Christiansen TL, Bøjesen ED, Juelsholt M, Etheridge J, Jensen KMØ. Size Induced Structural Changes in Molybdenum Oxide Nanoparticles.
ACS NANO 2019;
13:8725-8735. [PMID:
31361462 DOI:
10.1021/acsnano.9b01367]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosizing of metal oxide particles is a common strategy for improving materials properties; however, small particles often take structures different from the bulk material. MoO2 nanoparticles show a structure that is distinct from the bulk distorted rutile structure and which has not yet been determined. Here, we present a model for nanostructured MoO2 obtained through detailed atomic pair distribution function analysis combined with high-resolution electron microscopy. Defects occur in the arrangement of [MoO6] octahedra, in both large (40-100 nm) nanoparticles, where the overall distorted rutile structure is preserved, and in small nanoparticles (<5 nm), where a new nanostructure is formed. The study provides a piece in the puzzle of understanding the structure/properties relationship of molybdenum oxides and further our understanding of the origin of structural changes taking place upon nanosizing in oxide materials.
Collapse