Moreno N, Hadad CZ, Restrepo A. Microsolvation of electrons by a handful of ammonia molecules.
J Chem Phys 2022;
157:134301. [PMID:
36209021 DOI:
10.1063/5.0107245]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microsolvation of electrons in ammonia is studied here via anionic NH3 n - clusters with n = 2-6. Intensive samplings of the corresponding configurational spaces using second-order perturbation theory with extended basis sets uncover rich and complex energy landscapes, heavily populated by many local minima in tight energy windows as calculated from highly correlated coupled cluster methods. There is a marked energetical preference for structures that place the excess electron external to the molecular frame, effectively coordinating it with the three protons from a single ammonia molecule. Overall, as the clusters grow in size, the lowest energy dimer serves as the basic motif over which additional ammonia molecules are attached via unusually strong charge-assisted hydrogen bonds. This is a priori quite unexpected because, on electrostatic grounds, the excess electron would be expected to be in contact with as many protons as possible. Accordingly, a full quantum mechanical treatment of the bonding interactions under the tools provided by the quantum theory of atoms in molecules is carried out in order to dissect and understand the nature of intermolecular contacts. Vertical detachment energies reveal bound electrons even for n = 2.
Collapse