI: 10.1021/jacs.4c09504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Noncovalent interactions involving aromatic rings, such as π-stacking and π-ion interactions, play an essential role in molecular recognition, assembly, catalysis, and electronics. However, the inherently weak and complex nature of these interactions has made it challenging to study them experimentally, especially with regard to elucidating their properties in solution. Herein, the noncovalent interactions between π and π-hole, π and cation, and π-hole and anion in molecular complexes in nonpolar solution are investigated in situ through single-molecule electrical measurements in combination with theoretical calculations. Specifically, phenyl and pentafluorobenzyl groups serve as π and π-hole sites, respectively, while Li+ and Cl- are employed as the cation and anion. Our findings reveal that, in comparison with homogeneous π···π interactions, heterogeneous π···π-hole and π···cation interactions exhibit greater binding energies, resulting in a longer binding lifetime of the molecular junctions. Meanwhile, π···Li+ and π-hole···Cl- interactions present significantly distinct binding characteristics, with the former being stronger but more flexible than the latter. Furthermore, by changing the molecular components, similar conductivity can be achieved in both molecular dimers or sandwich complexes. These results provide new insights into π- and π-hole-involved noncovalent interactions, offering novel strategies for precise manipulation of molecular assembly, recognition, and molecular device.
Collapse
Affiliation(s)
- Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Boyu Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shuxin Song
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinying Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Wang B, Xie X, Jiang W, Zhan Y, Zhang Y, Guo Y, Wang Z, Guo N, Guo K, Sun J. Osteoinductive micro-nano guided bone regeneration membrane for in situ bone defect repair. Stem Cell Res Ther 2024; 15:135. [PMID: 38715130 PMCID: PMC11077813 DOI: 10.1186/s13287-024-03745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.
Collapse
Affiliation(s)
- Bingqian Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Xinfang Xie
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yaqi Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Ke Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
4
|
Shahbaz M, Farooq S, Choudhary MI, Yousuf S. Cocrystals of a coumarin derivative: an efficient approach towards anti-leishmanial cocrystals against MIL-resistant Leishmania tropica. IUCRJ 2024; 11:224-236. [PMID: 38427455 PMCID: PMC10916291 DOI: 10.1107/s2052252524001416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Leishmaniasis is a neglected parasitic tropical disease with numerous clinical manifestations. One of the causative agents of cutaneous leishmaniasis (CL) is Leishmania tropica (L. tropica) known for causing ulcerative lesions on the skin. The adverse effects of the recommended available drugs, such as amphotericin B and pentavalent antimonial, and the emergence of drug resistance in parasites, mean the search for new safe and effective anti-leishmanial agents is crucial. Miltefosine (MIL) was the first recommended oral medication, but its use is now limited because of the rapid emergence of resistance. Pharmaceutical cocrystallization is an effective method to improve the physicochemical and biological properties of active pharmaceutical ingredients (APIs). Herein, we describe the cocrystallization of coumarin-3-carboxylic acid (CU, 1a; 2-oxobenzopyrane-3-carboxylic acid, C10H6O4) with five coformers [2-amino-3-bromopyridine (1b), 2-amino-5-(trifluoromethyl)-pyridine (1c), 2-amino-6-methylpyridine (1d), p-aminobenzoic acid (1e) and amitrole (1f)] in a 1:1 stoichiometric ratio via the neat grinding method. The cocrystals 2-6 obtained were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, as well as Fourier transform infrared spectroscopy. Non-covalent interactions, such as van der Waals, hydrogen bonding, C-H...π and π...π interactions contribute significantly towards the packing of a crystal structure and alter the physicochemical and biological activity of CU. In this research, newly synthesized cocrystals were evaluated for their anti-leishmanial activity against the MIL-resistant L. tropica and cytotoxicity against the 3T3 (normal fibroblast) cell line. Among the non-cytotoxic cocrystals synthesized (2-6), CU:1b (2, IC50 = 61.83 ± 0.59 µM), CU:1c (3, 125.7 ± 1.15 µM) and CU:1d (4, 48.71 ± 0.75 µM) appeared to be potent anti-leishmanial agents and showed several-fold more anti-leishmanial potential than the tested standard drug (MIL, IC50 = 169.55 ± 0.078 µM). The results indicate that cocrystals 2-4 are promising anti-leishmanial agents which require further exploration.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saba Farooq
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M. Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
5
|
Laan PM, Bobylev EO, Geels NJ, Rothenberg G, Reek JNH, Yan N. Noncovalent Grafting of Molecular Complexes to Solid Supports by Counterion Confinement. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:24129-24136. [PMID: 38148850 PMCID: PMC10749480 DOI: 10.1021/acs.jpcc.3c05691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Grafting molecular complexes on solid supports is a facile strategy to synthesize advanced materials. Here, we present a general and simple method for noncovalent grafting on charge-neutral surfaces. Our method is based on the generic principle of counterion confinement in surface micropores. We demonstrate the power of this approach using a set of three platinum complexes: Pt1 (Pt1L4(BF4)2, L = p-picoline), Pt2 (Pt2L4(BF4)4, L = 2,6-bis(pyridine-3-ylethynyl)pyridine), and Pt12 (Pt12L24(BF4)24, L = 4,4'-(5-methoxy-1,3-phenylene)dipyridine). These complexes share the same counterion (BF4-) but differ vastly in their size, charge, and structure. Imaging of the grafted materials by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and energy-dispersive X-ray (EDX) showed that our method results in a homogeneous distribution of both complexes and counterions. Nitrogen sorption studies indicated a decrease in the available surface area and micropore volume, providing evidence for counterion confinement in the surface micropores. Following the adsorption of the complexes over time showed that this is a two-step process: fast surface adsorption by van der Waals forces was followed by migration over the surface and surface binding by counterion confinement. Regarding the binding of the complexes to the support, we found that the surface-adsorbate binding constant (KS) increases quadratically with the number of anions per complex up to KS = 1.6 × 106 M-1 equaling ΔG°ads = -35 kJ mol-1 for the surface binding of Pt12. Overall, our method has two important advantages: first, it is general, as you can anchor different complexes (with different charges, counterions, and/or sizes); second, it promotes the distribution of the complexes on the support surface, creating well-distributed sites that can be used in various applications across several areas of chemistry.
Collapse
Affiliation(s)
- Petrus
C. M. Laan
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Eduard O. Bobylev
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Norbert J. Geels
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Gadi Rothenberg
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Joost N. H. Reek
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ning Yan
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Key
Laboratory of Artificial Micro- and Nano-Structures of Ministry of
Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Wang B, Zeng Y, Liu S, Zhou M, Fang H, Wang Z, Sun J. ZIF-8 induced hydroxyapatite-like crystals enabled superior osteogenic ability of MEW printing PCL scaffolds. J Nanobiotechnology 2023; 21:264. [PMID: 37563652 PMCID: PMC10413775 DOI: 10.1186/s12951-023-02007-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
ZIF-8 may experience ion-responsive degradation in ionic solutions, which will change its initial architecture and restrict its direct biological use. Herein, we report an abnormal phenomenon in which ZIF-8 induces large hydroxyapatite-like crystals when soaked directly in simulated body fluid. These crystals grew rapidly continuously for two weeks, with the volume increasing by over 10 folds. According to Zn2+ release and novel XRD diffraction peak presence, ZIF-8 particles can probably show gradual collapse and became congregate through re-nucleation and competitive coordination. The phenomenon could be found on ZIF-8/PCL composite surface and printed ZIF-8/PCL scaffold surface. ZIF-8 enhanced PCL roughness through changing the surface topography, while obviously improving the in-vivo and in-vitro osteoinductivity and biocompatibility. The pro-biomineralization property can make ZIF-8 also applicable in polylactic acid-based biomaterials. In summary, this study demonstrates that ZIF-8 may play the role of a bioactive additive enabling the surface modification of synthetic polymers, indicating that it can be applied in in-situ bone regeneration.
Collapse
Affiliation(s)
- Bingqian Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyang Zeng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huimin Fang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Milašinović V, Vuković V, Krawczuk A, Molčanov K, Hennig C, Bodensteiner M. The nature of π-hole interactions between iodide anions and quinoid rings in the crystalline state. IUCRJ 2023; 10:156-163. [PMID: 36692857 PMCID: PMC9980391 DOI: 10.1107/s2052252523000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The investigated co-crystal of 3-chloro-N-methylpyridinium iodide with tetrabromoquinone (3-Cl-N-MePy·I·Br4Q) reveals a π-hole interaction between an iodide anion and a quinoid ring involving an n → π* charge transfer. The quinoid ring has a partial negative charge (estimated to be in the range 0.08-0.11e) and a partial radical character, which is related to the black colour of the crystals (crystals of neutral tetrabromoquinone are yellow). A detailed X-ray charge density study revealed two symmetry-independent bond critical points between the iodide anions and carbon atoms of the ring. Their maximum electron density of 0.065 e Å-3 was reproduced by quantum chemical modelling. The energy of the interaction is estimated to be -11.16 kcal mol-1, which is comparable to the strength of moderate hydrogen bonding (about -10 kcal mol-1); it is dominantly electrostatic in nature, with a considerable dispersion component.
Collapse
Affiliation(s)
- Valentina Milašinović
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Vedran Vuković
- Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Anna Krawczuk
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstraβe 4, 37077 Göttingen, Germany
| | - Krešimir Molčanov
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Christoph Hennig
- The Rossendorf Beamline (BM20), European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble 38043, France
- Institute of Resource Ecology, Helmholz Zentrum Dresden Rosendorf, Bauztner Landstrasse 400, 01328 Dresden, Germany
| | | |
Collapse
|
8
|
Shkurenko A. The dominant component of strong π-hole interactions: electrostatic attraction versus charge transfer. IUCRJ 2023; 10:145-146. [PMID: 36862487 PMCID: PMC9980390 DOI: 10.1107/s2052252523001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A long-asked question concerning the dominant component of strong π-hole interactions is addressed.
Collapse
Affiliation(s)
- Aleksander Shkurenko
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Saha B, Bhattacharyya PK. Exploring alkali metal cation⋯hydrogen interaction in the formation half sandwich complexes with cycloalkanes: a DFT approach. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
Gas and solvent phase stability of half sandwich complexes between cycloalkanes viz. cyclopropane, cyclobutane, cyclopentane, cyclohexane, bicyclo[2.2.2]octane and adamantane with alkali metal cations (Li+, Na+ and K+) are analysed using density functional theory (DFT). M06-2X/6-31++G(d,p) level is primarily used for the study. The studied half sandwich complexes are stable in gas phase (stabilization energy upto 26.55 kcal mol−1). Presence of solvent phase irrespective of its dielectric, imparts negative impact on the stability of the chosen complexes. The formation of the complexes is exothermic in nature. The process of complexation is both enthalpy (ΔH) and free energy (ΔG) driven. Variation in HOMO (highest occupied molecular orbital) energy also indicates towards the chemical stability of complexes. The interaction is non-covalent with primary contribution from induction component. NBO analysis indicates that C–H bond is the donor and antibonding metal orbital is the acceptor site in the process of complexation. Stability of the complexes depends on the size of the interacting monomers.
Collapse
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Handique Girls’ College , Gauhati University , Guwahati 781001 , India
| | | |
Collapse
|
10
|
Ramírez-Palma LG, Castro-Ramírez R, Lozano-Ramos L, Galindo-Murillo R, Barba-Behrens N, Cortés-Guzmán F. DNA recognition site of anticancer tinidazole copper(II) complexes. Dalton Trans 2023; 52:2087-2097. [PMID: 36692493 DOI: 10.1039/d2dt02854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper describes the recognition process of tetrahedral [CuII(tnz)2X2] (X = Cl, Br) complexes by a DNA chain, analyzing the specific interaction between the DNA bases and backbone with the metal and the tinidazole (tnz) ligand. We identified the coordination of the copper metal center with one or two phosphates as the first recognition site for the tinidazole copper(II) complexes, while the ligands present partial intercalation into the minor groove. Also, we discuss a novel trigonal copper(I) tnz bromide complex, obtained by reducing the previously reported [Cu(tnz)2Br2]. This complex sheds light on the mechanism of action of tnz metal complexes as one of the most stable DNA-complex adducts depicts a trigonal geometry around the copper ion.
Collapse
Affiliation(s)
- Lillian G Ramírez-Palma
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - Rodrigo Castro-Ramírez
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - León Lozano-Ramos
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, UT 84112, USA
| | - Norah Barba-Behrens
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - Fernando Cortés-Guzmán
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| |
Collapse
|
11
|
Tominaga M, Nanbara S, Hyodo T, Kawahata M, Yamaguchi K. Orientation of carbonyl groups in inclusion crystals formed from ketones with aromatic diimide-based macrocycles. CrystEngComm 2023. [DOI: 10.1039/d2ce01641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inclusion crystals were formed from ketones with aromatic diimide-based macrocycles possessing adamantane units, where the oxygen atoms of guests interacted with the electron-deficient π-surfaces of the aromatic diimides through CO⋯π contacts.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sakito Nanbara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | | | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
12
|
Chakraborty J. An account of noncovalent interactions in homoleptic palladium(II) and platinum(II) complexes within the DFT framework: A correlation between geometries, energy components of symmetry-adapted perturbation theory and NCI descriptors. Heliyon 2022; 8:e11408. [DOI: 10.1016/j.heliyon.2022.e11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
|
13
|
Mehrotra S, Raje S, Jain AK, Butcher RJ, Angamuthu R. Triazine based eccentric Piedfort units towards a single source hydrogen bonded network. Chem Commun (Camb) 2022; 58:11815-11818. [PMID: 36189650 DOI: 10.1039/d2cc03327e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Herein we report a hydrogen-bonded three-dimensional network originating from a single source precursor, sym-triisopropylaminotriazine, that is both a donor and an acceptor of hydrogen bonds. The C3h symmetric design allowed the formation of intermolecular hydrogen bonds leading to helices in all three directions. The eccentric Piedfort units present in the framework with a distance of 8.15 Å between the two triazine rings allowed the CHCl3 guest to be parked.
Collapse
Affiliation(s)
- Sonam Mehrotra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Sakthi Raje
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Anant Kumar Jain
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, Washington, D.C. 20059, USA
| | - Raja Angamuthu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
14
|
Vinod Mouli MSS, Kumar Mishra A. Divergent Crystallographic Architecture for Silver‐Flavin Complexes Induced via pH Variation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. S. S. Vinod Mouli
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Sangareddy 502285 Telangana
| | - Ashutosh Kumar Mishra
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Sangareddy 502285 Telangana
| |
Collapse
|
15
|
Kusumoto S, Atoini Y, Masuda S, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Zwitterionic and Anionic Polycarboxylates as Coligands in Uranyl Ion Complexes, and Their Influence on Periodicity and Topology. Inorg Chem 2022; 61:15182-15203. [PMID: 36083206 DOI: 10.1021/acs.inorgchem.2c02426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The three zwitterionic di- and tricarboxylate ligands 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-4-carboxylate) (pL1), 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-3-carboxylate) (mL1), and 1,1',1″-[(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)]tris(pyridin-1-ium-4-carboxylate) (L2) have been used as ligands to synthesize a series of 15 uranyl ion complexes involving various anionic coligands, in most cases polycarboxylates. [(UO2)2(pL1)2(cbtc)(H2O)2]·10H2O (1, cbtc4- = cis,trans,cis-1,2,3,4-cyclobutanetetracarboxylate) is a discrete, dinuclear ring-shaped complex with a central cbtc4- pillar. While [UO2(pL1)(NO3)2] (2), [UO2(pL1)(OAc)2] (3), and [UO2(pL1)(HCOO)2] (4) are simple chains, [(UO2)2(mL1)(1,3-pda)2] (5, 1,3-pda2- = 1,3-phenylenediacetate) is a daisy chain and [UO2(pL1)(pdda)]3·10H2O (6, pdda2- = 1,2-phenylenedioxydiacetate) is a double-stranded, ribbon-like chain. Both [UO2(pL1)(pht)]·5H2O (7, pht2- = phthalate) and [(UO2)3(mL1)(pht)2(OH)2] (8) crystallize as diperiodic networks with the sql topology, the latter involving hydroxo-bridged trinuclear nodes. [(UO2)2(pL1)(c/t-1,3-chdc)2] (9, c/t-1,3-chdc2- = cis/trans-1,3-cyclohexanedicarboxylate) and [UO2(pL1)(t-1,4-chdc)]·1.5H2O (10, t-1,4-chdc2- = trans-1,4-cyclohexanedicarboxylate) are also diperiodic, with the V2O5 and sql topologies, respectively. Both [(UO2)2(mL1)(c/t-1,4-chdc)2] (11) and [(UO2)2(pL1)(1,2-pda)2] (12, 1,2-pda2- = 1,2-phenylenediacetate) crystallize as diperiodic networks with hcb topology, and they display threefold parallel interpenetration. [HL2][(UO2)3(L2)(adc)3]Br (13, adc2- = 1,3-adamantanedicarboxylate) contains a very corrugated hcb network with two different kinds of cells, and the uncoordinated HL2+ molecule associates with the coordinated L2 to form a capsule containing the bromide anion. [(UO2)2(pL1)(kpim)2] (14, kpim2- = 4-ketopimelate) is a three-periodic framework with pL1 molecules pillaring fes diperiodic subunits, whereas [(UO2)2(L2)2(t-1,4-chdc)](NO3)1.7Br0.3·6H2O (15), the only cationic complex in the series, is a triperiodic framework with dmc topology and t-1,4-chdc2- anions pillaring fes diperiodic subunits. Solid-state emission spectra and photoluminescence quantum yields are reported for all complexes.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jee Young Kim
- Department of Food and Nutrition, Kosin University, 194 Wachiro, Yongdo-Gu, Busan 49104, South Korea
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Panteleieva OS, Shtemenko AV, Senchyk GA, Ponomarova VV, Galmés B, Frontera A, Rusanov EB, Domasevitch KV. Anion-π stacks of Lindqvist superoctahedra [Mo6O19]2− supported by caffeinium and theophyllinium cations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Khardazi S, Zaitouni H, Belkhadir S, Mezzane D, Amjoud M, Gagou Y, Asbani B, Lukyanchuk I, Terenchuk S. Improvement of the electrocaloric effect and energy storage performances in Pb-free ferroelectric Ba0.9Sr0.1Ti0.9Sn0.1O3 ceramic near room temperature. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Shukla J, Illathvalappil R, Kumar S, Chorol S, Pandikassala A, Kurungot S, Mukhopadhyay P. Synthesis of a Highly Electron-Deficient, Water-Stable, Large Ionic Box: Multielectron Accumulation and Proton Conductivity. Org Lett 2022; 24:3038-3042. [PMID: 35439020 DOI: 10.1021/acs.orglett.2c00993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
π-acidic boxes exhibiting electron reservoir and proton conduction are unprecedented because of their instability in water. We present the synthesis of one of the strongest electron-deficient ionic boxes showing e- uptake as well as proton conductivity. Two large anions fit in the box to form anion-π interactions and form infinite anion-solvent wires. The box with NO3-···water wires confers high proton conductivity and presents the first example that manifests redox and ionic functionality in an organic electron-deficient macrocycle.
Collapse
Affiliation(s)
- Jyoti Shukla
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajith Illathvalappil
- Physical and Materials Chemistry Division, National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sharvan Kumar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonam Chorol
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajmal Pandikassala
- Physical and Materials Chemistry Division, National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
19
|
Maynard JRJ, Galmés B, Stergiou AD, Symes MD, Frontera A, Goldup SM. Anion-π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022; 61:e202115961. [PMID: 35040543 PMCID: PMC9303940 DOI: 10.1002/anie.202115961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/13/2022]
Abstract
We report a series of rotaxane-based anion-π catalysts in which the mechanical bond between a bipyridine macrocycle and an axle containing an NDI unit is intrinsic to the activity observed, including a [3]rotaxane that catalyses an otherwise disfavoured Michael addition in >60 fold selectivity over a competing decarboxylation pathway that dominates under Brønsted base conditions. The results are rationalized by detailed experimental investigations, electrochemical and computational analysis.
Collapse
Affiliation(s)
| | - Bartomeu Galmés
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | - Athanasios D. Stergiou
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Mark D. Symes
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | | |
Collapse
|
20
|
Maynard JRJ, Galmés B, Stergiou A, Symes M, Frontera A, Goldup SM. Anion‐π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Mark Symes
- University of Glasgow Chemistry UNITED KINGDOM
| | | | | |
Collapse
|
21
|
Zhao X, Zhu W. Recent advances in studying the nonnegligible role of noncovalent interactions in various types of energetic molecular crystals. CrystEngComm 2022. [DOI: 10.1039/d2ce00984f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This highlight summarizes the research progress on the considerable effects of noncovalent interactions on diverse types of energetic materials and enlighten us to explore new factors that affect the key performance of explosives.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
22
|
Zierkiewicz W, Michalczyk M, Maris T, Wysokiński R, Scheiner S. Experimental and theoretical evidence of attractive interactions between dianions: [PdCl 4] 2-⋯[PdCl 4] 2. Chem Commun (Camb) 2021; 57:13305-13308. [PMID: 34807208 DOI: 10.1039/d1cc05640a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspection of the arrangement of tetrachloridopalladate(II) centers in a crystalline solid places the Cl of one [PdCl4]2- directly above the Pd center of its neighbor. A survey of the CSD provides 22 more examples of such MX42-⋯MX42- complexes, with M being a Group 10 metal and X = Cl, Br, or I. Quantum calculations attribute this arrangement to a π-hole bond wherein Cl lone pairs of one unit transfer charge to vacant orbitals above the Pd center of its neighbor. The stabilizing effect of this bond must overcome the strong Coulombic repulsion between the two dianions, which is facilitated by a polarizable environment as would be present in a crystal, but much more so when the effects of the neighboring counterions are factored in. These conclusions are extended to other [MX4]2- homodimers, where M represents other members of Group 10, namely Ni and Pt.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mariusz Michalczyk
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Rafał Wysokiński
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
23
|
Esmaeeli R, Piña MDLN, Frontera A, Pérez A, Bauzá A. Importance of Anion-π Interactions in RNA GAAA and GGAG Tetraloops: A Combined MD and QM Study. J Chem Theory Comput 2021; 17:6624-6633. [PMID: 34586810 PMCID: PMC8515804 DOI: 10.1021/acs.jctc.1c00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
In this study, we
demonstrate that anion−π interactions
(an attractive noncovalent force between electron deficient π-systems
and anions) are involved in the stabilization of GAAA and GGAG RNA
tetraloops. Using the single recognition particle (SRP)–RNA
complexes as a case of study, we combined molecular dynamics (MD)
and quantum mechanics (QM) calculations to shed light on the structural
influence of phosphate–G anion−π interactions
and hydrogen bonds (HBs) involving K+/Mg2+ water
clusters. In addition, the RNA assemblies herein were further characterized
by means of the “atoms in molecules” (AIM) and noncovalent
interactions plot (NCIplot) methodologies. We believe the results
derived from this study might be important in the fields of chemical
biology (RNA folding and engineering) and supramolecular chemistry
(anion−π interactions) as well as to further expand the
current knowledge regarding RNA structural motifs.
Collapse
Affiliation(s)
- Reza Esmaeeli
- Chemistry Department, University of Florida, Gainesville, Florida 32611, United States
| | - María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Alberto Pérez
- Chemistry Department, University of Florida, Gainesville, Florida 32611, United States
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| |
Collapse
|
24
|
Balamurugan K, Pisabarro MT. Stabilizing Role of Water Solvation on Anion-π Interactions in Proteins. ACS OMEGA 2021; 6:25350-25360. [PMID: 34632193 PMCID: PMC8495695 DOI: 10.1021/acsomega.1c03264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 05/31/2023]
Abstract
In this work, anion-π interactions between sulfate groups (SO4 2-) and protein aromatic amino acids (AAs) (histidine protonated (HisP), histidine neutral (HisN), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) in an aqueous environment have been analyzed using quantum chemical (QC) calculations and molecular dynamics (MD) simulations. Sulfates can occur naturally in solution and can be contained in biomolecules playing relevant roles in their biological function. In particular, the presence of sulfate groups in glycosaminoglycans such as heparin and heparan sulfate has been shown to be relevant for protein and cellular communication and, consequently, for tissue regeneration. Therefore, anion-π interactions between sulfate groups and aromatic residues represent a relevant aspect to investigate. QC results show that such an anion-π mode of interaction between SO4 2- and aromatic AAs is only possible in the presence of water molecules, in the absence of any other cooperative non-covalent interactions. Protonated histidine stands out in terms of its enhancement in the magnitude of interaction strength on solvation. Other AAs such as non-protonated histidine, tyrosine, and phenylalanine can stabilize anion-π interactions on solvation, albeit with weak interaction energy. Tryptophan does not exhibit any anion-π mode of interaction with SO4 2-. The order of magnitude of the interaction of aromatic AAs with SO4 2- on microsolvation is HisP > HisN > Tyr > Trp > Phe. Atoms in molecules (AIM) analysis illustrates the significance of water molecules in stabilizing the divalent SO4 2- anion over the π surface of the aromatic AAs. MD simulation analysis shows that the order of magnitude of the interaction of SO4 2- with aromatic AAs in macroscopic solvation is HisP > HisN, Tyr, Trp > Phe, which is very much in line with the QC results. Spatial distribution function analysis illustrates that protonated histidine alone is capable of establishing the anion-π interaction with SO4 2- in the solution phase. This study sheds light on the understanding of anion-π interactions between SO4 2- and aromatic AAs such as His and Tyr observed in protein crystal structures and the significance of water molecules in stabilizing such interactions, which is not feasible otherwise.
Collapse
|
25
|
Llull R, Montalbán G, Vidal I, Gomila RM, Bauzá A, Frontera A. Theoretical study of spodium bonding in the active site of three Zn-proteins and several model systems. Phys Chem Chem Phys 2021; 23:16888-16896. [PMID: 34328165 DOI: 10.1039/d1cp02150h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this manuscript, three examples retrieved from the PDB are selected to demonstrate the existence and relevance of spodium bonding (SpB) in biological systems. SpB is defined as an attractive noncovalent interaction between elements of group 12 of the periodic table acting as a Lewis acid and any atom or group of atoms acting as an electron donor. The utilization of this term (SpB) is convenient to differentiate classical coordination bonds from noncovalent interactions. In the latter, the distance between the electron rich and the spodium atoms is longer than the sum of the covalent radii but shorter than the sum of the van der Waals radii. In most Zn-dependent metalloenzymes, the spodium atom is bonded to three imidazole moieties belonging to the side chains of histidine amino-acids. Herein, in addition to the investigation of the SpB in the active site of three exemplifying enzymes, theoretical models where the Zn(ii) atom is bonded either to three imidazole or triazole ligands are used in order to investigate the strength of the SpB and its competition with hydrogen bonding. A series of Lewis bases and anions have been used as SpB acceptors combined with six SpB donors (receptors) of general formula [ZnY3X]+ (Y = imidazole and triazole and X = Cl, N3 and SCH3). In addition to the investigation of the energetic and geometric features of the complexes, the SpB interactions have been further characterized using the natural bond orbital (NBO) method, quantum theory of "atoms-in-molecules" and the noncovalent interaction plot (NCI plot).
Collapse
Affiliation(s)
- Rosa Llull
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Kuzniak-Glanowska E, Kobylarczyk J, Jedrzejowska K, Glosz D, Podgajny R. Exploring the structure-property schemes in anion-π systems of d-block metalates. Dalton Trans 2021; 50:10999-11015. [PMID: 34296241 DOI: 10.1039/d1dt01713f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion-π based compounds, materials, and processes have gained significant interest due to the diversity of their aesthetic non-covalent synthons, and thanks to their significance in biological systems, catalytic processes, anion binding and sensing, or the supramolecular organization of hierarchical architectures. While systems based on typical inorganic anions or organic residues have been widely reviewed in recent years, those involving anionic d metal comlexes as the main components have been treated with a rather secondary interest. However, actively exploring the new systems of the latter type we have recognized systematic advances in the field. As a result, in the current review we describe the landscape that has recently emerged. Focusing on the established groups of π-acidic species, i.e. polycarbonitirles, polyazines, polyazine N-oxides, diimide derivatives, fluoroarenes, and nitroarenes, we explore and discuss anion-π crystal engineering together with the structure-property schemes important from the standpoint of charge transfer (CT) and electron transfer (ET), magnetism, luminescence, reactivity and catalysis, and the construction of core-shell crystalline composites.
Collapse
|
27
|
Timmer BJJ, Mooibroek TJ. Anion binding properties of a hollow PdL-cage. Chem Commun (Camb) 2021; 57:7184-7187. [PMID: 34190254 PMCID: PMC8291284 DOI: 10.1039/d1cc02663a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022]
Abstract
The hollow [PdL][BArF]2 complex 1 of a tetra-pyridyl (py) ligand (L) has a [Pd(py)4]2+ coordination environment. Addition of coordinating anions resulted in the formation of a neutral species with Pd(py)2(anion)2 coordination environment (12A). These species bind further to the coordinating anions in the order Cl- > N3- > Br- > I- > AcO- with Ka1 : 1 ≤ 414 M-1. With relatively non-coordinating anions 1 remains intact and displays 1 : 2 binding behaviour dominated by the 1 : 1 stoichiometry in the order NO3- (∼105 M-1) » ClO4- and BF4- (∼103 M-1). As evidenced by crystal structure data, DFT calculations and {1H-19F}-HOESY NMR with BF4-, the anions are bound by charge assisted [C-H]+···anion interactions.
Collapse
Affiliation(s)
- Brian J J Timmer
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| | - Tiddo J Mooibroek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| |
Collapse
|
28
|
Gomila RM, Bauza A, Mooibroek TJ, Frontera A. π-Hole spodium bonding in tri-coordinated Hg(II) complexes. Dalton Trans 2021; 50:7545-7553. [PMID: 34037019 DOI: 10.1039/d1dt01235e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The important role of π-hole spodium bonding in tri-coordinated planar Hg(ii) complexes is highlighted in this feature article. Selected examples of Hg(ii)X3 structures (X = any atom) illustrate that this noncovalent interaction is relevant as a structural guiding force in crystal structures. For some examples, the interactions have been characterized using the quantum theory of "atoms in molecules" and the noncovalent interaction plot index. Finally, an analysis of the Cambridge structural database revealed that the HgX3 structures are predominantly T-shaped and that they are directional π-hole donors for electron rich atoms.
Collapse
Affiliation(s)
- Rosa M Gomila
- Universitat de les Illes Balears, Serveis Científico Tècnics, Crta. de Valldemossa km. 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Bauza
- Universitat de les Illes Balears, Department of Chemistry, Crta. de Valldemossa km. 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Tiddo J Mooibroek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park A, 904, E1.26, 1098 XH Amsterdam, Netherlands
| | - Antonio Frontera
- Universitat de les Illes Balears, Department of Chemistry, Crta. de Valldemossa km. 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| |
Collapse
|
29
|
Slimi H, Oueslati A, Aydi A. Studies on structural, dielectric and optical properties of (Ba 0.95Ca 0.05) 1-x (Ti 0.8Sn 0.2) 1-x Na x Nb x O 3 lead-free ceramics. RSC Adv 2021; 11:14504-14512. [PMID: 35423971 PMCID: PMC8698151 DOI: 10.1039/d1ra00952d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
(Ba0.95Ca0.05)1-x (Ti0.8Sn0.2)1-x Na x Nb x O3 (BCNTSNO3) lead-free ceramics with compositions (x = 0.75, 0.8 and 0.85) were synthesized through the traditional solid-state reaction method. X-ray powder diffraction analysis showed the formation of a single phase compound crystallized in tetragonal space group P4mm. The evolution of Raman spectra displayed a disorder introduced into the structure, which favors a ferroelectric relaxor behavior. The dependence of the dielectric properties on temperature exhibited two composition ranges with different behaviors. Ferroelectric relaxor properties were observed for the compositions x < 0.85 and the classical ferroelectric behavior for x = 0.85. Lead free (Ba0.95Ca0.05)1-x (Ti0.8Sn0.2)1-x Na x Nb x O3 ceramics exhibited larger dielectric constants than those of parent crystal NaNbO3, suggesting that it is a good candidate for lead-free ceramics in several industrial applications. Using UV-Vis spectroscopy, the optical band gap energy of ceramics (Ba0.95Ca0.05)1-x (Ti0.8Sn0.2)1-x Na x Nb x O3 is found at 2.89, 2.92, and 3.05 eV for x = 0.75, 0.8 and 0.85, respectively.
Collapse
Affiliation(s)
- H Slimi
- Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax BP 1171 3000 Sfax Tunisia
| | - A Oueslati
- Laboratory of Spectroscopic Characterization and Optic Materials, University of Sfax, Faculty of Sciences of Sfax B.P. 1171 3000 Sfax Tunisia
| | - A Aydi
- Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax BP 1171 3000 Sfax Tunisia
| |
Collapse
|
30
|
Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules 2021; 26:molecules26082116. [PMID: 33917030 PMCID: PMC8067769 DOI: 10.3390/molecules26082116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ab initio calculations are applied to the question as to whether a AeX5- anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F-, Cl-, or CN-. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.
Collapse
|
31
|
Roohi H, Safari A. The interplay between anion-π and H-bonding interactions in X −···s-Triazine···(HF) n(HCl) 3-n (X = F −, Cl − and CN −) complexes: DFT and DFT-D study. Mol Phys 2021. [DOI: 10.1080/00268976.2020.1827179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hossein Roohi
- Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Alireza Safari
- Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
32
|
Gołdyn MR, Larowska D, Bartoszak-Adamska E. Novel Purine Alkaloid Cocrystals with Trimesic and Hemimellitic Acids as Coformers: Synthetic Approach and Supramolecular Analysis. CRYSTAL GROWTH & DESIGN 2021; 21:396-413. [PMID: 36466627 PMCID: PMC9714640 DOI: 10.1021/acs.cgd.0c01242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this work, benzene-1,3,5-tricarboxylic (trimesic acid, TMSA) and benzene-1,2,3-tricarboxylic acid (hemimellitic acid, HMLA) were used as coformers for cocrystal synthesis with chosen purine alkaloids. Theobromine (TBR) forms cocrystals TBR·TMSA and TBR·HMLA with these acids. Theophylline (TPH) forms cocrystals TPH·TMSA and TPH·HMLA, the cocrystal hydrate TPH·TMSA·2H2O and the salt hydrate (TPH)+·(HMLA)-·2H2O. Caffeine (CAF) forms the cocrystal CAF·TMSA and the cocrystal hydrate CAF·HMLA·H2O. The purine alkaloid derivatives were obtained by solution crystallization and by neat or liquid-assisted grinding. The powder X-ray diffraction method was used to confirm the synthesis of the novel substances. All of these solids were structurally characterized, and all synthons formed by purine alkaloids and carboxylic acids were recognized using a single-crystal X-ray diffraction method. The Cambridge Structural Database was used to determine the frequency of occurrence of analyzed supramolecular synthons, which is essential at the crystal structure design stage. Determining the influence of structural causes on the various synthon formations and molecular arrangements in the crystal lattice was possible using structurally similar purine alkaloids and two isomers of benzenetricarboxylic acid. Additionally, UV-vis measurements were made to determine the effect of cocrystallization on purine alkaloid solubility.
Collapse
|
33
|
Ravi S, Sreedharan R, Raghi K, Manoj Kumar T, Naseema K. Studies on non-linear optical property of β polymorph of 5-nitrofurazone- a promising optical material: Experimental and quantum computational approach. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Pramanik S, Pathak S, Jana S, Mondal M, Frontera A, Mukhopadhyay S. An experimental and theoretical exploration of supramolecular interactions and photoresponse properties of two Ni( ii) complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01363g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two new nickel(ii) complexes, C32H2N8NiClO9 (1) and C36H28N12NiOF24P4 (2) are reported. The noncovalent interactions witnessed in their crystal packing have been analysed using DFT calculations.
Collapse
Affiliation(s)
- Samit Pramanik
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Sudipta Pathak
- Department of Chemistry, Haldia Government College, Debhog
- PurbaMedinipur
- India
| | - Sumanta Jana
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Monotosh Mondal
- Department of Chemistry, Haldia Government College, Debhog
- PurbaMedinipur
- India
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
35
|
Tiekink ERT. Supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in molecular crystals and the propensity of their formation. CrystEngComm 2021. [DOI: 10.1039/d0ce01677b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A survey of delocalised C–I⋯π(chelate ring) interactions is presented.
Collapse
Affiliation(s)
- Edward R. T. Tiekink
- Research Centre for Crystalline Materials
- School of Science and Technology
- Sunway University
- Bandar Sunway
- Malaysia
| |
Collapse
|
36
|
Hossain A, Dey A, Seth SK, Ray PP, Ortega-Castro J, Frontera A, Mukhopadhyay S. Anion-dependent structural variations and charge transport property analysis of 4′-(3-pyridyl)-4,2′:6′,4′′-terpyridinium salts. CrystEngComm 2021. [DOI: 10.1039/d1ce00248a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion-dependent structural variations and charge transport analysis of three 4′-(3-pyridyl)-4,2′:6′,4′′-terpyridinium salts are reported. They exhibit pronounced photosensing behavior when illuminated using visible light.
Collapse
Affiliation(s)
- Anowar Hossain
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Arka Dey
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
| | | | | | | | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
37
|
Milašinović V, Molčanov K. Novel co-crystals with π-hole interactions between iodide anions and quinoid rings involving charge transfer. CrystEngComm 2021. [DOI: 10.1039/d1ce01156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six novel co-crystals of tetrabromoquinone with iodide salts of organic cations displaying short contacts between iodide anions and the quinoid rings have been structurally characterised.
Collapse
|
38
|
Pal P, Das K, Hossain A, Gomila RM, Frontera A, Mukhopadhyay S. Synthesis and crystal structure of the simultaneous binding of Ni( ii) cation and chloride by the protonated 2,4,6 tris-(2-pyridyl)-1,3,5 triazine ligand: theoretical investigations of anion⋯π, π⋯π and hydrogen bonding interactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj01880a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new octahedral Ni(ii) complex of a protonated 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand has been synthesized and X-ray analysis exhibited cooperative anion–π and H-bonding interactions.
Collapse
Affiliation(s)
- Pampi Pal
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Kinsuk Das
- Department of Chemistry
- Chandernagore College
- Hooghly
- India
| | - Anowar Hossain
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Rosa M. Gomila
- Serveis Científico-Tècnics, Universitat de les IllesBalears
- Palma 07122
- Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les IllesBalears
- Palma 07122
- Spain
| | | |
Collapse
|
39
|
Du J, Wang C, Yin S, Wang W, Mo Y. Resonance-assisted/impaired anion-π interaction: towards the design of novel anion receptors. RSC Adv 2020; 10:36181-36191. [PMID: 35517107 PMCID: PMC9056982 DOI: 10.1039/d0ra07877h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/23/2023] Open
Abstract
Substituents alter the electron density distribution in benzene in various ways, depending on their electron withdrawing and donating capabilities, as summarized by the empirical Hammett equation. The change of the π electron density distribution subsequently impacts the interaction of substituted benzenes or other cyclic conjugated rings with anions. Currently the design and synthesis of conjugated cyclic receptors capable of binding anions is an active field due to their applications in the sensing and removal of environmental contaminants and molecular recognition. By using the block-localized wavefunction (BLW) method, which is a variant of ab initio valence bond (VB) theory and can derive the reference resonance-free state self-consistently, we quantified the resonance-assisted (RA) or resonance-impaired (RI) phenomena in anion–π interactions from both structural and energetic perspectives. The frozen interaction, in which the electrostatic attraction is involved, has been shown to be the governing factor for the RA or RI interactions with anions. Energy analyses based on the empirical point charge (EPC) model indicated that the anion–π interactions can be simplified as the attraction between a negative point charge (anion) and a group of local dipoles, affected by the enriched or diminished π-cloud due to the resonance between the substituents and the conjugated ring. Hence, two strategies for the design of novel anion receptors can be envisioned. One is the enhancement of the magnitudes and/or numbers of local dipoles (polarized σ bonds), and the other is the reduction of π electron density in conjugated rings. For cases with the RI characteristics, “curved” aromatic molecules are preferred to be anion receptors. Indeed, extremely strong binding was found in complexes formed with fluorinated corannulene (F-CDD) and fluorinated [5]cycloparaphenylene (F-[5]CPP). Inspired by the RA phenomenon, complexes of p-, o- and m-benzoquinones with halides were revisited. Substituents alter the electron density distribution in benzene in various ways, depending on their electron withdrawing and donating capabilities, as summarized by the empirical Hammett equation.![]()
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Yirong Mo
- Department of Nanoscience Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| |
Collapse
|
40
|
Østrøm I, Ortolan AO, Caramori GF, Mascal M, Muñoz‐Castro A, Parreira RLT. In Silico
Design of Cylindrophanes: The Role of Functional Groups in a Fluoride Selective Host. Chemphyschem 2020; 21:1989-2005. [DOI: 10.1002/cphc.202000321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ina Østrøm
- Departamento de Química Universidade Federal de Santa Catarina Campus Universitário Trindade, CP 476 Florianópolis SC, 88040-900 Brazil
| | - Alexandre O. Ortolan
- Departamento de Química Universidade Federal de Santa Catarina Campus Universitário Trindade, CP 476 Florianópolis SC, 88040-900 Brazil
| | - Giovanni F. Caramori
- Departamento de Química Universidade Federal de Santa Catarina Campus Universitário Trindade, CP 476 Florianópolis SC, 88040-900 Brazil
| | - Mark Mascal
- Department of Chemistry University of California Davis 1 Shields Avenue Davis CA 95616 USA
| | - Alvaro Muñoz‐Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería Universidad Autonoma de Chile Llano Subercaseaux 2801 San Miguel, Santiago Chile
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas Universidade de Franca 14404-600 Franca, SP Brazil
| |
Collapse
|
41
|
Panteleieva OS, Ponomarova VV, Shtemenko AV, Domasevitch KV. Supramolecular networks supported by the anion...π linkage of Keggin-type heteropolyoxotungstates. Acta Crystallogr C 2020; 76:753-762. [PMID: 32756038 DOI: 10.1107/s205322962000950x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
Anion...π interactions are newly recognized weak supramolecular forces which are relevant to many types of electron-deficient aromatic substrates. Being less competitive with respect to conventional hydrogen bonding, anion...π interactions are only rarely considered as a crystal-structure-defining factor. Their significance dramatically increases for polyoxometalate (POM) species, which offer extended oxide surfaces for maintaining dense aromatic/inorganic stacks. The structures of tetrakis(caffeinium) μ12-silicato-tetracosa-μ2-oxido-dodecaoxidododecatungsten trihydrate, (C8H11N4O2)4[SiW12O40]·3H2O, (1), and tris(theobrominium) μ12-phosphato-tetracosa-μ2-oxido-dodecaoxidododecatungsten ethanol sesquisolvate, (C7H9N4O2)3[PW12O40]·1.5C2H5OH, (2), support the utility of anion...π interactions as a special kind of supramolecular synthon controlling the structures of ionic lattices. Both caffeinium [(HCaf)+ in (1)] and theobrominium cations [(HTbr)+ in (2)] reveal double stacking patterns at both axial sides of the aromatic frameworks, leading to the generation of anion...π...anion bridges. The latter provide the rare face-to-face linkage of the anions. In (1), every square face of the metal-oxide cuboctahedra accepts the interaction and the above bridges yield flat square nets, i.e. {(HCaf+)2[SiW12O40]4-}n. Two additional cations afford single stacks only and they terminate the connectivity. Salt (2) retains a two-dimensional (2D) motif of square nets, with anion...π...anion bridges involving two of the three (HTbr)+ cations. The remaining cations complete a fivefold anion...π environment of [PW12O40]3-, acting as terminal groups. This single anion...π interaction is influenced by the specific pairing of (HTbr)+ cations by double amide-to-amide hydrogen bonding. Nevertheless, invariable 2D patterns in (1) and (2) suggest the dominant role of anion...π interactions as the structure-governing factor, which is applicable to the construction of noncovalent linkages involving Keggin-type oxometalates.
Collapse
Affiliation(s)
- Olha S Panteleieva
- Department of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, 49005 Dnipro, Ukraine
| | - Vira V Ponomarova
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| | - Alexander V Shtemenko
- Department of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, 49005 Dnipro, Ukraine
| | - Kostiantyn V Domasevitch
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| |
Collapse
|
42
|
Rather IA, Wagay SA, Ali R. Emergence of anion-π interactions: The land of opportunity in supramolecular chemistry and beyond. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213327] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Wilson J, Maxson T, Wright I, Zeller M, Rosokha SV. Diversity and uniformity in anion-π complexes of thiocyanate with aromatic, olefinic and quinoidal π-acceptors. Dalton Trans 2020; 49:8734-8743. [PMID: 32555839 DOI: 10.1039/d0dt01654c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite the progress in the study of anion-π interactions, there are still inconsistencies in the use of this term and the experimental data about factors affecting the strength of such bonding are limited. To shed light on these issues, we explored supramolecular associations between NCS- anions and a series of aromatic, olefinic or quinoidal π-acceptors. Combined experimental and computational studies revealed that all these complexes were formed by an attraction of the anion to the face of the π-system, and the arrangements of thiocyanate followed the areas of the most positive potentials on the surfaces of the π-acceptors. The stabilities of the complexes increased with the π-acceptor strength (reflected by their reduction potentials), and were essentially independent of the magnitudes of the maximum electrostatic potentials on their surfaces. The complexes showed intense absorption bands in the UV-Vis range, and the energies of these bands were correlated with the difference of the redox potentials of the anions and π-acceptors. Such features, as well as results of atoms-in-molecules and non-covalent index analyses suggested that besides electrostatics, molecular orbital interactions play a substantial role in the formation of these complexes. The unified trends in variations of the characteristics of the complexes between thiocyanate and a variety of π-acceptors point to their common nature. To embrace diversity and uniformity of the anion-π associates, we suggest (following the halogen bond's definition) that anion-π bonding occurs when there is evidence of a net attraction between the anions and the face of the electrophilic π-system.
Collapse
Affiliation(s)
- Joshua Wilson
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA.
| | | | | | | | | |
Collapse
|
44
|
Senchyk GA, Lysenko AB, Krautscheid H, Domasevitch KV. Crystal structure and Hirshfeld surface analysis of 4,4'-(propane-1,3-diyl)bis(4 H-1,2,4-triazol-1-ium) penta-fluorido-oxidovanadate(V). Acta Crystallogr E Crystallogr Commun 2020; 76:780-784. [PMID: 32523738 PMCID: PMC7274005 DOI: 10.1107/s205698902000585x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 11/10/2022]
Abstract
In the structure of the title salt, (C7H12N6)[VOF5], second-order Jahn-Teller distortion of the coordination octa-hedra around V ions is reflected by coexistence of short V-O bonds [1.5767 (12) Å] and trans-positioned long V-F bonds [2.0981 (9) Å], with four equatorial V-F distances being inter-mediate in magnitude [1.7977 (9)-1.8913 (9) Å]. Hydrogen bonding of the anions is restricted to F-atom acceptors only, with particularly strong N-H⋯F inter-actions [N⋯F = 2.5072 (15) Å] established by axial and cis-positioned equatorial F atoms. Hirshfeld surface analysis indicates that the most important inter-actions are overwhelmingly H⋯F/F⋯H, accounting for 74.4 and 36.8% of the contacts for the individual anions and cations, respectively. Weak CH⋯F and CH⋯N bonds are essential for generation of three-dimensional structure.
Collapse
Affiliation(s)
- Ganna A. Senchyk
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| | - Andrey B. Lysenko
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| | - Harald Krautscheid
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| | - Kostiantyn V. Domasevitch
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| |
Collapse
|
45
|
Liu Z, Chen Z, Xi J, Xu X. An accurate single descriptor for ion-π interactions. Natl Sci Rev 2020; 7:1036-1045. [PMID: 34692123 PMCID: PMC8288966 DOI: 10.1093/nsr/nwaa051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Non-covalent interactions between ions and π systems play an important role in molecular recognition, catalysis and biology. To guide the screen and design for artificial hosts, catalysts and drug delivery, understanding the physical nature of ion-π complexes via descriptors is indispensable. However, even with multiple descriptors that contain the leading term of electrostatic and polarized interactions, the quantitative description for the binding energies (BEs) of ion-π complexes is still lacking because of the intrinsic shortcomings of the commonly used descriptors. Here, we have shown that the impartment of orbital details into the electrostatic energy (coined as OEE) makes an excellent single descriptor for BEs of not only spherical, but also multiply-shaped, ion-π systems, highlighting the importance of an accurate description of the electrostatic interactions. Our results have further demonstrated that OEEs from a low-level method could be calibrated to BEs from a high-level method, offering a powerful practical strategy for an accurate prediction of a set of ion-π interactions.
Collapse
Affiliation(s)
- Zhangyun Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zheng Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jinyang Xi
- Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
46
|
Zhao SP, Guo Y, Wang J, Xu H, Qiao Q, Huang RY. An inorganic-organic hybrid compound with face-sharing bromoplumbate chain: Synthesis, crystal structure, Hirshfeld surface analysis, ferroelectric and dielectric properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Karmakar M, Frontera A, Chattopadhyay S. Methylene spacer regulated variation in supramolecular assembly of zinc( ii) dicyanamide complexes with reduced Schiff base ligands: synthesis, structure and DFT study. CrystEngComm 2020. [DOI: 10.1039/d0ce01105c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three tetranuclear zinc dicyanamide complexes with three potential hexadentate reduced Schiff base ligands have been synthesized and characterized. The DFT study is devoted to the analysis of the competition between C–H⋯π and π⋯π interactions.
Collapse
Affiliation(s)
- Mainak Karmakar
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Antonio Frontera
- Departamento de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | | |
Collapse
|
48
|
Lu T, Zhang J, Gou Q, Feng G. Structure and C⋯N tetrel-bonding of the isopropylamine–CO2 complex studied by microwave spectroscopy and theoretical calculations. Phys Chem Chem Phys 2020; 22:8467-8475. [DOI: 10.1039/d0cp00925c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural and energetic features of C⋯N tetrel bond and C–H⋯O hydrogen bonds linking CO2 and aliphatic amines were characterized with rotational spectroscopy and quantum chemical calculations.
Collapse
Affiliation(s)
- Tao Lu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Qian Gou
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Gang Feng
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| |
Collapse
|
49
|
Kuzniak E, Hooper J, Srebro-Hooper M, Kobylarczyk J, Dziurka M, Musielak B, Pinkowicz D, Raya J, Ferlay S, Podgajny R. A concerted evolution of supramolecular interactions in a {cation; metal complex; π-acid; solvent} anion-π system. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00101e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Comprehensive studies on a concerted evolution of supramolecular interactions with multicomponent synthon reproduction provide a new tool to describe the trapping of flat [M(L)4]2− complexes within π-acidic cavities.
Collapse
Affiliation(s)
- Emilia Kuzniak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - James Hooper
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | | | | | | | - Bogdan Musielak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Jesus Raya
- Membrane Biophysics and NMR
- Institute of Chemistry
- UMR 7177
- University of Strasbourg
- 67000 Strasbourg
| | - Sylvie Ferlay
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | - Robert Podgajny
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| |
Collapse
|
50
|
Capel Berdiell I, Farmiloe SE, Kulmaczewski R, Halcrow MA. Molecular squares, coordination polymers and mononuclear complexes supported by 2,4-dipyrazolyl-6H-1,3,5-triazine and 4,6-dipyrazolylpyrimidine ligands. Dalton Trans 2019; 48:17310-17320. [PMID: 31720621 DOI: 10.1039/c9dt04003j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Fe[BF4]2 complex of 2,4-di(pyrazol-1-yl)-6H-1,3,5-triazine (L1) is a high-spin molecular square, [{Fe(L1)}4(μ-L1)4][BF4]8, whose crystals also contain the unusual HPzBF3 (HPz = pyrazole) adduct. Three other 2,4-di(pyrazol-1-yl)-6H-1,3,5-triazine derivatives with different pyrazole substituents (L2-L4) are unstable in the presence of first row transition ions, but form mononuclear, polymeric or molecular square complexes with silver(i). Most of these compounds involve bis-bidentate di(pyrazolyl)triazine coordination, which is unusual for that class of ligand, and the molecular squares encapsulate one or two BF4-, ClO4- or SbF6- ions through combinations of anionπ, AgX and/or C-HX (X = O or F) interactions. Treatment of Fe[NCS]2 or Fe[NCSe]2 with 4,6-di(pyrazol-1-yl)-2H-pyrimidine (L5) or its 2-methyl and 2-amino derivatives (L6 and L7) yields mononuclear [Fe(NCE)2L2] and/or the 1D coordination polymers catena-[Fe(NCE)2(μ-L)] (E = S or Se, L = L5-L7). Alcohol solvates of isomorphous [Fe(NCS)2L2] and [Fe(NCSe)2L2] compounds show different patterns of intermolecular hydrogen bonding, reflecting the acceptor properties of the anion ligands. These iron compounds are all high-spin, although annealing solvated crystals of [Fe(NCSe)2(L5)2] affords a new phase exhibiting an abrupt, low-temperature spin transition. Catena-[Fe(H2O)2(μ-L5)][ClO4]2 is a coordination polymer of alternating cis and trans iron centres.
Collapse
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|