1
|
Yang M, Mu H, Gao J, Zhen Q, Wang X, Guan X, Li H, Li B. Screening the Optimal Probe by Expounding the ESIPT Mechanism and Photophysical Properties in Bis-HBX with Multimodal Substitutions. Molecules 2024; 29:2692. [PMID: 38893566 PMCID: PMC11173473 DOI: 10.3390/molecules29112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
DFT and TD-DFT were used in this article to investigate the effects of different substitutions at multiple sites on the photophysical mechanism of bis-HBX in the gas phase. Four different substitution modes were selected, denoted as A1 (X=Me, Y=S), A2 (X=OMe, Y=S), B1 (X=Me, Y=NH), and C1 (X=Me, Y=O). The geometric parameters proved that the IHBs enhanced after photoexcitation, which was conducive to promote the ESIPT process. Combining the analysis of the PECs, it was revealed that the bis-HBX molecule underwent the ESIPT process, and the ease of the ESIPT process was in the order of A1 > A2> B1 > C1. In particular, the TICT process in A1 and B1 promoted the occurrence of the ESIPT process. In addition, the IC process was identified, particularly in C1. Meanwhile, the calculation of fluorescence lifetime and fluorescence rate further confirmed that A1 was the most effective fluorescent probe molecule. This theoretical research provides an innovative theoretical reference for regulating ESIPT reactions and optimizing fluorescent probe molecules.
Collapse
Affiliation(s)
- Min Yang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (M.Y.); (H.M.); (J.G.); (X.W.); (X.G.)
| | - Hongyan Mu
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (M.Y.); (H.M.); (J.G.); (X.W.); (X.G.)
| | - Jiaan Gao
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (M.Y.); (H.M.); (J.G.); (X.W.); (X.G.)
| | - Qi Zhen
- School of Civil Engineering, Changchun Institute of Technology, Changchun 130012, China;
| | - Xiaonan Wang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (M.Y.); (H.M.); (J.G.); (X.W.); (X.G.)
| | - Xiaotong Guan
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (M.Y.); (H.M.); (J.G.); (X.W.); (X.G.)
| | - Hui Li
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (M.Y.); (H.M.); (J.G.); (X.W.); (X.G.)
| | - Bo Li
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
2
|
Bhattacharyya A, Das A, Guchhait N. Interrogating the nature of aggregates formed in a model azine based ESIPT coupled AIE active probe: stark differences in photodynamics in the solid state and aggregates in water. Phys Chem Chem Phys 2023; 25:31702-31713. [PMID: 37964573 DOI: 10.1039/d3cp03603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A novel Schiff base 4-bromo-2-((E)-((E)-(1-(naphthalen-2-yl)ethylidene)hydrazono)methyl)phenol (BNHMP) was synthesized and characterized by NMR, ESI-MS, FTIR and single crystal X-ray diffraction studies. In the solution phase, BNHMP shows prominent emission from the keto-form, a consequence of excited state intramolecular proton transfer (ESIPT). The quantum yield and excited state lifetime decrease in polar solvent THF compared to relatively non-polar solvent DCM. Interestingly, in aqueous solution (pH 7.0), the quantum yield along with the excited state lifetime undergoes tremendous increment. Dynamic light scattering experiments and FESEM reveal the formation of aggregates in water as reflected by the increased hydrodynamic radius of BNHMP in water. Hence, aqueous phase studies revealed BNHMP to be an AIE active probe. On the other hand, BNHMP shows huge emission intensity in the solid state. Interestingly, the emission decay behavior of BNHMP changes upon excitation, as BNHMP shows very broad absorption in the solid state. Upon excitation at 360 nm, a triexponential decay pattern is found, which changes to a biexponential one upon excitation at 450 nm. Meticulous analysis of the fluorescence lifetimes led to the assignment of J and H aggregates coexisting in the solid state with the former dominating the photodynamics. A judicious comparison of the lifetime behavior in the solid state to that in water leads to the conclusion that BNHMP undergoes AIE by the formation of J and H aggregates to an equal extent, a phenomenon starkly different from the solid-state scenario. The current results hold significance as this is among a few reports where such comprehensive spectrodynamic dissection has been performed for an ESIPT-AIE active Schiff base in solution as well as in the solid phase, thereby giving a holistic vision of the nature and fate of aggregation occurring in such azine based systems and subsequently advancing the understanding of such systems in terms of their photo behavior.
Collapse
Affiliation(s)
| | - Akash Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
3
|
Zhang Y, Shang C, Cao Y, Ma M, Sun C. Insights into the photophysical properties of 2-(2'-hydroxyphenyl) benzazoles derivatives: Application of ESIPT mechanism on UV absorbers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121559. [PMID: 35777226 DOI: 10.1016/j.saa.2022.121559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this present work, four novel molecules (BPN, BPNS, BPS, and BPSN), possessing excited-state intramolecular proton transfer (ESIPT) characteristics, were designed to quantify the impacts of substituent effects on their photophysical properties. By exploring the primary geometrical parameters concerning hydrogen bonds, it should be noticed that the intramolecular hydrogen bonds (IHBs) of the studied molecules have been strengthened at S1 state. Infrared vibrational spectra analysis illustrates that adding electron-donating group thiophene to the proton donor side can weaken the IHBs in comparison to the electron-withdrawing group pyridine. Through investigating the absorption and fluorescence spectra, it can be clearly found that the maximum absorption peaks of the studied molecules are all located in the UVA region, and their regions of fluorescence peaks are harmless to human skin. Furthermore, considering the light intensity factor, it can be concluded that BPNS is the most potential to be used as UV absorbers in the studied molecules. This work investigates the effects of the positions and types of substituent groups on photophysical properties of 2-(2'-hydroxyphenyl) benzazoles derivatives, which can help design and exploit novel UV absorbers.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Yunjian Cao
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Min Ma
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Sánchez F, Gutiérrez M, Douhal A. Novel Approach for Detecting Vapors of Acids and Bases with Proton-Transfer Luminescent Dyes Encapsulated within Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42656-42670. [PMID: 36067454 DOI: 10.1021/acsami.2c10573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luminescent metal-organic frameworks (LMOFs) are one of the most promising materials for being implemented as active layers in the fabrication of photonic devices such as luminescent sensors of harmful chemicals. It is highly desirable that these materials undergo quantifiable spectroscopic (absorption or emission) changes in the presence of vapors of those analytes, as in many industrial processes, these toxic compounds are in the gas phase. Although great progresses have been achieved in the field, in most of the examples reported hitherto, the detection of chemicals by LMOFs is attained in solution. Herein, we present a novel approach consisting of the encapsulation of proton transfer dyes (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS, and 3-hydroxyflavone, 3-HF) within the pores of two distinct MOFs. The trapped proton transfer dyes (PT-dyes) may exist as different structures (enol, anion, or zwitterion), each of these exhibiting unique optical properties. Indeed, our findings reveal that the dyes can be encapsulated as anionic or enol species. Remarkably, the PT-dye@MOF composites exhibit a high luminescence quantum yield (up to 30%), which is sensitive (showing shifting in the emission wavelengths with a concomitant quenching/enhancement of the intensity) in the presence of vapors of an acid (HCl) and a base (triethylamine). These results open a novel avenue for the development of smarter vapoluminescent MOF-based materials.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| |
Collapse
|
5
|
Gutiérrez M, García E, Monterde C, Sánchez F, Douhal A. Modulating the spectroscopy and dynamics of a proton-transfer dye by functionalizing with phenyl groups. Phys Chem Chem Phys 2022; 24:6828-6835. [PMID: 35244633 DOI: 10.1039/d1cp05294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecules undergoing excited-state proton transfer (ESPT) reactions are among the most interesting systems from spectroscopic and photophysical viewpoints. These molecules can be further functionalized with electron donating or accepting groups, inducing intramolecular charge transfer (ICT) events, which might be coupled to the ESIPT ones, conferring them with different spectroscopic and photophysical properties, which can be essential to implement the related materials in many key scientific and technological fields. Here, we report new benzimidazole derivatives that are functionalized with a phenyl group, 2-(5,10-diphenyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenol (DP-HPPI), and its methylated equivalent, 2-(2-methoxyphenyl)-5,10-diphenyl-1H-phenanthro[9,10-d]imidazole (DP-MPPI). The results prove that these molecules in solutions undergo an ultrafast ICT (400-700 fs) reaction. Additionally, DP-HPPI also undergoes a reversible ESIPT process in dichloromethane. However, this is precluded in acetonitrile due to the involvement of intermolecular H-bonds in this solvent. These results provide key insights into the development of proton-transfer materials with bespoke spectral and photodynamical properties.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S. N., 45071 Toledo, Spain.
| | - Eduardo García
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S. N., 45071 Toledo, Spain.
| | - Cristina Monterde
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Félix Sánchez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S. N., 45071 Toledo, Spain.
| |
Collapse
|
6
|
Femto- to Millisecond Time-Resolved Photodynamics of a Double-Functionalized Push-Pull Organic Linker: Potential Candidate for Optoelectronically Active MOFs. Int J Mol Sci 2020; 21:ijms21124366. [PMID: 32575438 PMCID: PMC7352538 DOI: 10.3390/ijms21124366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
The design of improved organic linkers for the further engineering of smarter metal–organic framework (MOF) materials has become a paramount task for a wide number of material scientists. In this report, a luminescent double-functionalized push–pull (electron donor–acceptor) archetype organic molecule, dimethyl 4-amino-8-cyanonaphthalene-2,6-dicarboxylate (Me2CANADC), has been synthesized and characterized. The optical steady-state properties of Me2CANADC are strongly influenced by the surrounding environment as a direct consequence of its strong charge transfer (CT) character. The relaxation from its first electronically excited singlet state follows a double pathway: (1) on one side deactivating from its local excited (LE) state in the sub-picosecond or picosecond time domain, and (2) on the other side undergoing an ultrafast intramolecular charge transfer (ICT) reaction that is slowing down in viscous solvents. The deactivation to the ground state of these species with CT character is the origin of the Me2CANADC luminescence, and they present solvent-dependent lifetime values ranging from 8 to 18 ns. The slow photodynamics of Me2CANADC unveils the coexistence of a non-emissive triplet excited state and the formation of a long-lived charge separated state (2 µs). These observations highlight the promising optical properties of Me2CANADC linker, opening a window for the design of new functional MOFs with huge potential to be applied in the fields of luminescent sensing and optoelectronics.
Collapse
|
7
|
Wiethaus G, Toldo JM, da Silveira Santos F, da Costa Duarte R, Gonçalves PFB, Rodembusch FS. Experimental and theoretical investigation of long-wavelength fluorescence emission in push–pull benzazoles: intramolecular proton transfer or charge transfer in the excited state? Phys Chem Chem Phys 2019; 21:4408-4420. [DOI: 10.1039/c8cp05186k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ESIPT is disfavoured and charge-transfer emission, prior to ESIPT, seems to be responsible for long-emission wavelengths.
Collapse
Affiliation(s)
- Guilherme Wiethaus
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- Porto Alegre-RS
- Brazil
| | - Josene Maria Toldo
- Grupo de Química Teórica e Computacional
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- Porto Alegre-RS
- Brazil
| | - Fabiano da Silveira Santos
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- Porto Alegre-RS
- Brazil
| | - Rodrigo da Costa Duarte
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- Porto Alegre-RS
- Brazil
| | - Paulo Fernando Bruno Gonçalves
- Grupo de Química Teórica e Computacional
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- Porto Alegre-RS
- Brazil
| | - Fabiano Severo Rodembusch
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- Porto Alegre-RS
- Brazil
| |
Collapse
|
8
|
Gomez E, Alarcos N, Monterde C, Sánchez F, Moreno M, Douhal A. Experimental and theoretical insights into the influence of electronic density on proton-transfer reactions. Phys Chem Chem Phys 2018; 20:27149-27161. [PMID: 30334550 DOI: 10.1039/c8cp03185a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the excited-state behavior of proton-transfer phenanthroimidazole derivatives, such as HPPI and NMHPPI, in solutions using steady-state and femto- to nanosecond time-resolved fluorescence spectroscopies. Experimental observations are supported by theoretical calculations (TDDFT). In dichloromethane (DCM) and acetonitrile (ACN), two different paths are found for the excited-state intramolecular proton-transfer (ESIPT) reactions following two different channels. A fast and direct channel (ESIPT1) in 1-2.5 ps and a slower one (ESIPT2) in 12-15 ps, the latter being more influenced by the solvent viscosity (30 ps for HPPI and 20 ps for NMHPPI in triacetin (TAC) solutions). The slowing down of the ESIPT2 reaction is explained in terms of an intramolecular charge transfer (ICT) reaction coupled to a twisting motion to reach a more suitable conformation of the involved parts in the proton-transfer motion. The absence of OH/OD exchange effects in the ultrafast and slow proton-transfer dynamics suggests that the ESIPT reactions, which involve intramolecular and solvent coordinates, do not occur via tunneling. These results reveal new insights into the photobehavior of proton-transfer dyes, which might help in designing photosensors or lighting devices.
Collapse
Affiliation(s)
- Eduardo Gomez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Density Functional Theory Applied to Excited State Intramolecular Proton Transfer in Imidazole-, Oxazole-, and Thiazole-Based Systems. Molecules 2018; 23:molecules23051231. [PMID: 29883373 PMCID: PMC6100175 DOI: 10.3390/molecules23051231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023] Open
Abstract
Excited state intramolecular proton transfer (ESIPT) is a photoinduced process strongly associated to hydrogen bonding within a molecular framework. In this manuscript, we computed potential energy data using Time Dependent Density Functional Theory (TDDFT) for triphenyl-substituted heterocycles, which evidenced an energetically favorable proton transfer on the excited state (i.e., ESIPT) but not on the ground state. Moreover, we describe how changes on heterocyclic functionalities, based on imidazole, oxazole, and thiazole systems, affect the ESIPT process that converts an enolic species to a ketonic one through photon-induced proton transfer. Structural and photophysical data were obtained theoretically by means of density functional theory (DFT) calculations and contrasted for the three heterocyclics. Different functionals were used, but B3LYP was the one that adequately predicted absorption data. It was observed that the intramolecular hydrogen bond is strengthened in the excited state, supporting the occurrence of ESIPT. Finally, it was observed that, with the formation of the excited state, there is a decrease in electronic density at the oxygen atom that acts as proton donor, while there is a substantial increase in the corresponding density at the nitrogen atom that serves as proton acceptor, thus, indicating that proton transfer is indeed favored after photon absorption.
Collapse
|
11
|
Satapathy AK, Behera SK, Kumar R, Sandhya K, Yelamaggad C, Sahoo B. Excited state intramolecular proton transfer emission in bent core liquid crystals. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Yang D, Yang G, Jia M, Song X, Zhang Q. Comparing the substituent effects about ESIPT process for HBO derivatives. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Mohbiya DR, Sekar N. Tuning ‘Stokes Shift’ and ICT Character by Varying the Donor Group in Imidazo[1,5 a]pyridines: A Combined Optical, DFT, TD-DFT and NLO Approach. ChemistrySelect 2018. [DOI: 10.1002/slct.201702579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dhanraj R. Mohbiya
- Dyestuff Technology Department; Institute of Chemical Technology; Nathalal Parekh Marg, Matunga Mumbai 400019 India
| | - Nagaiyan Sekar
- Dyestuff Technology Department; Institute of Chemical Technology; Nathalal Parekh Marg, Matunga Mumbai 400019 India
| |
Collapse
|
14
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
15
|
Kothavale S, Erande Y, Sekar N. Triphenylamine-Based Bis- and Tris-ESIPT Compounds and Their Boron Complexes: Synthesis, Photophysical Properties and DFT Study of ICT and ESIPT Emissions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shantaram Kothavale
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| | - Yogesh Erande
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| |
Collapse
|
16
|
Substituent Modulation from ESIPT to ICT Emission in Benzoimidazolphenyl-methanones Derivatives: Synthesis, Photophysical and DFT Study. J SOLUTION CHEM 2017. [DOI: 10.1007/s10953-017-0602-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Azarias C, Budzák Š, Laurent AD, Ulrich G, Jacquemin D. Tuning ESIPT fluorophores into dual emitters. Chem Sci 2016; 7:3763-3774. [PMID: 29997864 PMCID: PMC6008603 DOI: 10.1039/c5sc04826e] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 12/24/2022] Open
Abstract
Using first-principle approaches, we show how ESIPT can be controlled by fine-tuning of substituents, hence leading to new dual emitters.
Dyes undergoing excited-state intramolecular proton transfer (ESIPT) are known to present large Stokes shifts as a result of the important geometrical reorganisation following photon absorption. When the ESIPT process is not quantitative, one can obtain dual emitters characterised by two distinct fluorescence bands, observed due to emissions from both the canonical and ESIPT isomers. However, dual emission generally requires to maintain a very specific balance, as the relative excited-state free energies of the two tautomers have to be within a narrow window to observe the phenomenon. Consequently, simple chemical intuition is insufficient to optimise dual emission. In the present contribution, we investigate, with the help of quantum-mechanical tools and more precisely, time-dependent density functional theory (TD-DFT) and algebraic diagrammatic construction (ADC), a wide panel of possible ESIPT/dual emitters with various substituents. The selected protocol is first shown to be very robust on a series of structures with known experimental behaviour, and next is applied to novel derivatives with various substituents located at different positions. This work encompasses the largest chemical library of potential ESIPT compounds studied to date. We pinpoint the most promising combinations for building dual emitters, highlight unexpected combination effects and rationalise the impact of the different auxochromes.
Collapse
Affiliation(s)
- Cloé Azarias
- CEISAM , UMR CNRS 6230 , Université de Nantes , BP 92208, 2, Rue de la Houssinière , 44322 Nantes, Cedex 3 , France . ; Tel: +33-2-51-12-55-64
| | - Šimon Budzák
- CEISAM , UMR CNRS 6230 , Université de Nantes , BP 92208, 2, Rue de la Houssinière , 44322 Nantes, Cedex 3 , France . ; Tel: +33-2-51-12-55-64
| | - Adèle D Laurent
- CEISAM , UMR CNRS 6230 , Université de Nantes , BP 92208, 2, Rue de la Houssinière , 44322 Nantes, Cedex 3 , France . ; Tel: +33-2-51-12-55-64
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie , l'Environnement et la Santé (ICPEES) UMR7515 CNRS Université de Strasbourg , 25 rue Becquerel , 67087 Strasbourg Cedex 02 , France
| | - Denis Jacquemin
- CEISAM , UMR CNRS 6230 , Université de Nantes , BP 92208, 2, Rue de la Houssinière , 44322 Nantes, Cedex 3 , France . ; Tel: +33-2-51-12-55-64.,Institut Universitaire de France , 1, rue Descartes , F-75005 Paris Cedex 05 , France
| |
Collapse
|
18
|
Li C, Yang Y, Ma C, Liu Y. Effect of amino group on the excited-state intramolecular proton transfer (ESIPT) mechanisms of 2-(2′-hydroxyphenyl)benzoxazole and its amino derivatives. RSC Adv 2016. [DOI: 10.1039/c5ra23261a] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electronic density redistributes and it migrates in opposite directions for HBO when compared to those of 5A-HBO and 6A-HBO. The amino group in the HBO framework can change the behavior of the intramolecular hydrogen bonds.
Collapse
Affiliation(s)
- Chaozheng Li
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Yonggang Yang
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Chi Ma
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Yufang Liu
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|
19
|
Behera SK, Sadhuragiri G, Elumalai P, Sathiyendiran M, Krishnamoorthy G. Exclusive excited state intramolecular proton transfer from a 2-(2′-hydroxyphenyl)benzimidazole derivative. RSC Adv 2016. [DOI: 10.1039/c6ra11780e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The existence of trans-enol was made unviable by crafting a steric hindrance that stops the normal emission of bis-HPBI.
Collapse
Affiliation(s)
| | | | - Palani Elumalai
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | | | | |
Collapse
|
20
|
Satcher RL, Pan T, Bilen MA, Li X, Lee YC, Ortiz A, Kowalczyk AP, Yu-Lee LY, Lin SH. Cadherin-11 endocytosis through binding to clathrin promotes cadherin-11-mediated migration in prostate cancer cells. J Cell Sci 2015; 128:4629-41. [PMID: 26519476 DOI: 10.1242/jcs.176081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Cadherin-11 (Cad11) cell adhesion molecule plays a role in prostate cancer cell migration. Because disassembly of adhesion complexes through endocytosis of adhesion proteins has been shown to play a role in cell migration, we examined whether Cad11 endocytosis plays a role in Cad11-mediated migration. The mechanism by which Cad11 is internalized is unknown. Using a GST pulldown assay, we found that clathrin binds to the Cad11 cytoplasmic domain but not to that of E-cadherin. Using deletion analysis, we identified a unique sequence motif, VFEEE, in the Cad11 membrane proximal region (amino acid residues 11-15) that binds to clathrin. Endocytosis assays using K(+)-depletion buffer showed that Cad11 internalization is clathrin dependent. Proximity ligation assays showed that Cad11 colocalizes with clathrin, and immunofluorescence assays showed that Cad11 localizes in vesicles that stain for the early endosomal marker Rab5. Deletion of the VFEEE sequence from the Cad11 cytoplasmic domain (Cad11-cla-Δ5) leads to inhibition of Cad11 internalization and reduces Cad11-mediated cell migration in C4-2B and PC3-mm2 prostate cancer cells. These observations suggest that clathrin-mediated internalization of Cad11 regulates surface trafficking of Cad11 and that dynamic turnover of Cad11 regulates the migratory function of Cad11 in prostate cancer cells.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mehmet A Bilen
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoxia Li
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angelica Ortiz
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Alarcos N, Gutiérrez M, Liras M, Sánchez F, Douhal A. From intra- to inter-molecular hydrogen bonds with the surroundings: steady-state and time-resolved behaviours. Photochem Photobiol Sci 2015; 14:1306-18. [PMID: 26066612 DOI: 10.1039/c5pp00079c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the photodynamics of 2-(2'-hydroxyphenyl)benzoxazole (HBO), compared to its amino derivatives, 6-amino-2-(2'-hydroxypheny)benzoxazole (6A-HBO) and 5-amino-2-(2'-hydroxypheny)benzoxazole (5A-HBO) in N,N-dimethylformamide (DMF) solutions. HBO at S0 shows a reversible deprotonation reaction leading to the production of anionic forms. However, for 6A-HBO and 5A-HBO, DMF containing KOH is necessary to produce the anions. Excited HBO in DMF exhibits intra- as well as inter-molecular proton transfer (ESIPT and ESPT) reactions. With excitation at 330 nm, we observed the open-enol, anti-enol and keto forms with different emission and lifetimes (620 ps, 1.5 ns, and 74 ps, respectively), while with the excitation at 433 nm, only the anionic species emission was detected (3.7 ns). Contrary to HBO, 6A-HBO and 5A-HBO do not exhibit any proton transfer process, and only the emissions of the open-enol charge-transferred forms (open-ECT) were observed, which are comparable to those of their methylated derivatives (6A-MBO and 5A-MBO). Femtosecond studies of 6A-MBO and 6A-HBO in DMF indicate that an intramolecular charge-transfer (ICT) reaction (∼80 fs) and solvent relaxation process (2 ps) take place at S1. Remarkably, the photoinduced breaking of the intramolecular hydrogen bond of 6A-HBO and the formation of an intermolecular hydrogen bond with DMF molecules occurs in 80 ps, while for 5A-HBO, this process occurs in less than 10 ps. In this study, we have demonstrated that the presence and position of the amino group in the HBO framework change both the S0 and S1 behaviours of the intramolecular H-bonds; a result which might be useful for the design and better understanding of supramolecular systems based on intra- and intermolecular H-bonds.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | |
Collapse
|