1
|
Huang F, Su W, Yang Y, Wang H, Bo Z, Jing P, Zhang W. The efficient triplet states formation of Se-modified PDI dimers and tetramers in solvents. Phys Chem Chem Phys 2024. [PMID: 39440382 DOI: 10.1039/d4cp00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The triplet excited states of molecules play an important role in photophysical processes, which has attracted great research interest. Perylene diimide (PDI) is a widely studied material closely associated with the generation of triplet states, and it is highly anticipated to become an electron acceptor material for improving photovoltaic conversion efficiency. In this work, we prepared dimers and tetramers composed of selenium-modified PDI-C5 (N,N'-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) units. We investigated the photophysical processes of these dimers and tetramers in chloroform and toluene using UV-visible absorption spectroscopy, fluorescence spectroscopy, and femtosecond transient absorption spectroscopy. Both the dimers and tetramers undergo efficient triplet state formation processes in the solvents. Solvents with higher polarity facilitate charge transfer thereby promote the triplet states formation. The differences in the configurations of the dimer and tetramer molecules lead to variations in triplet states generation. The twisted angles in the tetramer restricted the intramolecular electronic coupling, posing certain hindrances to exciton coupling and lowering the intramolecular CT characteristics. The emission of excimer in tetramers also competes with the triplet states formation. The research demonstrates the influence of various factors on the generation of triplet states of PDI oligomers.
Collapse
Affiliation(s)
- Feijun Huang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Wenli Su
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Yubo Yang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Hang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pengfei Jing
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Su P, Ran G, Wang H, Yue J, Kong Q, Bo Z, Zhang W. Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity. Molecules 2023; 28:molecules28073003. [PMID: 37049767 PMCID: PMC10095916 DOI: 10.3390/molecules28073003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The research on perylene diimide (PDI) aggregates effectively promotes their applications in organic photovoltaic solar cells and fluorescent sensors. In this paper, a PDI fabricated with three peripheral PDI units (N, N’-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) is investigated. The trimer shows different absorption and fluorescence properties due to hydrophobicity when dissolved in the mixed solvent of tetrahydrofuran (THF) and water. Through comprehensive analysis of the fluorescence lifetime and transient absorption spectroscopic results, we concluded that the trimer underwent different excited state kinetic pathways with different concentrations of water in THF. When dissolved in pure THF solvent, both the intramolecular charge-transfer and excimer states are formed. When the water concentration increases from 0 to 50% (v/v), the formation time of the excimer state and its structural relaxation time are prolonged, illustrating the arising of the intermolecular excimer state. It is interesting to determine that the probability of the intramolecular charge-transfer pathway will first decrease and then increase as the speed of intermolecular excimer formation slows down. The two inflection points appear when the water concentration is above 10% and 40%. The results not only highlight the importance of hydrophobicity on the aggregate properties of PDI multimers but also guide the further design of PDI-based organic photovoltaic solar cells.
Collapse
|
3
|
Lin YC, She NZ, Chen CH, Yabushita A, Lin H, Li MH, Chang B, Hsueh TF, Tsai BS, Chen PT, Yang Y, Wei KH. Perylene Diimide-Fused Dithiophenepyrroles with Different End Groups as Acceptors for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37990-38003. [PMID: 35904802 DOI: 10.1021/acsami.2c06135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we synthesized four new A-DA'D-A acceptors (where A and D represent acceptor and donor chemical units) incorporating perylene diimide units (A') as their core structures and presenting various modes of halogenation and substitution of the functional groups at their end groups (A). In these acceptors, by fusing dithiophenepyrrole (DTP) moieties (D) to the helical perylene diimide dimer (hPDI) to form fused-hPDI (FhPDI) cores, we could increase the D/A' oscillator strength in the cores and, thus, the intensity of intramolecular charge transfer (ICT), thereby enhancing the intensity of the absorption bands. With four different end group units─IC2F, IC2Cl, IO2F, and IO2Cl─tested, each of these acceptor molecules exhibited different optical characteristics. Among all of these systems, the organic photovoltaic device incorporating the polymer PCE10 blended with the acceptor FhPDI-IC2F (1:1.1 wt %) had the highest power conversion efficiency (PCE) of 9.0%; the optimal PCEs of PCE10:FhPDI-IO2F, PCE10:FhPDI-IO2Cl, and PCE10:FhPDI-IC2Cl (1:1.1 wt %) devices were 5.2, 4.7, and 7.7%, respectively. The relatively high PCE of the PCE10:FhPDI-IC2F device resulted primarily from the higher absorption coefficients of the FhPDI-IC2F acceptor, lower energy loss, and more efficient charge transfer; the FhPDI-IC2F system experienced a lower degree of geminate recombination─as a result of improved delocalization of π-electrons along the acceptor unit─relative to that of the other three acceptors systems. Thus, altering the end groups of multichromophoric PDI units can increase the PCEs of devices incorporating PDI-derived materials and might also be a new pathway for the creation of other valuable fused-ring derivatives.
Collapse
Affiliation(s)
- Yu-Che Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Nian-Zu She
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Heng Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Meng-Hua Li
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bin Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Fang Hsueh
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bing-Shiun Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Po-Tuan Chen
- Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yang Yang
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
4
|
Zeb J, Ran G, Denis PA, Ghani U, Liu J, Yuan Q, Ullah R, Zhu H, Zhang W. Ultrafast dynamics of the liquid deposited blend film of porphyrin donor and perylene diimide acceptor. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Scharl T, Binder G, Chen X, Yokosawa T, Cadranel A, Knirsch KC, Spiecker E, Hirsch A, Guldi DM. Noncovalent Liquid Phase Functionalization of 2H-WS 2 with PDI: An Energy Conversion Platform with Long-Lived Charge Separation. J Am Chem Soc 2022; 144:5834-5840. [PMID: 35341248 PMCID: PMC9069688 DOI: 10.1021/jacs.1c11977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Transition metal
dichalcogenides are attractive 2D materials in
the context of solar energy conversion. Previous investigations have
focused predominantly on the properties of these systems. The realization
of noncovalent hybrids with, for example, complementary electroactive
materials remains underexplored to this date for exfoliated WS2. In this contribution, we explore WS2 by means
of exfoliation and integration together with visible light-absorbing
and electron-accepting perylene diimides into versatile electron-donor
acceptor hybrids. Important is the distinct electron-donating feature
of WS2. Detailed spectroscopic investigations of WS2–PDI confirm
the electron donor/acceptor nature of the hybrid and indicate that
green light photoexcitation leads to the formation of long-lived WS2•+–PDI•– charge-separated
states.
Collapse
Affiliation(s)
- Tobias Scharl
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Gerhard Binder
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Xin Chen
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research, and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Kathrin C Knirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research, and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Budyka MF, Gavrishova TN, Li VM, Potashova NI, Fedulova JA. Emissive and reactive excimers in a covalently-linked supramolecular multi-chromophoric system with a balanced rigid-flexible structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120565. [PMID: 34753706 DOI: 10.1016/j.saa.2021.120565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A novel multi-chromophoric system, triad, in which two styrylbenzoquinoline (SBQ) photochromes are connected by a balanced rigid-flexible linker comprising 2,3-naphthylene framework (a residue of 3-oxy-2-naphthoic acid) and tetramethylene groups, was designed and synthesized to study an excimer formation in the excited state. The 1H NMR data testified that triad exists in solution as folded conformers with asymmetric parallel-displaced SBQ units. Under light irradiation, in the triad, competitive photoisomerization and [2 + 2] photocycloaddition reactions were observed, both reactions being reversible. The photocycloaddition resulted in a tetrasubstituted cyclobutane. The red-shifted fluorescence spectrum and the appearance of a long-lived component in the triad fluorescence decay indicated formation of an 'emissive' excimer. The photocycloaddition is assumed to occur in a 'reactive' excimer, in which the ethylene groups of the SBQ photochromes are located at a distance sufficient for the formation of the σ-bonds between them. Quantum-chemical density functional theory (DFT) calculations at M06-2X/6-31G* level predicted the existence of the triad conformers with π-stacking interaction of SBQ photochromes, the structure of which is pre-organized for the excimer formation and photocycloaddition. For the first time, both emissive and reactive excimers were experimentally observed in the multi-chromophoric system with two diarylethylene photochromes undergoing [2 + 2] photocycloaddition.
Collapse
Affiliation(s)
- Mikhail F Budyka
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation.
| | - Tatiana N Gavrishova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Vitalii M Li
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Natalia I Potashova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Julia A Fedulova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
7
|
Interplay between Electronic Energy Transfer and Reversible Photoreactions in a Triad Comprising Two Different Styrylbenzoquinoline Photochromes and a ′Hidden′ Quencher. ChemistrySelect 2021. [DOI: 10.1002/slct.202004721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Kong J, Zhang W, Li G, Huo D, Guo Y, Niu X, Wan Y, Tang B, Xia A. Excited-State Symmetry-Breaking Charge Separation Dynamics in Multibranched Perylene Diimide Molecules. J Phys Chem Lett 2020; 11:10329-10339. [PMID: 33232151 DOI: 10.1021/acs.jpclett.0c03210] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the most promising nonfullerene acceptors for organic photovoltaics, perylene diimide (PDI)-based multibranched molecules with twisted or three-dimensional (3D) geometric structures have been developed, which effectively increase the power conversion efficiency (PCE) of organic solar cells. Understanding the structure-property relationships in multichromophoric molecular architectures at molecular and ultrafast time levels is a crucial step in establishing new design principles in organic electronic materials. For this, photodriven excited-state symmetry-breaking charge separation (SB-CS) of PDI-based multichromophoric acceptors has been proposed to improve the PCE by reducing the self-aggregation of the planar PDI monomer. Herein, we investigated the intramolecular excited-state SB-CS and charge recombination (CR) dynamics of two symmetric phenyl-methane-based PDI derivatives, a twist dimer PM-PDI2 (phenyl-methane-based PDI dimer) and a 3D configuration tetramer PM-PDI4 (phenyl-methane-based PDI tetramer), in different solvents using ultrafast femtosecond transient absorption (fs-TA) spectroscopy and quantum chemical calculations. The quantum chemical calculations and steady-state spectra show that the two PDI derivatives undergo conformational changes upon excitation, leading to their emission states that have the characteristics of partial charge-transfer (CT) exciton in all solvents. Based on the evolution of the fs-TA data, it is observed that the evolution from the CT state to SB-CS state is disfavored in a weak polar solvent, whereas clear SB-CS spectroscopic signatures of cationic and anionic PDI are observed in polar solvents. Faster CS and slower CR processes of PM-PDI4 are observed in comparison to those of PM-PDI2. The crowded space in the 3D structure shortens the distance between the branches, leading to a stronger electronic coupling at the lowest excited state and a larger negative Gibbs free energy change of PM-PDI4 relative to that of PM-PDI2, which benefits the charge separation among PDI units in PM-PDI4. Besides, the 3D structure of PM-PDI4 also restricts rotation to a surface crossing region between the excited state and ground state, thus inhibiting nonradiative CR process and increasing the CS state lifetime. Our results suggest that the kinetics of CS and CR processes are strongly related to the molecular geometric structure, and the excited-state symmetry breaking in the 3D structure acceptor has superior photogenerated charge and photovoltaic properties from the perspective of ultrafast dynamics.
Collapse
Affiliation(s)
- Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gang Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P.R. China
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Yuanyuan Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P.R. China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Sciences, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| |
Collapse
|
9
|
Kim TW, Jun S, Ha Y, Yadav RK, Kumar A, Yoo CY, Oh I, Lim HK, Shin JW, Ryoo R, Kim H, Kim J, Baeg JO, Ihee H. Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks. Nat Commun 2019; 10:1873. [PMID: 31015440 PMCID: PMC6478948 DOI: 10.1038/s41467-019-09872-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
Covalent organic frameworks (COFs) have emerged as a promising light-harvesting module for artificial photosynthesis and photovoltaics. For efficient generation of free charge carriers, the donor–acceptor (D-A) conjugation has been adopted for two-dimensional (2D) COFs recently. In the 2D D-A COFs, photoexcitation would generate a polaron pair, which is a precursor to free charge carriers and has lower binding energy than an exciton. Although the character of the primary excitation species is a key factor in determining optoelectronic properties of a material, excited-state dynamics leading to the creation of a polaron pair have not been investigated yet. Here, we investigate the dynamics of photogenerated charge carriers in 2D D-A COFs by combining femtosecond optical spectroscopy and non-adiabatic molecular dynamics simulation. From this investigation, we elucidate that the polaron pair is formed through ultrafast intra-layer hole transfer coupled with coherent vibrations of the 2D lattice, suggesting a mechanism of phonon-assisted charge transfer. The donor–acceptor (D-A) conjugation has been adopted for two-dimensional (2D) covalent organic frameworks (COFs) for efficient generation of free charge carriers. Here, the authors investigate the dynamics of photogenerated charge carriers in 2D D-A COFs by combining femtosecond optical spectroscopy and non-adiabatic molecular dynamics simulation.
Collapse
Affiliation(s)
- Tae Wu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Sunhong Jun
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Memory Business, Samsung Electronics, Gyeonggi-do, 18448, Republic of Korea
| | - Yoonhoo Ha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Rajesh K Yadav
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Abhishek Kumar
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Chung-Yul Yoo
- Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea
| | - Inhwan Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyung-Kyu Lim
- Department of Chemical Engineering, Kangwon National University, Gangwon-do, 24341, Republic of Korea
| | - Jae Won Shin
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Ryong Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| | - Jin-Ook Baeg
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Budyka MF, Gavrishova TN, Potashova NI, Li VM. Irreversible One-Way [2+2] Photocycloaddition in Bis-Styrylbenzo[f]quinoline Dyad: Photoactive and Photoinert Excimers in the Same System. ChemistrySelect 2018. [DOI: 10.1002/slct.201802550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mikhail F. Budyka
- Department of Nanophotonics; Institute of Problems of Chemical Physics; Russian Academy of Sciences; 142432 Chernogolovka, Moscow Region Russian Federation
| | - Tatiana N. Gavrishova
- Department of Nanophotonics; Institute of Problems of Chemical Physics; Russian Academy of Sciences; 142432 Chernogolovka, Moscow Region Russian Federation
| | - Natalia I. Potashova
- Department of Nanophotonics; Institute of Problems of Chemical Physics; Russian Academy of Sciences; 142432 Chernogolovka, Moscow Region Russian Federation
| | - Vitalii M. Li
- Department of Nanophotonics; Institute of Problems of Chemical Physics; Russian Academy of Sciences; 142432 Chernogolovka, Moscow Region Russian Federation
| |
Collapse
|
11
|
Dean JC, Zhang R, Hallani RK, Pensack RD, Sanders SN, Oblinsky DG, Parkin SR, Campos LM, Anthony JE, Scholes GD. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Phys Chem Chem Phys 2018; 19:23162-23175. [PMID: 28820218 DOI: 10.1039/c7cp03774k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quantitative singlet fission has been observed for a variety of acene derivatives such as tetracene and pentacene, and efforts to extend the library of singlet fission compounds is of current interest. Preliminary calculations suggest anthradithiophenes exhibit significant exothermicity between the first optically-allowed singlet state, S1, and 2 × T1 with an energy difference of >5000 cm-1. Given the fulfillment of this ingredient for singlet fission, here we investigate the singlet fission capability of a difluorinated anthradithiophene dimer (2ADT) covalently linked by a (dimethylsilyl)ethane bridge and derivatized by triisobutylsilylethynyl (TIBS) groups. Photophysical characterization of 2ADT and the single functionalized ADT monomer were carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance with computational predictions, two conformers of 2ADT were observed via fluorescence spectroscopy and were assigned to structures with the ADT cores trans or cis to one another about the covalent bridge. The two conformers exhibited markedly different excited state deactivation mechanisms, with the minor trans population being representative of the ADT monomer showing primarily radiative decay, while the dominant cis population underwent relaxation into an excimer geometry before internally converting to the ground state. The excimer formation kinetics were found to be solvent dependent, yielding time constants of ∼1.75 ns in toluene, and ∼600 ps in acetone. While the difference in rates elicits a role for the solvent in stabilizing the excimer structure, the rate is still decidedly long compared to most singlet fission rates of analogous dimers, suggesting that the excimer is neither a kinetic nor a thermodynamic trap, yet singlet fission was still not observed. The result highlights the sensitivity of the electronic coupling element between the singlet and correlated triplet pair states, to the dimer conformation in dictating singlet fission efficiency even when the energetic requirements are met.
Collapse
Affiliation(s)
- Jacob C Dean
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Ruomeng Zhang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Rawad K Hallani
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Ryan D Pensack
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Samuel N Sanders
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Sean R Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
12
|
He G, Zhou LL, Song H, Kuang Z, Wang X, Guo Q, Lu HY, Xia A. Insights into the effect of donor ability on photophysical properties of dihydroindeno[2,1-c]fluorene-based imide derivatives. Phys Chem Chem Phys 2018; 20:7514-7522. [DOI: 10.1039/c7cp07985k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The photophysical properties of dihydroindeno[2,1-c]fluorene-based imide (DHIFI) derivatives were investigated by steady-state and time-resolved spectroscopy as well as quantum chemical calculations.
Collapse
Affiliation(s)
- Guiying He
- Beijing National Laboratory for Molecular sciences (BNLMS)
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Li-Li Zhou
- University of Chinese Academy of Sciences
- Beijing 100049
- People's Republic of China
| | - Hongwei Song
- Beijing National Laboratory for Molecular sciences (BNLMS)
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhuoran Kuang
- Beijing National Laboratory for Molecular sciences (BNLMS)
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xian Wang
- Beijing National Laboratory for Molecular sciences (BNLMS)
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qianjin Guo
- Beijing National Laboratory for Molecular sciences (BNLMS)
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences
- Beijing 100049
- People's Republic of China
| | - Andong Xia
- Beijing National Laboratory for Molecular sciences (BNLMS)
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
13
|
Zhu G, Zhang Y, Hu Y, Zhao X, Yuan Z, Chen Y. Conjugated polymers based on 1,8-naphthalene monoimide with high electron mobility. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guomin Zhu
- College of Chemistry; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
| | - Youdi Zhang
- College of Chemistry; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of New Energy Chemistry/Institute of Polymers; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
| | - Yu Hu
- College of Chemistry; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
| | - Xiaohong Zhao
- College of Chemistry; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
| | - Zhongyi Yuan
- College of Chemistry; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of New Energy Chemistry/Institute of Polymers; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
| | - Yiwang Chen
- College of Chemistry; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of New Energy Chemistry/Institute of Polymers; Nanchang University, 999 Xuefu Avenue; Nanchang 330031 China
| |
Collapse
|
14
|
Song H, Wang X, Yang W, He G, Kuang Z, Li Y, Xia A, Zhong YW, Kong F. Ultrafast relaxation dynamics of amine-substituted bipyridyl ruthenium(ii) complexes. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
He G, Yu C, Li Y, Hu J, Liu Z, Zhang D, Guo Q, Xia A. Excitation Energy Transfer inmeta-Substituted Phenylacetylene Multibranched Chromophores. Chem Asian J 2016; 11:2741-2748. [DOI: 10.1002/asia.201600326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Guiying He
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Chenmin Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Laboratory of Organic Solid; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Yang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Jiangpu Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Laboratory of Organic Solid; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Laboratory of Organic Solid; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS) and; Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
16
|
Zhu H, Li Y, Chen J, Zhou M, Niu Y, Zhang X, Guo Q, Wang S, Yang G, Xia A. Excited-State Deactivation of Branched Phthalocyanine Compounds. Chemphyschem 2015; 16:3893-901. [DOI: 10.1002/cphc.201500738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/29/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Huaning Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Yang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Jun Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
- School of Materials Science and Engineering; Jiangxi University of Science and Technology; Ganzhou 341000 China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Yingli Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Xinxing Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Shuangqing Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Bejing 100190 China
| |
Collapse
|