1
|
Corinti D, Rotari L, Crestoni ME, Fornarini S, Oomens J, Berden G, Tintaru A, Chiavarino B. Protonated Forms of Naringenin and Naringenin Chalcone: Proteiform Bioactive Species Elucidated by IRMPD Spectroscopy, IMS, CID-MS, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4005-4015. [PMID: 36849438 PMCID: PMC9999425 DOI: 10.1021/acs.jafc.2c07453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Naringenin (Nar) and its structural isomer, naringenin chalcone (ChNar), are two natural phytophenols with beneficial health effects belonging to the flavonoids family. A direct discrimination and structural characterization of the protonated forms of Nar and ChNar, delivered into the gas phase by electrospray ionization (ESI), was performed by mass spectrometry-based methods. In this study, we exploit a combination of electrospray ionization coupled to (high-resolution) mass spectrometry (HR-MS), collision-induced dissociation (CID) measurements, IR multiple-photon dissociation (IRMPD) action spectroscopy, density functional theory (DFT) calculations, and ion mobility-mass spectrometry (IMS). While IMS and variable collision-energy CID experiments hardly differentiate the two isomers, IRMPD spectroscopy appears to be an efficient method to distinguish naringenin from its related chalcone. In particular, the spectral range between 1400 and 1700 cm-1 is highly specific in discriminating between the two protonated isomers. Selected vibrational signatures in the IRMPD spectra have allowed us to identify the nature of the metabolite present in methanolic extracts of commercial tomatoes and grapefruits. Furthermore, comparisons between experimental IRMPD and calculated IR spectra have clarified the geometries adopted by the two protonated isomers, allowing a conformational analysis of the probed species.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Lucretia Rotari
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525ED, Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525ED, Netherlands
| | - Aura Tintaru
- CNRS,
Centre Interdisciplinaire de Nanoscience de Marseille, CINaM UMR 7325, Aix Marseille University, Marseille 13288, France
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
2
|
He CC, Hamlow LA, Roy HA, Devereaux ZJ, Hasan MA, Israel E, Cunningham NA, Martens J, Berden G, Oomens J, Rodgers MT. Structural Determination of Lysine-Linked Cisplatin Complexes via IRMPD Action Spectroscopy: NN s and NO - Binding Modes of Lysine to Platinum Coexist. J Phys Chem B 2022; 126:9246-9260. [PMID: 36326184 DOI: 10.1021/acs.jpcb.2c06234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite its success as an anticancer drug, cisplatin suffers from resistance and produces side effects. To overcome these limitations, amino-acid-linked cisplatin analogues have been investigated. Lysine-linked cisplatin, Lysplatin, (Lys)PtCl2, exhibited outstanding reactivity toward DNA and RNA that differs from that of cisplatin. To gain insight into its differing reactivity, the structure of Lysplatin is examined here using infrared multiple photon dissociation (IRMPD) action spectroscopy. To probe the influence of the local chemical environment on structure, the deprotonated and sodium-cationized Lysplatin complexes are examined. Electronic structure calculations are performed to explore possible modes of binding of Lys to Pt, their relative stabilities, and to predict their infrared spectra. Comparisons of the measured IRMPD and predicted IR spectra elucidate the structures contributing to the experimental spectra. Coexistence of two modes of binding of Lys to Pt is found where Lys binds via the backbone and side-chain amino nitrogen atoms, NNs, or to the backbone amino and carboxylate oxygen atoms, NO-. Glycine-linked cisplatin and arginine-linked cisplatin complexes have previously been found to bind only via the NO- binding mode. Present results suggest that the NNs binding conformers may be key to the outstanding reactivity of Lysplatin toward DNA and RNA.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zachary J Devereaux
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M A Hasan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - J Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Mikawy NN, Roy HA, Israel E, Hamlow LA, Zhu Y, Berden G, Oomens J, Frieler CE, Rodgers MT. 5-Halogenation of Uridine Suppresses Protonation-Induced Tautomerization and Enhances Glycosidic Bond Stability of Protonated Uridine: Investigations via IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Calculations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2165-2180. [PMID: 36279168 DOI: 10.1021/jasms.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Uridine (Urd), a canonical nucleoside of RNA, is the most commonly modified nucleoside among those that occur naturally. Uridine has also been an important target for the development of modified nucleoside analogues for pharmaceutical applications. In this work, the effects of 5-halogenation of uracil on the structures and glycosidic bond stabilities of protonated uridine nucleoside analogues are examined using tandem mass spectrometry and computational methods. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and theoretical calculations are performed to probe the structural influences of these modifications. Energy-resolved collision-induced dissociation experiments along with survival yield analyses are performed to probe glycosidic bond stability. The measured IRMPD spectra are compared to linear IR spectra predicted for the stable low-energy conformations of these species computed at the B3LYP/6-311+G(d,p) level of theory to determine the conformations experimentally populated. Spectral signatures in the IR fingerprint and hydrogen-stretching regions allow the 2,4-dihydroxy protonated tautomers (T) and O4- and O2-protonated conformers to be readily differentiated. Comparisons between the measured and predicted spectra indicate that parallel to findings for uridine, both T and O4-protonated conformers of the 5-halouridine nucleoside analogues are populated, whereas O2-protonated conformers are not. Variations in yields of the spectral signatures characteristic of the T and O4-protonated conformers indicate that the extent of protonation-induced tautomerization is suppressed as the size of the halogen substituent increases. Trends in the energy-dependence of the survival yield curves find that 5-halogenation strengthens the glycosidic bond and that the enhancement in stability increases with the size of the halogen substituent.
Collapse
Affiliation(s)
- Neven N Mikawy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - C E Frieler
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
He CC, Hamlow LA, Kimutai B, Roy HA, Devereaux ZJ, Cunningham NA, Martens J, Berden G, Oomens J, Chow CS, Rodgers MT. Structural determination of arginine-linked cisplatin complexes via IRMPD action spectroscopy: arginine binds to platinum via NO - binding mode. Phys Chem Chem Phys 2021; 23:21959-21971. [PMID: 34569570 DOI: 10.1039/d1cp03407c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin, (NH3)2PtCl2, has been known as a successful metal-based anticancer drug for more than half a century. Its analogue, Argplatin, arginine-linked cisplatin, (Arg)PtCl2, is being investigated because it exhibits reactivity towards DNA and RNA that differs from that of cisplatin. In order to understand the basis for its altered reactivity, the deprotonated and sodium cationized forms of Argplatin, [(Arg-H)PtCl2]- and [(Arg)PtCl2 + Na]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy in the IR fingerprint and hydrogen-stretching regions. Complementary electronic structure calculations are performed using density functional theory approaches to characterize the stable structures of these complexes and to predict their infrared spectra. Comparison of the theoretical IR spectra predicted for various stable conformations of these Argplatin complexes to their measured IRMPD spectra enables determination of the binding mode(s) of Arg to the Pt metal center to be identified. Arginine is found to bind to Pt in a bidentate fashion to the backbone amino nitrogen and carboxylate oxygen atoms in both the [(Arg-H)PtCl2]- and [(Arg)PtCl2 + Na]+ complexes, the NO- binding mode. The neutral side chain of Arg also interacts with the Pt center to achieve additional stabilization in the [(Arg-H)PtCl2]- complex. In contrast, Na+ binds to both chlorido ligands in the [(Arg)PtCl2 + Na]+ complex and the protonated side chain of Arg is stabilized via hydrogen-bonding interactions with the carboxylate moiety. These findings are consistent with condensed-phase results, indicating that the NO- binding mode of arginine to Pt is preserved in the electrospray ionization process even under variable pH and ionic strength.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - B Kimutai
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zachary J Devereaux
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - J Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - C S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
5
|
Gissot A, Massip S, Barthélémy P. Intramolecular Michael Additions in Uridine Derivatives: Isolation of the Labile 5'O-C6 Cyclonucleoside. ACS OMEGA 2020; 5:24746-24753. [PMID: 33015492 PMCID: PMC7528289 DOI: 10.1021/acsomega.0c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Uridine derivatives undergo a diastereospecific intramolecular hetero Michael addition onto uracil C6 to give cyclo-adducts. In contrast to the potent amine and thiol nucleophiles at the 5' position of ribose, which readily give the N- and S-cyclonucleosides in good yields, the cyclization reaction from the "natural" 5'-hydroxyl is tedious and has so far been overlooked most probably because of the thermodynamic instability of the O-cyclo-adduct. Here, we show that the O-cyclonucleoside 1 can be isolated, although in low isolated yields, in acidic conditions following an original mechanism. Whether such cyclization reactions occur from biologically relevant pyrimidine-based nucleosides is an open question of interest. Given the structures of thymidine-based antiviral drugs, our results suggest a new hypothetical mode of action for these drugs.
Collapse
Affiliation(s)
- Arnaud Gissot
- CNRS,
INSERM, ARNA, UMR 5320, U1212, Univ. Bordeaux, F-33000 Bordeaux, France
| | - Stéphane Massip
- CNRS
UMS 3033, INSERM US001, IECB, Univ. Bordeaux, 2 Rue Escarpit, F-33600 Pessac, France
| | - Philippe Barthélémy
- CNRS,
INSERM, ARNA, UMR 5320, U1212, Univ. Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Cui Y, Yuan J, Wang P, Wu J, Yu Y, Wang Y. Collision-Induced Dissociation Studies of Protonated Ions of Alkylated Thymidine and 2'-Deoxyguanosine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:927-937. [PMID: 32134268 PMCID: PMC7362892 DOI: 10.1021/jasms.9b00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mass spectrometry and tandem MS (MS/MS) have been widely employed for the identification and quantification of damaged nucleosides in DNA, including those induced by alkylating agents. Upon collisional activation, protonated ions of alkylated nucleosides frequently undergo facile neutral loss of a 2-deoxyribose in MS/MS, and further cleavage of the resulting protonated nucleobases in MS3 can sometimes be employed for differentiating regioisomeric alkylated DNA lesions. Herein, we investigated systematically the collision-induced dissociation (CID) of the protonated ions of O4-alkylthymidine (O4-alkyldT), O2-alkyldT, O6-alkyl-2'-deoxyguanosine (O6-alkyldG), and N2-alkyldG through MS3 analysis. The MS3 of O2- and O4-MedT exhibit different fragmentation patterns from each other and from other O2- and O4-alkyldT adducts carrying larger alkyl groups. Meanwhile, elimination of alkene via a six-membered ring transition state is the dominant fragmentation pathway for O2-alkyldT, O4-alkyldT, and O6-alkyldG adducts carrying larger alkyl groups, whereas O6-MedG mainly undergoes elimination of ammonia. The breakdown of N2-alkyldG is substantially influenced by the structure of the alkyl group, where the relative ease in eliminating ammonia and alkene is modulated by the chain length and branching of the alkyl groups. We also rationalize our observations with density functional theory (DFT) calculations.
Collapse
|
7
|
He CC, Hamlow LA, Zhu Y, Nei YW, Fan L, McNary CP, Maître P, Steinmetz V, Schindler B, Compagnon I, Armentrout PB, Rodgers MT. Structural and Energetic Effects of O2'-Ribose Methylation of Protonated Pyrimidine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2318-2334. [PMID: 31435890 DOI: 10.1007/s13361-019-02300-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The 2'-substituents distinguish DNA from RNA nucleosides. 2'-O-methylation occurs naturally in RNA and plays important roles in biological processes. Such 2'-modifications may alter the hydrogen-bonding interactions of the nucleoside and thus may affect the conformations of the nucleoside in an RNA chain. Structures of the protonated 2'-O-methylated pyrimidine nucleosides were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy, assisted by electronic structure calculations. The glycosidic bond stabilities of the protonated 2'-O-methylated pyrimidine nucleosides, [Nuom+H]+, were also examined and compared to their DNA and RNA nucleoside analogues via energy-resolved collision-induced dissociation (ER-CID). The preferred sites of protonation of the 2'-O-methylated pyrimidine nucleosides parallel their canonical DNA and RNA nucleoside analogues, [dNuo+H]+ and [Nuo+H]+, yet their nucleobase orientation and sugar puckering differ. The glycosidic bond stabilities of the protonated pyrimidine nucleosides follow the order: [dNuo+H]+ < [Nuo+H]+ < [Nuom+H]+. The slightly altered structures help explain the stabilization induced by 2'-O-methylation of the pyrimidine nucleosides.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - L Fan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - C P McNary
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - P Maître
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - V Steinmetz
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - B Schindler
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - I Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
8
|
Hamlow LA, Nei YW, Wu RR, Gao J, Steill JD, Berden G, Oomens J, Rodgers MT. Impact of Sodium Cationization on Gas-Phase Conformations of DNA and RNA Cytidine Mononucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1758-1767. [PMID: 31286444 DOI: 10.1007/s13361-019-02274-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Gas-phase conformations of the sodium-cationized forms of the 2'-deoxycytidine and cytidine mononucleotides, [pdCyd+Na]+ and [pCyd+Na]+, are examined by infrared multiple photon dissociation action spectroscopy. Complimentary electronic structure calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory provide candidate conformations and their respective predicted IR spectra for comparison across the IR fingerprint and hydrogen-stretching regions. Comparisons of the predicted IR spectra and the measured infrared multiple photon dissociation action spectra provide insight into the impact of sodium cationization on intrinsic mononucleotide structure. Further, comparison of present results with those reported for the sodium-cationized cytidine nucleoside analogues elucidates the impact of the phosphate moiety on gas-phase structure. Across the neutral, protonated, and sodium-cationized cytidine mononucleotides, a preference for stabilization of the phosphate moiety and nucleobase orientation is observed, although the details of this stabilization differ with the state of cationization. Several low-energy conformations of [pdCyd+Na]+ and [pCyd+Na]+ involving several different orientations of the phosphate moiety and sugar puckering modes are observed experimentally.
Collapse
Affiliation(s)
- L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - R R Wu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - J D Steill
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Devereaux ZJ, He CC, Zhu Y, Roy HA, Cunningham NA, Hamlow LA, Berden G, Oomens J, Rodgers MT. Structures and Relative Glycosidic Bond Stabilities of Protonated 2'-Fluoro-Substituted Purine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1521-1536. [PMID: 31111413 DOI: 10.1007/s13361-019-02222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The 2'-substituent is the primary distinguishing feature between DNA and RNA nucleosides. Modifications to this critical position, both naturally occurring and synthetic, can produce biologically valuable nucleoside analogues. The unique properties of fluorine make it particularly interesting and medically useful as a synthetic nucleoside modification. In this work, the effects of 2'-fluoro modification on the protonated gas-phase purine nucleosides are examined using complementary tandem mass spectrometry and computational methods. Direct comparisons are made with previous studies on related nucleosides. Infrared multiple photon dissociation action spectroscopy performed in both the fingerprint and hydrogen-stretching regions allows for the determination of the experimentally populated conformations. The populated conformers of protonated 2'-fluoro-2'-deoxyadenosine, [Adofl+H]+, and 2'-fluoro-2'-deoxyguanosine, [Guofl+H]+, are highly parallel to their respective canonical DNA and RNA counterparts. Both N3 and N1 protonation sites are accessed by [Adofl+H]+, stabilizing syn and anti nucleobase orientations, respectively. N7 protonation and anti nucleobase orientation dominates in [Guofl+H]+. Spectroscopically observable intramolecular hydrogen-bonding interactions with fluorine allow more definitive sugar puckering determinations than possible for the canonical systems. [Adofl+H]+ adopts C2'-endo sugar puckering, whereas [Guofl+H]+ adopts both C2'-endo and C3'-endo sugar puckering. Energy-resolved collision-induced dissociation experiments with survival yield analyses provide relative glycosidic bond stabilities. The N-glycosidic bond stabilities of the protonated 2'-fluoro-substituted purine nucleosides are found to exceed those of their canonical analogues. Further, the N-glycosidic bond stability is found to increase with increasing electronegativity of the 2'-substituent, i.e., H < OH < F. The N-glycosidic bond stability is also greater for the adenine nucleoside analogues than the guanine nucleoside analogues.
Collapse
Affiliation(s)
- Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - C C He
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Hamlow LA, Devereaux ZJ, Roy HA, Cunningham NA, Berden G, Oomens J, Rodgers MT. Impact of the 2'- and 3'-Sugar Hydroxyl Moieties on Gas-Phase Nucleoside Structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:832-845. [PMID: 30850972 DOI: 10.1007/s13361-019-02155-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Modified nucleosides have been an important target for pharmaceutical development for the treatment of cancer, herpes simplex virus, and the human immunodeficiency virus (HIV). Amongst these nucleoside analogues, those based on 2',3'-dideoxyribose sugars are quite common, particularly in anti-HIV applications. The gas-phase structures of several protonated 2',3'-dideoxyribose nucleosides are examined in this work and compared with those of the analogous protonated DNA, RNA, and arabinose nucleosides to elucidate the influence of the 2'- and combined 2',3'-hydroxyl groups on intrinsic structure. Infrared multiple photon dissociation (IRMPD) action spectra are collected for the protonated 2',3'-dideoxy forms of adenosine, guanosine, cytidine, thymidine and uridine, [ddAdo+H]+, [ddGuo+H]+, [ddCyd+H]+, [ddThd+H]+, and [ddUrd+H]+, in the IR fingerprint and hydrogen-stretching regions. Molecular mechanics conformational searching followed by electronic structure calculations generates low-energy conformers of the protonated 2',3'-dideoxynucleosides and corresponding predicted linear IR spectra to facilitate interpretation of the measured IRMPD action spectra. These experimental IRMPD spectra and theoretical calculations indicate that the absence of the 2'- and 3'-hydroxyls largely preserves the protonation preferences of the canonical forms. The spectra and calculated structures indicate a slight preference for C3'-endo sugar puckering. The presence of the 3'- and further 2'-hydroxyl increases the available intramolecular hydrogen-bonding opportunities and shifts the sugar puckering modes for all nucleosides but the guanosine analogues to a slight preference for C2'-endo over C3'-endo. Graphical Abstract.
Collapse
Affiliation(s)
- L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
11
|
Corinti D, Maccelli A, Chiavarino B, Maitre P, Scuderi D, Bodo E, Fornarini S, Crestoni ME. Vibrational signatures of curcumin's chelation in copper(II) complexes: An appraisal by IRMPD spectroscopy. J Chem Phys 2019; 150:165101. [PMID: 31042893 DOI: 10.1063/1.5086666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Curcumin (Cur) is a natural polyphenol with a wide spectrum of biological activities and appealing therapeutic potential. Herein, it has been delivered by electrospray ionization as gaseous protonated species, [Cur + H]+, and as a Cu(ii) complex, [Cu(Cur - H)]+, a promising antioxidant and radical scavenger. The gas phase structures were assayed by infrared multiple photon dissociation (IRMPD) spectroscopy in both the fingerprint (800-2000 cm-1) and hydrogen stretching (3100-3750 cm-1) ranges. Comparison between the experimental features and linear IR spectra of the lowest energy structures computed at the B3LYP/6-311+G(d,p) level reveals that bare [Cu(Cur - H)]+ exists in a fully planar and symmetric arrangement, where the metal interacts with the two oxygens of the syn-enolate functionality of deprotonated Cur and both OCH3 groups are engaged in H-bonding with the ortho OH. The effect of protonation on the energetic and geometric determinants of Cur has been explored as well, revealing that bare [Cur + H]+ may exist as a mixture of two close-lying isomers associated with the most stable binding motifs. The additional proton is bound to either the diketo or the keto-enol configuration of Cur, in a bent or nearly planar arrangement, respectively.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Alessandro Maccelli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Philippe Maitre
- Laboratoire de Chimie Physique (UMR8000), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Debora Scuderi
- Laboratoire de Chimie Physique (UMR8000), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Enrico Bodo
- Dipartimento di Chimica, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| |
Collapse
|
12
|
Pitzer M, Ozga C, Küstner-Wetekam C, Reiß P, Knie A, Ehresmann A, Jahnke T, Giuliani A, Nahon L. State-Dependent Fragmentation of Protonated Uracil and Uridine. J Phys Chem A 2019; 123:3551-3557. [PMID: 30943036 DOI: 10.1021/acs.jpca.9b01822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Action spectroscopy using photon excitation in the VUV range (photon energy 4.5-9 eV) was performed on protonated uracil (UraH+) and uridine (UrdH+). The precursor ions with m/ z 113 and m/ z 245, respectively, were produced by an electrospray ionization source and accumulated inside a quadrupole ion trap mass spectrometer. After irradiation with tunable synchrotron radiation, product ion mass spectra were obtained. Fragment yields as a function of excitation energy show several maxima that can be attributed to the photoexcitation into different electronic states. For uracil, vertically excited states were calculated using the equation-of-motion coupled cluster approach and compared to the observed maxima. This allows to establish correlations between electronic states and the resulting fragment masses and can thus help to disentangle the complex de-excitation and fragmentation pathways of nucleic acid building blocks. Photofragmentation of the nucleoside uridine shows a significantly lower variety of fragments, indicating stabilization of the nucleobase by the attached sugar.
Collapse
Affiliation(s)
- Martin Pitzer
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel.,Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Christian Ozga
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Catmarna Küstner-Wetekam
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Philipp Reiß
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - André Knie
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Arno Ehresmann
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Till Jahnke
- Institute for Nuclear Physics , Goethe-University , 60438 Frankfurt , Germany
| | | | | |
Collapse
|
13
|
Influence of 2′-fluoro modification on glycosidic bond stabilities and gas-phase ion structures of protonated pyrimidine nucleosides. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
van Outersterp RE, Martens J, Berden G, Steill JD, Oomens J, Rijs AM. Structural characterization of nucleotide 5'-triphosphates by infrared ion spectroscopy and theoretical studies. Phys Chem Chem Phys 2018; 20:28319-28330. [PMID: 30398499 DOI: 10.1039/c8cp03314e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular family of nucleotide triphosphates (NTPs), with adenosine 5'-triphosphate (ATP) as its best-known member, is of high biochemical importance as their phosphodiester bonds form Nature's main means to store and transport energy. Here, gas-phase IR spectroscopic studies and supporting theoretical studies have been performed on adenosine 5'-triphosphate, cytosine 5'-triphosphate and guanosine 5'-triphosphate to elucidate the intrinsic structural properties of NTPs, focusing on the influence of the nucleobase and the extent of deprotonation. Mass spectrometric studies involving collision induced dissociation showed similar fragmentation channels for the three studied NTPs within a selected charge state. The doubly charged anions exhibit fragmentation similar to the energy-releasing hydrolysis reaction in nature, while the singly charged anions show different dominant fragmentation channels, suggesting that the charge state plays a significant role in the favorability of the hydrolysis reaction. A combination of infrared ion spectroscopy and quantum-chemical computations indicates that the singly charged anions of all NTPs are preferentially deprotonated at their β-phosphates, while the doubly-charged anions are dominantly αβ-deprotonated. The assigned three-dimensional structure differs for ATP and CTP on the one hand and GTP on the other, in the sense that ATP and CTP show no interaction between nucleobase and phosphate tail, while in GTP they are hydrogen bonded. This can be rationalized by considering the structure and geometry of the NTPs where the final three dimensional structure depends on a subtle balance between hydrogen bond strength, flexibility and steric hindrance.
Collapse
Affiliation(s)
- Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Hamlow LA, Zhu Y, Devereaux ZJ, Cunningham NA, Berden G, Oomens J, Rodgers MT. Modified Quadrupole Ion Trap Mass Spectrometer for Infrared Ion Spectroscopy: Application to Protonated Thiated Uridines. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2125-2137. [PMID: 30136214 DOI: 10.1007/s13361-018-2047-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 05/17/2023]
Abstract
Modifications to a Paul-type quadrupole ion trap mass spectrometer providing optical access to the trapped ion cloud as well as hardware and software for coupling to a table-top IR optical parametric oscillator laser (OPO) are detailed. Critical experimental parameters for infrared multiple photon dissociation (IRMPD) on this instrument are characterized. IRMPD action spectra, collected in the hydrogen-stretching region with this instrument, complemented by spectra in the IR fingerprint region acquired at the FELIX facility, are employed to characterize the structures of the protonated forms of 2-thiouridine, [s2Urd+H]+, and 4-thiouridine, [s4Urd+H]+. The measured spectra are compared with predicted linear IR spectra calculated at the B3LYP/6-311+G(d,p) level of theory to determine the conformers populated in the experiments. This comparison indicates that thiation at the 2- or 4-positions shifts the protonation preference between the 2,4-H tautomer and 4-protonation in opposite directions versus canonical uridine, which displays a roughly equal preference for the 2,4-H tautomer and O4 protonation. As found for canonical uridine, protonation leads to a mixture of conformers exhibiting C2'-endo and C3'-endo sugar puckering with an anti nucleobase orientation being populated for both 2- and 4-thiated uridine. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI, 48202, USA
| | - Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI, 48202, USA.
| |
Collapse
|
16
|
He CC, Hamlow LA, Devereaux ZJ, Zhu Y, Nei YW, Fan L, McNary CP, Maitre P, Steinmetz V, Schindler B, Compagnon I, Armentrout PB, Rodgers MT. Structural and Energetic Effects of O2'-Ribose Methylation of Protonated Purine Nucleosides. J Phys Chem B 2018; 122:9147-9160. [PMID: 30203656 DOI: 10.1021/acs.jpcb.8b07687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The chemical difference between DNA and RNA nucleosides is their 2'-hydrogen versus 2'-hydroxyl substituents. Modification of the ribosyl moiety at the 2'-position and 2'-O-methylation in particular, is common among natural post-transcriptional modifications of RNA. 2'-Modification may alter the electronic properties and hydrogen-bonding characteristics of the nucleoside and thus may lead to enhanced stabilization or malfunction. The structures and relative glycosidic bond stabilities of the protonated forms of the 2'-O-methylated purine nucleosides, 2'-O-methyladenosine (Adom) and 2'-O-methylguanosine (Guom), were examined using two complementary tandem mass spectrometry approaches, infrared multiple photon dissociation action spectroscopy and energy-resolved collision-induced dissociation. Theoretical calculations were also performed to predict the structures and relative stabilities of stable low-energy conformations of the protonated forms of the 2'-O-methylated purine nucleosides and their infrared spectra in the gas phase. Low-energy conformations highly parallel to those found for the protonated forms of the canonical DNA and RNA purine nucleosides are also found for the protonated 2'-O-methylated purine nucleosides. Importantly, the preferred site of protonation, nucleobase orientation, and sugar puckering are preserved among the DNA, RNA, and 2'-O-methylated variants of the protonated purine nucleosides. The 2'-substituent does however influence hydrogen-bond stabilization as the 2'-O-methyl and 2'-hydroxyl substituents enable a hydrogen-bonding interaction between the 2'- and 3'-substituents, whereas a 2'-hydrogen atom does not. Further, 2'-O-methylation reduces the number of stable low-energy hydrogen-bonded conformations possible and importantly inverts the preferred polarity of this interaction versus that of the RNA analogues. Trends in the CID50% values extracted from survival yield analyses of the 2'-O-methylated and canonical DNA and RNA forms of the protonated purine nucleosides are employed to elucidate their relative glycosidic bond stabilities. The glycosidic bond stability of Adom is found to exceed that of its DNA and RNA analogues. The glycosidic bond stability of Guom is also found to exceed that of its DNA analogue; however, this modification weakens this bond relative to its RNA counterpart. The glycosidic bond stability of the protonated purine nucleosides appears to be correlated with the hydrogen-bond stabilization of the sugar moiety.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - L A Hamlow
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Zachary J Devereaux
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Y Zhu
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Y-W Nei
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - L Fan
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - C P McNary
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - P Maitre
- Laboratoire de Chimie Physique (UMR8000), CNRS, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - V Steinmetz
- Laboratoire de Chimie Physique (UMR8000), CNRS, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - B Schindler
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - I Compagnon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - P B Armentrout
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - M T Rodgers
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
17
|
Ishida R, Iwahashi H. Detection of protonated non-Watson-Crick base pairs using electrospray ionization mass spectrometry. J Biochem 2018; 163:215-222. [PMID: 29087477 DOI: 10.1093/jb/mvx073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that protonated nucleic acid base pairs are involved in a wide variety of nucleic acid structures. However, little information is available on relative stability of hemiprotonated self- and non-self-dimers at monomer level. We used electrospray ionization mass spectrometry (ESI-MS) to evaluate the relative stability under various concentrations of hydrogen ion. These enable conjecture of the formation of protonated non-Watson-Crick base pairs based on DNA and RNA base sequence. In the present study, we observed that ESI-MS peaks corresponded to respective self-dimers for all examined nucleosides except for adenosine. Peak heights depended on the concentration of hydrogen ion. The ESI-MS peak heights of the hemiprotonated cytidine dimers and the hemiprotonated thymidine dimer sharply increased with increased concentration of hydrogen ion, suggesting direct participation of hydrogen ion in dimer formations. In ESI-MS measurements of the solutions containing adenosine, cytidine, thymidine and guanosine, we observed protonated cytidine-guanosine dimer (CH+-G) and protonated cytidine-thymidine dimer (CH+-T) in addition to hemiprotonated cytidine-cytidine dimer (CH+-C) with following relative peak height, (CH+-C) > (CH+-G) ≈ (CH+-T) > (CH+-A). Additionally, in the ESI-MS measurements of solutions containing adenosine, thymidine and guanosine, we observed a considerable amount of protonated adenosine-guanosine (AH+-G) and protonated adenosine-thymidine (AH+-T).
Collapse
Affiliation(s)
- Riyoko Ishida
- Analytical Biochemistry, Wakayama Medical University, 580 Mikazura, Wakayama, Wakayama 641-0011, Japan
| | - Hideo Iwahashi
- Analytical Biochemistry, Wakayama Medical University, 580 Mikazura, Wakayama, Wakayama 641-0011, Japan
| |
Collapse
|
18
|
Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chemistry 2018; 24:3374-3390. [PMID: 29314303 DOI: 10.1002/chem.201705692] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/07/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules.
Collapse
Affiliation(s)
- Lucie Jašíková
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
19
|
Wu RR, Hamlow LA, He CC, Nei YW, Berden G, Oomens J, Rodgers MT. The intrinsic basicity of the phosphate backbone exceeds that of uracil and thymine residues: protonation of the phosphate moiety is preferred over the nucleobase for pdThd and pUrd. Phys Chem Chem Phys 2018; 19:30351-30361. [PMID: 29099122 DOI: 10.1039/c7cp05521h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gas-phase conformations of the protonated forms of thymidine-5'-monophosphate and uridine-5'-monophosphate, [pdThd+H]+ and [pUrd+H]+, are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure calculations. The IRMPD action spectra of [pdThd+H]+ and [pUrd+H]+ are measured over the IR fingerprint and hydrogen-stretching regions using the FELIX free electron laser and an OPO/OPA laser system. Low-energy conformations of [pdThd+H]+ and [pUrd+H]+ and their relative stabilities are computed at the MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers indicate that the dominant conformers of [pdThd+H]+ and [pUrd+H]+ populated in the experiments are protonated at the phosphate oxo oxygen atom, with a syn nucleobase orientation that is stabilized by strong P[double bond, length as m-dash]OH+O2 and P-OHO4' hydrogen-bonding interactions, and C2'-endo sugar puckering. Minor abundance of conformers protonated at the O2 carbonyl of the nucleobase residue may also contribute for [pdThd+H]+, but do not appear to be important for [pUrd+H]+. Comparisons to previous IRMPD spectroscopy investigations of the protonated forms of thymidine and uridine, [dThd+H]+ and [Urd+H]+, and the deprotonated forms of pdThd and pUrd, [pdThd-H]- and [pUrd-H]-, provide insight into the effects of the phosphate moiety and protonation on the conformational features of the nucleobase and sugar moieties. Most interestingly, the thymine and uracil nucleobases remain in their canonical forms for [pdThd+H]+ and [pUrd+H]+, unlike [dThd+H]+ and [Urd+H]+, where protonation occurs on the nucleobases and induces tautomerization of the thymine and uracil residues.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bezzina JP, Prendergast MB, Blanksby SJ, Trevitt AJ. Gas-Phase Oxidation of the Protonated Uracil-5-yl Radical Cation. J Phys Chem A 2018; 122:890-896. [PMID: 29295616 DOI: 10.1021/acs.jpca.7b09411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study targets the kinetics and product detection of the gas-phase oxidation reaction of the protonated 5-dehydrouracil (uracil-5-yl) distonic radical cation using ion-trap mass spectrometry. Protonated 5-dehydrouracil radical ions (5-dehydrouracilH+ radical ion, m/z 112) are produced within an ion trap by laser photolysis of protonated 5-iodouracil. Storage of the 5-dehydrouracilH+ radical ion in the presence of controlled concentration of O2 reveals two main products. The major reaction product pathway is assigned as the formation of protonated 2-hydroxypyrimidine-4,5-dione (m/z 127) + •OH. A second product ion (m/z 99), putatively assigned as a five-member-ring ketone structure, is tentatively explained as arising from the decarbonylation (-CO) of protonated 2-hydroxypyrimidine-4,5-dione. Because protonation of the 5-dehydrouracil radical likely forms a dienol structure, the O2 reaction at the 5 position is ortho to an -OH group. Following this addition of O2, the peroxyl-radical intermediate isomerizes by H atom transfer from the -OH group. The ensuing hydroperoxide then decomposes to eliminate •OH radical. It is shown that this elimination of •OH radical (-17 Da) is evidence for the presence of an -OH group ortho to the initial phenyl radical site, in good accord with calculations. The subsequent CO loss mechanism, to form the aforementioned five-member-ring structure, is unclear, but some pathways are discussed. By following the kinetics of the reaction, the room temperature second-order rate coefficient of the 5-dehydrouracilH+ distonic radical cation with molecular oxygen is measured at 7.2 × 10-11 cm3 molecule-1 s-1, Φ = 12% (with ±50% total accuracy). For aryl radical reactions with O2, the presence of the •OH elimination product pathway, following the peroxyl-radical formation, is an indicator of an -OH group ortho to the radical site.
Collapse
Affiliation(s)
- James P Bezzina
- School of Chemistry, University of Wollongong , Wollongong, Australia 2522
| | | | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology , Brisbane, Australia 4001
| | - Adam J Trevitt
- School of Chemistry, University of Wollongong , Wollongong, Australia 2522
| |
Collapse
|
21
|
Wu RR, He CC, Hamlow LA, Nei YW, Berden G, Oomens J, Rodgers MT. Protonation induces base rotation of purine nucleotides pdGuo and pGuo. Phys Chem Chem Phys 2018; 18:15081-90. [PMID: 27197049 DOI: 10.1039/c6cp01354f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infrared multiple photon dissociation (IRMPD) action spectra of the protonated forms of 2'-deoxyguanosine-5'-monophosphate and guanosine-5'-monophosphate, [pdGuo+H](+) and [pGuo+H](+), are measured over the IR fingerprint and hydrogen-stretching regions using the FELIX free electron laser and an OPO/OPA laser system. Electronic structure calculations are performed to generate low-energy conformations of [pdGuo+H](+) and [pGuo+H](+) and determine their relative stabilities at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparative analyses of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers are performed to determine the most favorable site of protonation and the conformers present in the experiments. These comparisons and the computed energetics find that N7 protonation is considerably preferred over O6 and N3, and the N7 protonated ground-state conformers of [pdGuo+H](+) and [pGuo+H](+) are populated in the experiments. The 2'-hydroxyl substituent does not significantly impact the stable low-energy conformers of [pdGuo+H](+)vs. those of [pGuo+H](+). The effect of the 2'-hydroxyl substituent is primarily reflected in the relative intensities of the measured IRMPD bands, as the IRMPD profiles of [pdGuo+H](+) and [pGuo+H](+) are quite similar. Comparisons to previous IRMPD spectroscopy investigations of the protonated forms of the guanine nucleosides, [dGuo+H](+) and [Guo+H](+), and deprotonated forms of the guanine nucleotides, [pdGuo-H](-) and [pGuo-H](-), provide insight into the effects of the phosphate moiety and protonation on the conformational features of the nucleobase and sugar moieties. Protonation is found to induce base rotation of the guanine residue to an anti orientation vs. the syn orientation found for the deprotonated forms of the guanine nucleotides.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - C C He
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Y-W Nei
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - G Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands and van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD, Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
22
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Studies of Sodium Cationized Thymidine and 5-Methyluridine: Kinetic Trapping During the ESI Desolvation Process Preserves the Solution Structure of [Thd+Na]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2423-2437. [PMID: 28836109 DOI: 10.1007/s13361-017-1753-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 05/25/2023]
Abstract
Thymidine (dThd) is a fundamental building block of DNA nucleic acids, whereas 5-methyluridine (Thd) is a common modified nucleoside found in tRNA. In order to determine the conformations of the sodium cationized thymine nucleosides [dThd+Na]+ and [Thd+Na]+ produced by electrospray ionization, their infrared multiple photon dissociation (IRMPD) action spectra are measured. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations and frequency analyses are performed at the B3LYP/6-311+G(d,p) level of theory, whereas energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory. As protonation preferentially stabilizes minor tautomers of dThd and Thd, tautomerization facilitated by Na+ binding is also considered. Comparisons of the measured IRMPD and computed IR spectra find that [dThd+Na]+ prefers tridentate (O2,O4',O5') coordination to the canonical 2,4-diketo form of dThd with thymine in a syn orientation. In contrast, [Thd+Na]+ prefers bidentate (O2,O2') coordination to the canonical 2,4-diketo tautomer of Thd with thymine in an anti orientation. Although 2,4-dihydroxy tautomers and O2 protonated thymine nucleosides coexist in the gas phase, no evidence for minor tautomers is observed for the sodium cationized species. Consistent with experimental observations, the computational results confirm that the sodium cationized thymine nucleosides exhibit a strong preference for the canonical form of the thymine nucleobase. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized dThd and Thd follow the order [dThd+H]+ < [Thd+H]+ < [dThd+Na]+ < [Thd+Na]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M U Munshi
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
23
|
Wu RR, Hamlow LA, He CC, Nei YW, Berden G, Oomens J, Rodgers MT. N3 and O2 Protonated Conformers of the Cytosine Mononucleotides Coexist in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1638-1646. [PMID: 28497356 DOI: 10.1007/s13361-017-1653-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
The gas-phase conformations of the protonated forms of the DNA and RNA cytosine mononucleotides, [pdCyd+H]+ and [pCyd+H]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy over the IR fingerprint and hydrogen-stretching regions complemented by electronic structure calculations. The low-energy conformations of [pdCyd+H]+ and [pCyd+H]+ and their relative stabilities are computed at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers allow the conformers present in the experiments to be determined. Similar to that found in previous IRMPD action spectroscopy studies of the protonated forms of the cytosine nucleosides, [dCyd+H]+ and [Cyd+H]+, both N3 and O2 protonated cytosine mononucleotides exhibiting an anti orientation of cytosine are found to coexist in the experimental population. The 2'-hydroxyl substituent does not significantly influence the most stable conformations of [pCyd+H]+ versus those of [pdCyd+H]+, as the IRMPD spectral profiles of [pdCyd+H]+ and [pCyd+H]+ are similar. However, the presence of the 2'-hydroxyl substituent does influence the relative intensities of the measured IRMPD bands. Comparisons to IRMPD spectroscopy studies of the deprotonated forms of the cytosine mononucleotides, [pdCyd-H]- and [pCyd-H]-, provide insight into the effects of protonation versus deprotonation on the conformational features of the nucleobase and sugar moieties. Likewise, comparisons to results of IRMPD spectroscopy studies of the protonated cytosine nucleosides provide insight into the influence of the phosphate moiety on structure. Comparison with previous ion mobility results shows the superiority of IRMPD spectroscopy for distinguishing various protonation sites. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - C C He
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - G Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD, Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
24
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. Effects of sodium cationization versus protonation on the conformations and N-glycosidic bond stabilities of sodium cationized Urd and dUrd: solution conformation of [Urd+Na] + is preserved upon ESI. Phys Chem Chem Phys 2017; 19:17637-17652. [PMID: 28665436 DOI: 10.1039/c7cp02377d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uridine (Urd) is one of the naturally occurring pyrimidine nucleosides of RNA. 2'-Deoxyuridine (dUrd) is a naturally occurring modified form of Urd, but is not one of the canonical DNA nucleosides. In order to understand the effects of sodium cationization on the conformations and energetics of Urd and dUrd, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and density functional theory (DFT) calculations are performed. By comparing the calculated IR spectra of [Urd+Na]+ and [dUrd+Na]+ with the measured IRMPD spectra, the stable low-energy conformers populated in the experiments are determined. Anti oriented bidentate O2 and O2' binding conformers of [Urd+Na]+ are the dominant conformers populated in the experiments, whereas syn oriented tridentate O2, O4', and O5' binding conformers of [dUrd+Na]+ are dominantly populated in the experiments. The 2'-hydroxyl substituent of Urd stabilizes the anti oriented O2 binding conformers of [Urd+Na]+. Significant differences between the measured IRMPD and calculated IR spectra for complexes of [Urd+Na]+ and [dUrd+Na]+ involving minor tautomeric forms of the nucleobase make it obvious that none are populated in the experiments. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized Urd and dUrd follow the order: [dUrd+H]+ < [Urd+H]+ < [dUrd+Na]+ < [Urd+Na]+. The 2'-deoxy modification is found to weaken the glycosidic bond of dUrd versus that of Urd for the sodium cationized uridine nucleosides.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - J Gao
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M U Munshi
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
25
|
Zhu Y, Hamlow LA, He CC, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and N-Glycosidic Bond Stabilities of Sodium Cationized 2'-Deoxyguanosine and Guanosine: Sodium Cations Preferentially Bind to the Guanine Residue. J Phys Chem B 2017; 121:4048-4060. [PMID: 28355483 DOI: 10.1021/acs.jpcb.7b02906] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
2'-Deoxyguanosine (dGuo) and guanosine (Guo) are fundamental building blocks of DNA and RNA nucleic acids. In order to understand the effects of sodium cationization on the gas-phase conformations and stabilities of dGuo and Guo, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and complementary electronic structure calculations are performed. The measured IRMPD spectra of [dGuo+Na]+ and [Guo+Na]+ are compared to calculated IR spectra predicted for the stable low-energy structures computed for these species to determine the most favorable sodium cation binding sites, identify the structures populated in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and IRMPD spectral features. These results are compared with those from a previous IRMPD study of the protonated guanine nucleosides to elucidate the differences between sodium cationization and protonation on structure. Energy-resolved collision-induced dissociation (ER-CID) experiments and survival yield analyses of protonated and sodium cationized dGuo and Guo are performed to compare the effects of these cations toward activating the N-glycosidic bonds of these nucleosides. For both [dGuo+Na]+ and [Guo+Na]+, the gas-phase structures populated in the experiments are found to involve bidentate binding of the sodium cation to the O6 and N7 atoms of guanine, forming a 5-membered chelation ring, with guanine found in both anti and syn orientations and C2'-endo (2T3 or 3T2) puckering of the sugar. The ER-CID results, IRMPD yields and the computed C1'-N9 bond lengths indicate that sodium cationization activates the N-glycosidic bond less effectively than protonation for both dGuo and Guo. The 2'-hydroxyl substituent of Guo is found to impact the preferred structures very little except that it enables a 2'OH···3'OH hydrogen bond to be formed, and stabilizes the N-glycosidic bond relative to that of dGuo in both the sodium cationized and protonated complexes.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
26
|
Lesslie M, Lawler JT, Dang A, Korn JA, Bím D, Steinmetz V, Maître P, Tureček F, Ryzhov V. Cytosine Radical Cations: A Gas‐Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion–Molecule Reactions, and Theoretical Calculations. Chemphyschem 2017; 18:1293-1301. [DOI: 10.1002/cphc.201700281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - John T. Lawler
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Andy Dang
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Joseph A. Korn
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic 166 10 Prague 6 Czech Republic
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Philippe Maître
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Frantisek Tureček
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| |
Collapse
|
27
|
Zhu Y, Hamlow LA, He CC, Strobehn SF, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2'-Deoxyadenosine and Adenosine. J Phys Chem B 2016; 120:8892-904. [PMID: 27494378 DOI: 10.1021/acs.jpcb.6b06105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - S F Strobehn
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
Wu RR, Rodgers MT. Tautomerization lowers the activation barriers for N-glycosidic bond cleavage of protonated uridine and 2'-deoxyuridine. Phys Chem Chem Phys 2016; 18:24451-9. [PMID: 27536972 DOI: 10.1039/c6cp03620a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The gas-phase conformations of protonated uridine, [Urd+H](+), and its 2'-deoxy form, protonated 2'-deoxyuridine, [dUrd+H](+), have been examined in detail previously by infrared multiple photon dissociation action spectroscopy techniques. Both 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) were found to coexist in the experiments with the 2,4-dihydroxy tautomers dominating the population. In the present study, the kinetic energy dependence of the collision-induced dissociation behavior of [Urd+H](+) and [dUrd+H](+) are examined using a guided ion beam tandem mass spectrometer to probe the mechanisms and energetics for activated dissociation of these protonated nucleosides. The primary dissociation pathways observed involve N-glycosidic bond cleavage leading to competitive elimination of protonated or neutral uracil. The potential energy surfaces (PESs) for these N-glycosidic bond cleavage pathways are mapped out via electronic structure calculations for the mixture of 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) populated in the experiments. The calculated activation energies (AEs) and heats of reaction (ΔHrxns) for N-glycosidic bond cleavage at both the B3LYP and MP2(full) levels of theory are compared to the measured values. The agreement between experiment and theory indicates that B3LYP provides better estimates of the energetics of the species along the PESs for N-glycosidic bond cleavage than MP2, and that the 2,4-dihydroxy tautomers, which are stabilized by strong hydrogen-bonding interactions, predominantly influence the observed threshold dissociation behavior of [Urd+H](+) and [dUrd+H](+).
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | |
Collapse
|
29
|
Wu RR, Rodgers MT. O2 Protonation Controls Threshold Behavior for N-Glycosidic Bond Cleavage of Protonated Cytosine Nucleosides. J Phys Chem B 2016; 120:4803-11. [PMID: 27159774 DOI: 10.1021/acs.jpcb.6b04388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IRMPD action spectroscopy studies of protonated 2'-deoxycytidine and cytidine, [dCyd+H](+) and [Cyd+H](+), have established that both N3 and O2 protonated conformers coexist in the gas phase. Threshold collision-induced dissociation (CID) of [dCyd+H](+) and [Cyd+H](+) is investigated here using guided ion beam tandem mass spectrometry techniques to elucidate the mechanisms and energetics for N-glycosidic bond cleavage. N-Glycosidic bond cleavage is observed as the major dissociation pathways resulting in competitive elimination of either protonated or neutral cytosine for both protonated cytosine nucleosides. Electronic structure calculations are performed to map the potential energy surfaces (PESs) for both N-glycosidic bond cleavage pathways observed. The molecular parameters derived from theoretical calculations are employed for thermochemical analysis of the energy-dependent CID data to determine the minimum energies required to cleave the N-glycosidic bond along each pathway. B3LYP and MP2(full) computed activation energies for N-glycosidic bond cleavage associated with elimination of protonated and neutral cytosine, respectively, are compared to measured values to evaluate the efficacy of these theoretical methods in describing the dissociation mechanisms and PESs for N-glycosidic bond cleavage. The 2'-hydroxyl of [Cyd+H](+) is found to enhance the stability of the N-glycosidic bond vs that of [dCyd+H](+). O2 protonation is found to control the threshold energies for N-glycosidic bond cleavage as loss of neutral cytosine from the O2 protonated conformers is found to require ∼25 kJ/mol less energy than the N3 protonated analogues, and the activation energies and reaction enthalpies computed using B3LYP exhibit excellent agreement with the measured thresholds for the O2 protonated conformers.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
30
|
Wu RR, He CC, Hamlow LA, Nei YW, Berden G, Oomens J, Rodgers MT. N3 Protonation Induces Base Rotation of 2'-Deoxyadenosine-5'-monophosphate and Adenosine-5'-monophosphate. J Phys Chem B 2016; 120:4616-24. [PMID: 27138137 DOI: 10.1021/acs.jpcb.6b04052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments combined with theoretical calculations are performed to investigate the stable gas-phase conformations of the protonated adenine mononucleotides, [pdAdo+H](+) and [pAdo+H](+). Conformations that are present in the experiments are elucidated via comparative analyses of the experimental IRMPD spectra and the B3LYP/6-311+G(d,p) IR spectra predicted for the conformers optimized at this level of theory. N3 protonation is preferred as it induces base rotation, which allows a strong hydrogen bond to be formed between the excess proton of adenine and the phosphate moiety. In contrast, both N1 and N7 protonation are predicted to be >35 kJ/mol less favorable than N3 protonation. Only N3 protonated conformers are present in the experiments in measurable abundance. Both the low-energy conformers computed and the experimental IRMPD spectra of [pdAdo+H](+) and [pAdo+H](+) indicate that the 2'-hydroxyl moiety does not significantly impact the structure of the most stable conformer or the IRMPD spectral profile of [pAdo+H](+) vs that of [pdAdo+H](+). However, the 2'-hydroxyl leads to a 3-fold enhancement in the IRMPD yield of [pAdo+H](+) in the fingerprint region. Comparison of present results to those reported in a previous IRMPD study of the analogous protonated adenine nucleosides allows the effects of the phosphate moiety on the gas-phase conformations to be elucidated.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Y-W Nei
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - G Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University , Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - J Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University , Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam , 1090 GD Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
31
|
Wu RR, Yang B, Frieler CE, Berden G, Oomens J, Rodgers MT. 2,4-Dihydroxy and O2 Protonated Tautomers of dThd and Thd Coexist in the Gas Phase: Methylation Alters Protonation Preferences versus dUrd and Urd. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:410-421. [PMID: 26676730 DOI: 10.1007/s13361-015-1303-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The gas-phase structures of protonated thymidine, [dThd + H](+), and its modified form, protonated 5-methyluridine, [Thd + H](+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy combined with electronic structure calculations. IRMPD action spectra are measured over the ranges extending from ~600 to 1900 cm(-1) and ~2800 to 3800 cm(-1) using the FELIX free electron laser and an optical parametric oscillator/amplifier (OPO/OPA) laser system, respectively. Comparisons between the B3LYP/6-311+G(d,p) linear IR spectra calculated for the stable low-energy conformers and the measured IRMPD spectra are used to determine the most favorable tautomeric conformations of [dThd + H](+) and [Thd + H](+) and to identify those populated in the experiments. Both B3LYP and MP2 levels of theory predict a minor 2,4-dihydroxy tautomer as the ground-state conformer of [dThd + H](+) and [Thd + H](+) indicating that the 2'-hydroxyl substituent of Thd does not exert a significant impact on the structural features. [dThd + H](+) and [Thd + H](+) share parallel IRMPD spectral profiles and yields in both the FELIX and OPO regions. Comparisons between the measured IRMPD and calculated IR spectra suggest that minor 2,4-dihydroxy tautomers and O2 protonated conformers of [dThd + H](+) and [Thd + H](+) are populated in the experiments. Comparison of this work to our previous IRMPD spectroscopy study of protonated 2'-deoxyuridine and uridine suggests that the 5-methyl substituent alters the preferences of O2 versus O4 protonation.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Bo Yang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - C E Frieler
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - G Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD, Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
32
|
Wu RR, Rodgers MT. Mechanisms and energetics for N-glycosidic bond cleavage of protonated adenine nucleosides: N3 protonation induces base rotation and enhances N-glycosidic bond stability. Phys Chem Chem Phys 2016; 18:16021-32. [DOI: 10.1039/c6cp01445c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
N3 protonation induces base rotation and stabilizes the syn orientation of the adenine nucleobase of [dAdo+H]+ and [Ado+H]+via formation of a strong intramolecular N3H+⋯O5′ hydrogen-bonding interaction, which in turn influences the mechanisms and energetics for N-glycosidic bond cleavage.
Collapse
Affiliation(s)
- R. R. Wu
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| | - M. T. Rodgers
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| |
Collapse
|