1
|
Pham TN, Shirley H, Merkelbach J, Gurung K, Palatinus L, Yap GPA, Rosenthal J. Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II): discovery of the first ruthenium tetrapyrrole cis-dicarbonyl complex by X-ray and electron diffraction. Acta Crystallogr C Struct Chem 2024; 80:450-457. [PMID: 39120499 PMCID: PMC11371002 DOI: 10.1107/s2053229624007083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II), [Ru(C33H16F10N4)(CO)2] or Ru(CO)2[DMBil1], is the first reported ruthenium(II) cis-dicarbonyl tetrapyrrole complex. The neutral complex sports two carbonyls and an oligotetrapyrrolic biladiene ligand. Notably, the biladiene adopts a coordination geometry that is well distorted from square planar and much more closely approximates a seesaw arrangement. Accordingly, Ru(CO)2[DMBil1] is not only the first ruthenium cis-dicarbonyl with a tetrapyrrole ligand, but also the first metal biladiene complex in which the tetrapyrrole does not adopt a (pseudo-)square-planar coordination geometry. Ru(CO)2[DMBil1] is weakly luminescent, displaying λem = 552 nm upon excitation at λex = 500 nm, supports two reversible 1 e- reductions at -1.45 and -1.73 V (versus Fc+/Fc), and has significant absorption features at 481 and 531 nm, suggesting suitability for photocatalytic and photosensitization applications. While the structure of Ru(CO)2[DMBil1] was initially determined by X-ray diffraction, a traditionally acceptable quality structure could not be obtained (despite multiple attempts) because of consistently poor crystal quality. An independent structure obtained from electron diffraction experiments corroborates the structure of this unusual biladiene complex.
Collapse
Affiliation(s)
- Trong-Nhan Pham
- Department of Chemistry and Biochemistry University of Delaware,NewarkDelaware 19716 USA
| | - Hunter Shirley
- Department of Chemistry and Biochemistry University of Delaware,NewarkDelaware 19716 USA
| | | | - Kshitij Gurung
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, Prague 8 182 21, Czechia
| | - Lukáš Palatinus
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, Prague 8 182 21, Czechia
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry University of Delaware,NewarkDelaware 19716 USA
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry University of Delaware,NewarkDelaware 19716 USA
| |
Collapse
|
2
|
Franz J, Oelschlegel M, Zobel JP, Hua SA, Borter JH, Schmid L, Morselli G, Wenger OS, Schwarzer D, Meyer F, González L. Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer. J Am Chem Soc 2024; 146. [PMID: 38598687 PMCID: PMC11046484 DOI: 10.1021/jacs.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
We report a rhenium diimine photosensitizer equipped with a peripheral disulfide unit on one of the bipyridine ligands, [Re(CO)3(bpy)(S-Sbpy4,4)]+ (1+, bpy = 2,2'-bipyridine, S-Sbpy4,4 = [1,2]dithiino[3,4-c:6,5-c']dipyridine), showing anti-Kasha luminescence. Steady-state and ultrafast time-resolved spectroscopies complemented by nonadiabatic dynamics simulations are used to disclose its excited-state dynamics. The calculations show that after intersystem crossing the complex evolves to two different triplet minima: a (S-Sbpy4,4)-ligand-centered excited state (3LC) lying at lower energy and a metal-to-(bpy)-ligand charge transfer (3MLCT) state at higher energy, with relative yields of 90% and 10%, respectively. The 3LC state involves local excitation of the disulfide group into the antibonding σ* orbital, leading to significant elongation of the S-S bond. Intriguingly, it is the higher-lying 3MLCT state, which is assigned to display luminescence with a lifetime of 270 ns: a signature of anti-Kasha behavior. This assignment is consistent with an energy barrier ≥ 0.6 eV or negligible electronic coupling, preventing reaction toward the 3LC state after the population is trapped in the 3MLCT state. This study represents a striking example on how elusive excited-state dynamics of transition-metal photosensitizers can be deciphered by synergistic experiments and state-of-the-art calculations. Disulfide functionalization lays the foundation of a new design strategy toward harnessing excess energy in a system for possible bimolecular electron or energy transfer reactivity.
Collapse
Affiliation(s)
- Julia Franz
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Manuel Oelschlegel
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Shao-An Hua
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Jan-Hendrik Borter
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Lucius Schmid
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Giacomo Morselli
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Dirk Schwarzer
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| | - Leticia González
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
- Vienna Research
Platform for Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| |
Collapse
|
3
|
Turner EE, Pham TN, Smith SP, Ward KN, Rosenthal J, Rack JJ. Electron-Withdrawing meso-Substituents Turn On Magneto-Optical Activity in Porphyrins. Inorg Chem 2024; 63:3630-3636. [PMID: 38359443 DOI: 10.1021/acs.inorgchem.3c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A series of square planar metalloporphyrins (M(TPP), TPP is 5,10,15,20-tetraphenylporphyrin and M(TPFPP), TPFPP is 5,10,15,20-tetrapentafluorophenylporphyrin; M is Zn2+, Ni2+, Pd2+, or Pt2+) with distinct meso-substituents were prepared, and their magneto-optical activity (MOA) was characterized by magnetic circular dichroism (MCD) and magneto-optical rotary dispersion spectroscopy (MORD; also known as Faraday rotation spectroscopy). MOA is crucial in the development of next-generation magneto-optical devices and quantum computing. The data show that the presence of meso-pentafluorophenyl substituents results in significant increase in MOA in comparison to the homologous phenyl group. Differences in the MOA of these metalloporphyrins are rationalized using the Gouterman four-orbital model and pave the way for rational design of improved and tailorable magneto-optical materials.
Collapse
Affiliation(s)
- Emigdio E Turner
- Department of Chemistry and Chemical Biology, Laboratory for Magneto-Optic Spectroscopy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, United States
| | - Samuel Peter Smith
- Department of Chemistry and Chemical Biology, Laboratory for Magneto-Optic Spectroscopy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kaytlin N Ward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, Laboratory for Magneto-Optic Spectroscopy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
4
|
Martin SM, Repa GM, Hamburger RC, Pointer CA, Ward K, Pham TN, Martin MI, Rosenthal J, Fredin LA, Young ER. Elucidation of complex triplet excited state dynamics in Pd(II) biladiene tetrapyrroles. Phys Chem Chem Phys 2023; 25:2179-2189. [PMID: 36594369 DOI: 10.1039/d2cp04572a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pd(II) biladienes have been developed over the last five years as non-aromatic oligotetrapyrrole complexes that support a rich triplet photochemistry. In this work, we have undertaken the first detailed photophysical interrogation of three homologous Pd(II) biladienes bearing different combinations of methyl- and phenyl-substituents on the frameworks' sp3-hybridized meso-carbon (i.e., the 10-position of the biladiene framework). These experiments have revealed unexpected excited-state dynamics that are dependent on the wavelength of light used to excite the biladiene. More specifically, transient absorption spectroscopy revealed that higher-energy excitation (λexc ∼ 350-500 nm) led to an additional lifetime (i.e., an extra photophysical process) compared to experiments carried out following excitation into the lowest-energy excited states (λexc = 550 nm). Each Pd(II) biladiene complex displayed an intersystem crossing lifetime on the order of tens of ps and a triplet lifetime of ∼20 μs, regardless of the excitation wavelength. However, when higher-energy light is used to excite the complexes, a new lifetime on the order of hundreds of ps is observed. The origin of the 'extra' lifetime observed upon higher energy excitation was revealed using density functional theory (DFT) and time-dependent DFT (TDDFT). These efforts demonstrated that excitation into higher-energy metal-mixed-charge-transfer excited states with high spin-orbit coupling to higher energy metal-mixed-charge-transfer triplet states leads to the additional excitation deactivation pathway. The results of this work demonstrate that Pd(II) biladienes support a unique triplet photochemistry that may be exploited for development of new photochemical schemes and applications.
Collapse
Affiliation(s)
- Shea M Martin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Gil M Repa
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Robert C Hamburger
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Craig A Pointer
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Kaytlin Ward
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Maxwell I Martin
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| |
Collapse
|
5
|
Cai Q, Tran LK, Qiu T, Eddy JW, Pham TN, Yap GPA, Rosenthal J. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e -/4H + Peractivation of O 2 to Water. Inorg Chem 2022; 61:5442-5451. [PMID: 35358381 DOI: 10.1021/acs.inorgchem.1c03766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective 4e-/4H+ reduction of dioxygen to water is an important reaction that takes place at the cathode of fuel cells. Monomeric aromatic tetrapyrroles (such as porphyrins, phthalocyanines, and corroles) coordinated to Co(II) or Co(III) have been considered as oxygen reduction catalysts due to their low cost and relative ease of synthesis. However, these systems have been repeatedly shown to be selective for O2 reduction by the less desired 2e-/2H+ pathway to yield hydrogen peroxide. Herein, we report the initial synthesis and study of a Co(II) tetrapyrrole complex based on a nonaromatic isocorrole scaffold that is competent for 4e-/4H+ oxygen reduction reaction (ORR). This Co(II) 10,10-dimethyl isocorrole (Co[10-DMIC]) is obtained in just four simple steps and has excellent yield from a known dipyrromethane synthon. Evaluation of the steady state spectroscopic and redox properties of Co[10-DMIC] against those of Co porphyrin (cobalt 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, [Co(TPFPP)]) and corrole (cobalt 5,10,15-tris(pentafluorophenyl)corrole triphenylphosphine, Co[TPFPC](PPh3)) homologues demonstrated that the spectroscopic and electrochemical properties of the isocorrole are distinct from those displayed by more traditional aromatic tetrapyrroles. Further, the investigation of the ORR activity of Co[10-DMIC] using a combination of electrochemical and chemical reduction studies revealed that this simple, unadorned monomeric Co(II) tetrapyrrole is ∼85% selective for the 4e-/4H+ reduction of O2 to H2O over the more kinetically facile 2e-/2H+ process that delivers H2O2. In contrast, the same ORR evaluations conducted for the Co porphyrin and corrole homologues demonstrated that these traditional aromatic systems catalyze the 2e-/2H+ conversion of O2 to H2O2 with near complete selectivity. Despite being a simple, easily prepared, monomeric tetrapyrrole platform, Co[10-DMIC] supports an ORR catalysis that has historically only been achieved using elaborate porphyrinoid-based architectures that incorporate pendant proton-transfer groups or ditopic molecular clefts or that impose cofacially oriented O2 binding sites. Accordingly, Co[10-DMIC] represents the first simple, unadorned, monomeric metalloisocorrole complex that can be easily prepared and shows a privileged performance for the 4e-/4H+ peractivation of O2 to water as compared to other simple cobalt containing tetrapyrroles.
Collapse
Affiliation(s)
- Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Linh K Tran
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tian Qiu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennifer W Eddy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Cai Q, Rice AT, Pointer CA, Martin MI, Davies B, Yu A, Ward K, Hertler PR, Warndorf MC, Yap GPA, Young ER, Rosenthal J. Synthesis, Electrochemistry, and Photophysics of Pd(II) Biladiene Complexes Bearing Varied Substituents at the sp 3-Hybridized 10-Position. Inorg Chem 2021; 60:15797-15807. [PMID: 34597507 DOI: 10.1021/acs.inorgchem.1c02458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A set of Pd(II) biladiene complexes bearing different combinations of methyl- and phenyl-substituents on the sp3-hybridized meso-carbon (the 10-position of the biladiene framework) was prepared and studied. In addition to a previously described Pd(II) biladiene complex bearing geminal dimethyl substituents a the 10-position (Pd[DMBil]), homologous Pd(II) biladienes bearing geminal methyl and phenyl substituents (Pd[MPBil1]) and geminal diphenyl groups(Pd[DPBil1]) were prepared and structurally characterized. Detailed electrochemical as well as steady-state and time-resolved spectroscopic experiments were undertaken to evaluate the influence of the substituents on the biladiene's tetrahedral meso-carbon. Although all three biladiene homologues are isostructural, Pd[MPBil1] and Pd[DPBil1] display more intense absorption profiles that shift slightly toward lower energies as geminal methyl groups are replaced by phenyl rings. All three biladiene homologues support a triplet photochemistry, and replacement of the geminal dimethyl substituents of Pd[DMBil1] (ΦΔ = 54%) with phenyl groups improves the ability of Pd[MPBil1] (ΦΔ = 76%) and Pd[DPBil1] (ΦΔ = 66%) to sensitize 1O2. Analysis of the excited-state dynamics of the Pd(II) biladienes by transient absorption spectroscopy shows that each complex supports a long-lived triplet excited-state (i.e., τ > 15 μs for each homologue) but that the ISC quantum yields (ΦT) varied as a function of biladiene substitution. The observed trend in ISC efficiency matches that for singlet oxygen sensitization quantum yields (ΦΔ) across the biladiene series considered in this work. The results of this study provide new insights to guide future development of biladiene based agents for PDT and other photochemical applications.
Collapse
Affiliation(s)
- Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Anthony T Rice
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Craig A Pointer
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Brendan Davies
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - An Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kaytlin Ward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Molly C Warndorf
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Pistner AJ, Martin MI, Yap GP, Rosenthal J. Synthesis, structure, electronic characterization, and halogenation of gold(III) phlorin complexes. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The metalation chemistry of the phlorin, which is a non-aromatic tetrapyrrole macrocycle containing a single sp3-hybridized meso-carbon has remained underdeveloped, as compared to that of more traditional tetrapyrroles such as porphyrins, corroles and phthalocyanines. There have been few prior efforts to prepare metallophlorins, and those that have been reported have relied on either reduction or nucleophilic attack of parent metalloporphyrins, rather than direct metalation of freebase phlorin constructs. In this work, an alternate synthetic approach for preparation of gold(III) phlorin complexes that involves the first direct metalation of two different freebase phlorin derivatives (3H(Phl[Formula: see text] and 3H(Phl[Formula: see text] with AuBr3 to produce the stable and fully isolable gold(III) phlorin complexes Au(Phl[Formula: see text] and Au(Phl[Formula: see text] is reported. The first structural characterization of a metallophlorin bearing geminal dimethyl substituents at the sp3-hybridized meso-carbon via X-ray crystallography is also reported. In addition to the preparation of Au(Phl[Formula: see text] and Au(Phl[Formula: see text], the UV-vis absorption and redox properties of these two gold(III) phlorins in comparison to those of their freebase homologues is also detailed. Notably, the metallophlorins are characterized by panchromatic absorbance profiles and intense and broad bands that span the long-visible and into the near-IR regions, as well as two fully reversible oxidation and reduction waves as probed by cyclic voltammetry. Finally, the chlorination of Au(Phl[Formula: see text] using PhI(Cl[Formula: see text] was probed and it was found that this regioslective reaction generates monochlorinated (Au(Phl[Formula: see text]Cl)) and dichlorinated (Au(Phl[Formula: see text]Cl[Formula: see text] products, which were both structurally characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Allen J. Pistner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Maxwell I. Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Glenn P.A. Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
8
|
Martin MI, Cai Q, Yap GPA, Rosenthal J. Synthesis, Redox, and Spectroscopic Properties of Pd(II) 10,10-Dimethylisocorrole Complexes Prepared via Bromination of Dimethylbiladiene Oligotetrapyrroles. Inorg Chem 2020; 59:18241-18252. [PMID: 33284618 PMCID: PMC8211382 DOI: 10.1021/acs.inorgchem.0c02721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two brominated 10,10-dimethylisocorrole (10-DMIC) derivatives containing Pd(II) centers have been prepared and characterized. These compounds were prepared via bromination of 10,10-dimethylbiladiene-based oligotetrapyrroles. Bromination of free base 10,10-dimethylbiladiene (DMBil1) followed by metalation with Pd(OAc)2, as well as bromination of the corresponding Pd(II) dimethylbiladiene complex (Pd[DMBil1]) provide routes to Pd(II) hexabromo-10,10-dimethyl-5,15-bis(pentafluorophenyl)-isocorrole (Pd[10-DMIC-Br6]) and Pd(II) octabromo-10,10-dimethyl-5,15-bis(pentafluorophenyl)-isocorrole (Pd[10-DMIC-Br8]). The solid-state structures of the two brominated isocorrole complexes are presented, as is that for a new decabrominated dimethylbiladiene derivative (DMBil-Br10). The electronic and spectroscopic properties of the brominated biladiene and isocorrole derivatives were probed using a combination of voltammetric methods and steady-state UV-vis absorption and emission experiments. Data obtained from these experiments allow the properties of the brominated biladiene and isocorrole derivatives to be compared to previously studied biladiene derivatives (i.e., DMBil1 and Pd[DMBil1]). CV and DPV experiments demonstrate that Pd[10-DMIC-Br6] and Pd[10-DMIC-Br8] support well-behaved multielectron redox chemistry, similar to that which has been observed for other nonaromatic tetrapyrroles containing sp3-hybridized meso-carbons. Spectroscopic experiments reveal that bromination of the dimethylbiladiene core shifts this system's UV-vis absorption profile to lower energy and that the dimethylisocorrole complexes support panchromatic absorption profiles that extend across the UV-vis and into the near-IR region. Photosensitization experiments demonstrate that unlike previously studied Pd(II) biladiene constructs, DMBil-Br10, Pd[10-DMIC-Br6], and Pd[10-DMIC-Br8] support limited triplet excited state chemistry with O2, indicating that the novel nonaromatic tetrapyrrole derivatives described in this work may be best suited for applications other than singlet oxygen sensitization.
Collapse
Affiliation(s)
- Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Yao Y, Rao Y, Liu Y, Jiang L, Xiong J, Fan YJ, Shen Z, Sessler JL, Zhang JL. Aromaticity versus regioisomeric effect of β-substituents in porphyrinoids. Phys Chem Chem Phys 2019; 21:10152-10162. [DOI: 10.1039/c9cp01177c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maximizing the regioisomeric effect of β-substituents on photophysical properties of porphyrinoids through disruption of TT-conjugation and reducing the aromaticity.
Collapse
Affiliation(s)
- Yuhang Yao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yu Rao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yiwei Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Liang Jiang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Ying-Jie Fan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jonathan L. Sessler
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- P. R. China
- Department of Chemistry
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
10
|
Abraham B, Fan H, Galoppini E, Gundlach L. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing. J Phys Chem A 2018; 122:2039-2045. [PMID: 29381068 DOI: 10.1021/acs.jpca.7b10652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.
Collapse
Affiliation(s)
- Baxter Abraham
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Hao Fan
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| | - Elena Galoppini
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| | - Lars Gundlach
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States.,Department of Physics and Astronomy, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Demchenko AP, Tomin VI, Chou PT. Breaking the Kasha Rule for More Efficient Photochemistry. Chem Rev 2017; 117:13353-13381. [DOI: 10.1021/acs.chemrev.7b00110] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alexander P. Demchenko
- Palladin
Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01030, Ukraine
| | - Vladimir I. Tomin
- Institute
of Physics, Pomeranian University in Słupsk, ul. Arciszewskiego, 22b, Słupsk 76-200, Poland
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Road Section 4, Taipei 106, Taiwan
| |
Collapse
|
12
|
Kim D, Chun HJ, Donnelly CC, Geier GR. Two-Step, One-Flask Synthesis of a Meso-Substituted Phlorin. J Org Chem 2016; 81:5021-31. [DOI: 10.1021/acs.joc.6b00571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongjoon Kim
- Colgate University, Department
of Chemistry, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Hao-Jung Chun
- Colgate University, Department
of Chemistry, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Christopher C. Donnelly
- Colgate University, Department
of Chemistry, 13 Oak Drive, Hamilton, New York 13346, United States
| | - G. Richard Geier
- Colgate University, Department
of Chemistry, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
13
|
Nieto-Pescador J, Abraham B, Li J, Batarseh A, Bartynski RA, Galoppini E, Gundlach L. Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:48-55. [PMID: 28479939 PMCID: PMC5418589 DOI: 10.1021/acs.jpcc.5b09463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Heterogeneous electron transfer (HET) between photoexcited molecules and colloidal TiO2 has been investigated for a set of Zn-porphyrin chromophores attached to the semiconductor via linkers that allow to change level alignment by 200 meV by reorientation of the dipole moment. These unique dye molecules have been studied by femtosecond transient absorption spectroscopy in solution and adsorbed on the TiO2 colloidal film in vacuum. In solution energy transfer from the excited chromophore to the dipole group has been identified as a slow relaxation pathway competing with S2-S1 internal conversion. On the film heterogeneous electron transfer occurred in 80 fs, much faster compared to all intramolecular pathways. Despite a difference of 200 meV in level alignment of the excited state with respect to the semiconductor conduction band, identical electron transfer times were measured for different linkers. The measurements are compared to a quantum-mechanical model that accounts for electronic-vibronic coupling and finite band width for the acceptor states. We conclude that HET occurs into a distribution of transition states that differs from regular surface states or bridge mediated states.
Collapse
Affiliation(s)
- Jesus Nieto-Pescador
- Department of Physics and Astronomy, University of Delaware, Newark, DE
19716 USA
| | - Baxter Abraham
- Department of Chemistry and Biochemistry, University of Delaware, Newark,
DE 19716 USA
| | - Jingjing Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark,
DE 19716 USA
| | - Alberto Batarseh
- Department of Chemistry, Rutgers University, Newark, NJ 07102 USA
| | - Robert A. Bartynski
- Department of Physics and Astronomy and Laboratory for Surface
Modification, Rutgers University, Piscataway, NJ 08854 USA
| | - Elena Galoppini
- Department of Chemistry, Rutgers University, Newark, NJ 07102 USA
| | - Lars Gundlach
- Department of Chemistry and Biochemistry, University of Delaware, Newark,
DE 19716 USA
| |
Collapse
|